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We describe here a computational method to study !-precipitate strength-
ening in nickel-based superalloys, and to specifically investigate the relative
importance of stacking-fault energy and coherency strains. The method is a
combination of the Parametric Dislocation Dynamics (PDD), an analytical
solution to the spherical inclusion problem and the generalized
Peierls–Nabarro (P-N) model. Earlier analytical solutions to stacking-
fault strengthening predict a lower critical resolved shear stress (CRSS)
in comparison with the results of the present model. This is attributed
to shape changes of super-dislocations during their interaction with
!-precipitates. However, existing analytical solutions to coherency
strengthening provide considerably larger values of the CRSS compared
with the results of present simulations. The dislocation core is found to
spread widely as it interacts with !-precipitates, and is thus much softer
than what has been considered in previous analytical solutions. This
remarkable effect is a direct result of the core structure of dislocations
interacting with precipitates. When this effect is accounted for, a new
analytical solution is shown to give excellent agreement with present
simulation results. We finally discuss the combined effects of the two
strengthening mechanisms, when they operate simultaneously.

Keywords: generalized Peierls–Nabarro model; dislocation dynamics;
Ni-based superalloys; precipitation

1. Introduction

Precipitation strengthening is one of the most effective techniques to design alloys
for a desired combination of strength and ductility. The main mechanism of
strengthening is generally known to be the interaction between dislocations and
precipitates, where precipitates impede the motion of dislocations, resulting in an
increase in the flow stress and a corresponding change in ductility. The classical
theory of precipitation strengthening is already well established on the basis of
dislocation–precipitate interaction mechanisms, and provides useful information for
practical alloy design [1]. Precipitation strengthening is categorized into elementary
contributing mechanisms; such as changes in the stacking-fault energy, effects of
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coherency strains, effects of elastic modulus mismatch between the matrix and
precipitate, and the influence of precipitate crystal structure in relation to the matrix.
The primary objective of the theory is to provide an accurate evaluation of the
critical resolved shear stress (CRSS), and its dependence on the individual
mechanisms.

Hirsch and Kelly proposed an analytical equation for the dependence of the
CRSS on the stacking-fault energy, and discussed the influence of the difference
between the stacking-fault energy of the matrix and that of the precipitate [2].
They used an extended dislocation model, where the dislocation was represented by
two partial dislocations and a stacking-fault in-between. Nembach modified this
solution, and developed another equation for accurate evaluation of the CRSS [3].
On the other hand, Gerold and Haberkorn pursued an analytical study of coherency
strain strengthening, and proposed an equation for its contribution to the CRSS [4].
They assumed a spherical precipitate with a coherency strain, where the elastic field
impedes dislocation motion, either inside the precipitate or in the matrix. All these
analytical approaches capture the qualitative behavior of the CRSS. However,
quantitative evaluation of the CRSS as a result of precipitate strengthening
necessitates that the assumptions involved in analytical estimates should be removed.
In analytical approximations, the dislocation is assumed to be straight, and the
dislocation core structure is ignored. Therefore, to provide quantitative evaluations
of precipitate strengthening, we must examine the influence of the dislocation line
flexibility, and the role that the dislocation core structure plays during its interaction
with precipitates. Analytical equations can then be revised on the basis of detailed
numerical calculations, when necessary.

One of the interesting applications is the strengthening caused by precipitation in
nickel-based superalloys. These alloys have been extensively investigated, because
L12-type long-range ordered intermetallic compounds, such as Ni3Al, Ni3Si and
Co3Ti, are considered for high-temperature structural applications. Miller observed
extensive formation of spherical !-precipitates in the ! 0 matrix phase of a nickel-
based superalloy using 3-D atom probe measurements [5]. Nemoto et al. measured
the increase in the yield strength of the alloy resulting from the formation of
!-precipitates, and provided a clear picture of the influence of !-precipitate
strengthening on the inverse temperature dependence of the yield strength of
the alloy [6]. Thus, understanding the role of !-precipitates on alloy strength, and the
detailed mechanisms involved during the interaction between a dislocation and
!-precipitates is fundamental to the control and improvement of the mechanical
properties.

Recently, computer simulation techniques have provided an opportunity to
investigate the detailed mechanisms of material deformation without many of the
assumptions that must be invoked in order to develop analytical approaches.
The dislocation dynamics (DD) computer simulation technique has been developed
to study metal deformation from a fundamental perspective, as the method allows
simulation of the collective behavior of dislocation ensembles, and to derive the
macroscopic deformation response on the basis of dislocation mechanisms [7].
However, the original development of the DD technique was based on elasticity
solutions for dislocations in an infinite medium, without the influence of external or
internal surfaces. Subsequently, Van der Giessen and Needleman utilized the
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superposition principle to account for the geometry of the material in two-
dimensional DD simulations [8], employing the finite element method (FEM) to
solve the correction problem arising from the application of the superposition
principle. Weygand et al. extended the method to three-dimensional DD
simulations [9]. More recently, Takahashi and Ghoniem extended the superposition
principle to general three-dimensional dislocation–precipitate interaction problems
[10]. They derived a set of boundary-volume integral equations for the correction
problem, and solved the equations using the boundary element method (BEM) with
a volume integral term. The method allows us to deal with flexible dislocation lines,
and can thus give important information on the influence of dislocation shape
change on its interaction with precipitates. Xiang et al. developed a level set method
to simulate the dynamics of dislocations. They simulated the complex
dislocation behavior in the vicinity of spherical inclusions including the cross-slip
of screw parts of the dislocation [11]. Devicre et al. developed a discrete continuous
model (DCM), where the dislocations are represented as eigenstrains in the
continuum calculation using the FEM, and the dynamics of dislocations is
calculated based on the FEM result of the stress calculation. Using the DCM
method, they calculated and discussed the critical stress for dislocations to move the
! 0/!/! 0 channel [12]. Rao et al. investigated the interaction between dislocations and
both !- and ! 0-precipitates using the DD method [13]. They studied the dependence
of the CRSS on the shape and volume fraction of the !-precipitates. However, these
studies did not deal with an extended dislocation core structure, and hence it is
clearly necessary to implement a new idea that can incorporate the dislocation
core structure into DD simulations. Banerjee et al. developed a generalized
Peierls–Nabarro (GPN) model to determine the dislocation core structure, taking
into account crystal lattice resistance to slip through ab initio calculations, and also
generalizing the dislocation shape as a 3-D space curve [14]. The main idea is to
descritize the elastic interaction part of the equation with a number of fractional
dislocations having small Burgers vectors. The lattice restoring part of the force
equilibrium equation is evaluated taking the derivative of the !-surface energy
obtained by separate ab initio calculations. They applied the method to static
dislocation problems, and investigated the core structure of dislocation loops in
f.c.c. metals.

The present model for the interaction between dislocations and precipitates has
several advantages and a few limitations. First, in MD simulations, we cannot clearly
separate the influence of the specific mechanisms on precipitation strengthening
(e.g. the specific effects of stacking-fault energy, coherency strain, etc.). On the other
hand, in the present model, it is very easy to add and delete the strengthening
mechanisms, which provides an opportunity to understand the relative magnitude of
strengthening mechanisms, as compared to classical precipitation theory. Second, the
present model is not dependent on the accuracy of the interatomic potential used in
MD simulations, because lattice resistance to dislocation motion is obtained from
ab initio information. In particular, when we deal with new types of precipitates, we
do not need to develop a valid interatomic potential for the matrix, precipitate, and
their interaction zone, which is a significant task for each type of precipitate. And
finally, the present model is not limited by the size of the MD simulation box, nor the
boundary conditions used, which are usual limitations in many MD simulations.
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Since the !–! 0 interface is coherent, restructuring of the dislocation core along this
matrix–precipitate interface may not be significant. However, the present model
must be extended to account for weak interfaces between precipitates and the matrix
as discussed in the work of Shehadeh et al. [15]. To extend the present model to
climbing dislocations (e.g. at high-temperature and under irradiation), we need to
consider coupling between thermal/irradiation osmotic point defect forces and glide
forces, which will move the dislocation out of the glide plane. However, the speed of
dislocation glide is much faster than climb as a general rule, and thus we would
expect that the effects of climb are small. This topic requires future modifications of
the present model using kinetic information on defect fluxes generated by thermal
or irradiation effects.

The objective of this paper is to develop and apply a computational method
that can simulate the dislocation–precipitate interaction process, including the
dynamics of the dislocation core itself. The development of this new computational
procedure will be based on a combination of the Parametric Dislocation Dynamics
(PDD) [7], and the GPN model [14]. Using the computational method, we will then
simulate the interaction between a super-dislocation and a spherical !-precipitate
embedded in a ! 0matrix of a nickel-based superalloy. The focus here will be an
investigation of two main effects: (1) the influence of the dislocation line flexibility,
and (2) the effects of the dislocation core structure on precipitation strengthening.
We will examine, separately and in combination, the relative effects of changes in
the stacking-fault energy between the precipitate and matrix, and the influence of
coherency strains on the CRSS. On the basis of computer simulation results, we
will revise the classical theoretical equations for coherency strengthening to account
for the influence of the dislocation core structure, and we will show that
classical analytical results extremely over-estimate the CRSS. Finally, we present
results for precipitate strengthening, when stacking-fault and coherency
strengthening are simultaneously operating together. In the next section, we present
details of the computational method, followed by a description of the precipitate-
dislocation model in Section 3. The results for stacking-fault and coherency
strain strengthening are then presented in Section 4, while conclusions are finally
drawn in Section 5.

2. Computational method

To determine the elastic interaction between precipitates and dislocations of an
infinitesimal-size core, Takahashi and Ghoniem proposed a computational method,
which is based on a combination of the original PDD method, and the BEM method
[10]. On the other hand, the development of a GPN model by Banerjee et al. enables
explicit representation of the core structure of dislocations within the PDD
framework [14]. Thus, coupling between these two methods should open the door
to investigations of the roles played by the dislocation line flexibility and its core
structure on precipitation strengthening. In the following, we develop basic concepts
for the elastic interaction between dislocations and precipitates. We also show how
the PDD and the GPN methodologies can be combined.
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2.1. Solution to dislocation–precipitate elastic interaction problem

Consider an infinite elastic body D, with elastic constants Cijkl, containing Np

precipitates and Nd dislocations, and subjected to an external applied stress !0ij.
The mth precipitate, !m, has elastic constants Cm

ijkl, and induces a coherency
strain "mkl . Following Mura [16], the stress in an infinite elastic body can be written as

!0ij þ !ij ¼
Cijkl "0kl þ "kl

! "
in D#!

Cm
ijkl "

0
kl þ "kl # "mkl

! "
in !m ,

(

ð1Þ

where "kl ¼ C#1klij!
0
ij, and ! is the total volume occupied by Np precipitates. Since it is

difficult to solve Equation (1) directly, the superposition principle will be utilized
in its solution:

!0ij þ !ij ¼ !̂ij þ ~!ij, ð2Þ

where !̂ij is the stress in the elastic problem containing dislocations with an external
applied stress, which is given as

!̂ij ¼ Cijkl "
0
kl þ "̂kl

! "
: ð3Þ

The last equation can be solved using the PDD method. On the other hand, ~!ij is a
correction stress to the infinite medium solution, which should have an exact solution
presented by Equation (1), when combined with Equation (3). Therefore, ~!ij can be
defined as

~!ij ¼
Cijkl ~"kl in D#!

Cm
ijkl ~"kl # "mkl
! "

þ Cm
ijkl # Cijkl

# $
"0kl þ ~"kl
! "

in !m:

(

ð4Þ

According to Equation (4), the correction field can be obtained from the solution of
an inhomogeneous inclusion problem, with an initial stress ðCm

ijkl # CijklÞð"0kl þ ~"klÞ in
the precipitates. Takahashi and Ghoniem derived boundary and volume integral
equations for such an inhomogeneity problem (Equation (4)), and solved the
boundary and volume integral equations using the BEM method, with a volume
integral term. In the nickel-based superalloy #-precipitate case, the elastic constants
of both # 0and #-phase are nearly the same, and thus the initial stress can be assumed
to be zero. Then Equation (4) can be converted from the inhomogeneous inclusion
problem to an inclusion problem. Additionally, if the shape of the precipitate is
assumed to be an ellipsoid, the equation can be solved using the Eshelby
tensor instead of the BEM method, which will drastically decrease the computational
effort [17].

2.2. Parametric dislocation dynamics method

In the PDD method [7], flexible dislocation ensembles are discretized into a number
of curved dislocation segments. The segments have two edge nodes, and the nodes
have a generalized coordinate vector, which is a combination of position and tangent
vectors. The curved shape of segments is represented by a cubic spline function that
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can preserve high-order continuity conditions. The equation of motion of each
dislocation ensembles is given by

Z

!
Fk ! B!k

dQ!

dt

! "
"rkjdsj ¼ 0, ð5Þ

where Fk is the force per unit length of the dislocation, B!k is the resistivity matrix
and Qk is the generalized coordinate for dislocations, which contains both position
and tangent vectors at a given node of a dislocation. In this work, Fk is defined as

Fk ¼ F ext
k þ F int

k þ F self
k þ Fppt

k , ð6Þ

where Fext
k is the force produced by the external stress, Fint

k is the interaction
force with other dislocation loops, Fself

k is the self-force, and Fppt
k is the force due to

the elastic field generated by #-precipitates. Integrating Equation (5), we can
obtain the matrix form of the equation of motion for dislocation ensembles as

Kij
dQj

dt
¼ Fi: ð7Þ

The dislocation velocity can be calculated by solving the above equation, and its time
integration simulates the dynamical behavior of dislocations in response to external
and internal stress fields. Details of the method can be found elsewhere [7].

2.3. Elastic field of incoherent spherical c-precipitates

Since it is experimentally observed that most #-precipitates in Ni-based superalloys
have spherical or cuboidal shapes, we thus assume that the shape of the #-precipitate
is spherical, and utilize an analytical solution to the elastic field generated by the
#-precipitate [17]. The lattice constant of the #-precipitate a#0 ¼ 0:352 nm differs from
that of the # 0-phase a#

0

0 ¼ 0:357 nm. This difference provides a coherency strain 2
in the #-precipitate, which is defined by

2¼ a#0 ! a#
0

0

# $
=a#

0

0 : ð8Þ

As a result of Equation (8), the coherency strain is !0.0143. When the position of
interest is inside the inclusion, the analytical solution to an elastic problem of a
spherical inclusion with a coherency strain 2 is given by

$r ¼ $t ¼
1þ %

3ð1! %Þ
2, ð9Þ

where % is Poisson’s ratio, and $r and $t are the strain in the radial and tangential
directions, respectively. On the other hand, when the point of interest is outside the
inclusion, the strains are given by

$r ¼ !
2

3

1þ %
1! %

a3

r3
2

$t ¼
1

3

1þ %
1! %

a3

r3
2,

ð10Þ
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where a is the radius of the spherical inclusion, and r is the distance between the
center of inclusion and the point of interest. The stress tensor at the point can then
be easily calculated using Hooke’s law, once the strain tensor is available.

2.4. Dislocation core structure

In the classical dislocation dynamics method, the character of dislocation lines is
defined only by the line sense vector and the Burgers vector. However, the
dislocation core structure is atomistic in nature, and hence cannot be accounted for
in the classical dislocation dynamics method. To overcome this difficulty and to
incorporate atomistic information into dislocation dynamic, the generalization of the
original Peierls–Nabarro (P-N) model [18,19] by Banerjee et al. will be used [14].
In the P-N model, the dislocation core structure is described with a distribution of
displacements within the core, and is determined by balancing the elastic interaction
energy between the displacements in the dislocation core and the lattice restoring
energy. Originally, the force equilibrium equation of the P-N model is solved for
simple straight dislocations in an infinite medium. However, the complicated shape
of three-dimensional dislocations makes a direct analytical solution rather difficult,
and one must resort to numerical methods. The GPN model of Banerjee et al. is
designed to determine dislocation core structures of complex shapes of dislocations.
The basic idea in the model is to discretize the continuous distribution of
displacement in the dislocation core by a number of fractional dislocations with
fractional Burgers vectors. Thus, the distribution of fractional dislocations
corresponds to equi-displacement contours within the dislocation core. Then the
force equilibrium equation of the P-N model can be written as

pi ¼
!

"ð1# #Þ
b

2Nf

XNf

j 6¼i

1

xj # xi
, ð11Þ

where pi is the lattice restoring stress on a fractional dislocation i, ! is the elastic
shear modulus, b is the Burgers vector, Nf is the number of fractional dislocations,
and xi is the position of the i-th fractional dislocation. From Equation (11), the
elastic interaction term in the P-N model is replaced with the elastic interaction
between fractional dislocations. Therefore, the implementation of the P-N model
within the dislocation dynamics framework is straightforward. In the dislocation
dynamics method, calculation of the elastic interaction between dislocations is an
essential part, which can account for the elastic interaction between fractional
dislocations. The lattice restoring stress can be calculated by taking the derivative of
the $-surface energy obtained by separate atomistic calculations, such as ab initio, or
alternatively, reliable interatomic potentials, and the force is simply added to
Equation (6).

2.5. Rigid dislocation dynamics

To clarify the influence of dislocation line flexibility on its interaction with
precipitates, we need to modify the equations of motion so as to constrain
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dislocations not to bend during the interaction process. In other words, constrained
dislocation dynamics will allow dislocations to move, with additional constraints on
their shapes. Let us consider a dislocation lying on an x–z slip plane, and glides in the
x-direction. To insure that the dislocation line remains straight, additional
conditions are applied to Equation (5):

dPy

dt
¼ dPz

dt
¼ dTx

dt
¼ dTy

dt
¼ dTz

dt
¼ 0: ð12Þ

By the application of the above constraint, the velocity of the dislocation in both
y- and z-directions are zero, and the shape is constrained to be rigidly straight.
Therefore, we need to consider only the velocity of the dislocation in the x-direction.
Moreover, the velocity of the dislocation in the x-direction is identical along the
entire dislocation line, which reduces the degrees of freedom of the dislocation
problem to only one. As a consequence, Equation (5) can be simplified to the
following single degree of freedom:

X

i

X

j

Kij
dPx

dt
¼
X

i

Fi, ð13Þ

where the indexes i and j are taken only for the rate of the dislocation translation in
the x-direction. The implementation of rigid dislocation dynamics is an easy and
straightforward implementation within the classical dislocation dynamics.

3. Dislocation-precipitate interaction

3.1. Geometric model

Figure 1 shows the simulation volume used in this work. The matrix material of the
simulation volume is the ! 0-phase, and the x-, y- and z-axes are along the crystal
orientations ½!101%, [111], ½!12!1%, respectively. A straight edge super-dislocation is

y :[111]

x:[101]

z :[121]

g -Precipitate
   Eigen strain : –0.0143

Edge super-dislocation 
(Fractional dislocations : 20 lines)  

L

g ′ Matrix

Figure 1. Schematic of simulation model for PDD simulations.
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introduced into the simulation volume. The super-dislocation has a Burgers vector of
a!
0

0 ½!101", and is on the (111) slip plane, where a0 is the lattice constant of the L12
ordered nickel-aluminum lattice (0.3571 nm) [20]. The core structure of the super-
dislocation is represented with 20 fractional dislocations. The !-surfaces of the
! 0-phase and of the !-precipitate are calculated using an interatomic potential
developed for the nickel-aluminum binary system [20]. The lattice restoring stresses
are then calculated by taking the derivative of the !-surface, and are used as a
function of position of the fractional dislocations. When part of a fractional
dislocation is in the ! 0-phase, the lattice restoring stress for the ! 0-phase is given to
that part of the fractional dislocation, whereas the lattice restoring stress for the
!-precipitate is used for the part of the fractional dislocation located inside the
!-precipitate. In reality, the !-surface at the interface between the !- and ! 0-phase is
generally different from both the !-surface of the !- and ! 0-phases. However, for
simplicity, the unique shape of the !-surface at the interface is ignored. A spherical
!-precipitate with a coherency strain of 2¼$0.0143 is placed at the front of the
super-dislocation. Periodic boundary conditions are applied in the z-direction,
assuming that the dislocation is infinitely long, and the precipitate makes a 1-D
periodic array in the z-direction. To move the dislocation, an external shear stress of
"xy is applied to the volume, and is controlled to measure the CRSS for the
interaction. The size of the simulation volume in the z-direction and the diameter of
the precipitate are denoted with L and D, respectively, which are important
parameters controlling the CRSS.

3.2. c-surface energies

Before starting the simulation of the super-dislocation and !-precipitate interaction,
the !-surface energies of the !- and ! 0 phases must be determined, and in this work,
are calculated using an interatomic potential for the nickel and aluminum binary
alloy [20]. In these calculations, we used a volume with a size of 2.5% 12.4% 4.4 nm.
The x-, y- and z-axes are along the crystal orientations ½!101", [111], ½!12!1". Periodic
boundary conditions are applied on all sides of the simulation volume. In order to
make a stacking-fault in the simulation volume, a displacement of Du ¼ a0=6=20½!1!12"
is given only to the upper half of the simulation volume. Then, the motion of atoms
in the x- and z-directions are constrained, and that in the y-direction is relaxed using
a numerical quenching technique. The process is repeated until the total displace-
ment given to the upper half of the simulation volume reaches u¼ 20Du. Figure 2
shows the results of these calculations. Brandl et al. calculated the !-surface energy
using the ab initio method [21]. In order to check the accuracy, the !-surface is also
plotted in the figure. In Figure 2a, the !-surface for nickel calculated using the
interatomic potential is in excellent agreement with that obtained using the ab initio
method. The unstable stacking fault energy is at u¼ 0.27b, whereas the intrinsic
stacking-fault energy is the !-energy at u¼ 0.5b. The dislocation core tends to have
lower displacement density in the region around the unstable stacking-fault energy,
and to have higher displacement density in the region around the intrinsic stacking-
fault energy, resulting in the formation of an extended dislocation, which is a
combination of two partial dislocations and a stacking-fault.
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Figure 2b shows the calculated !-surface energy for the ! 0-phase, where an
anti-phase boundary (APB) forms behind a leading dislocation, and a trailing
dislocation terminates the APB. Thus, dislocations must move in pairs in a
super-dislocation configuration. In the present calculation of the !-surface energy for
the ! 0-phase, the maximum displacement is 40Du, which is twice that given to the
atomic volume in the !-surface calculation in the !-phase. In the figure, there are two
local maxima in the !-surface energy, resulting in the formation of an extended
dislocation in the super-dislocation core. Moreover, there are two local minima at
u¼ 0.42b and 1.58b, which correspond to the complex stacking-fault between two
partial dislocations of the extended dislocation, and the APB between two
super-partials of the super-dislocation. The complex stacking-fault and APB energies
are 202mJ/m2 and 252mJ/m2 [20], whereas the experimental results of the energies
are 235mJ/m2 and 175mJ/m2 [22], respectively.

4. !-precipitate strengthening

!-precipitate strengthening in nickel-based superalloys is a result of several
mechanisms that operate concurrently. Following Ardell [1], chemical strengthening
and modulus hardening do not substantially affect the overall strength of the alloy.
Therefore, in this work, we focus only on the influence of the stacking-fault and
coherency strain mechanisms, and study the strengthening effect of each one
separately. The main focus will thus be on the influence of the dislocation line
flexibility, and the details of its core structure on the overall strength. Finally, the
mechanism of !-precipitate strengthening, which can be defined as the mixed
strengthening of the stacking-fault and coherency strain, will be fully explored.

4.1. Coherency strengthening

Gerold and Haberkorn developed an analytical solution to the increase in the CRSS
as a result of coherency interaction between a dislocation and a precipitate [4]. To
obtain a closed form solution, they assumed that the dislocation shape is straight,
and that the dislocation core is infinitely narrow (i.e. the displacement field has
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Figure 2. Generalized stacking-fault energies for the !-(top) and ! 0-(bottom) phases.
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a discontinuity at the line). Let us now consider an edge dislocation on the x–y slip
plane located at z0 and gliding in the x-direction, together with a precipitate of radius
R and a coherency strain 2, as shown in Figure 3. When the dislocation line is at a
position (x, z0), it suffers an interaction force K(x) from the precipitate, which can be
calculated by integrating the Peach–Koehler force produced by the precipitate along
the dislocation line ( y-direction), and is given as

KðxÞ ¼ b

Z 1

$1
!xzðx, y, z0Þ dy

¼ 8

3

1þ "
1$ "

#bj 2 jR3x0z0

ðx20 þ z20Þ
2

& 1$ y0ð2R2 þ x2 þ z20Þ
2R3

! "

y20 ¼
R2 $ x2 þ z20

# $
ðx2 þ z20 5R2Þ

0 ðx2 þ z20 ' R2Þ:

(

ð14Þ

The CRSS can be calculated finding the maximum interaction force, and given as

!crss ¼
KðxÞjmax

bL
: ð15Þ

To investigate the influence of coherency strengthening alone, the $-surface
energy for the $ 0-phase is used for both matrix and precipitate. The diameter of the
$-precipitate is fixed to 8 nm, and the position of the slip plane is changed from
upper (the precipitate comes into the compression side of dislocation) to lower (into
the tension side) positions with respect to the mid-plane of the precipitate. The size of
the simulation volume is taken as 50& 50& 20 nm. Figure 4 shows successive
snapshots of the dislocation geometry during its interaction with the $-precipitate.
Note that each line represents a constant displacement contour within the dislocation
core, with values in the range (0, b). The fractional dislocations (each representing
a constant displacement contour) cluster into four groups, which respectively
correspond to the leading and trailing partials of the super-partials of the super-
dislocation. In Figure 4a, where the slip plane is 3 nm above the mid-plane, the
central part of the dislocation is immobilized by the coherency strain at the front of
the precipitate. In this case, most of the precipitate is on the compression side of the
super-dislocation, and the precipitate has a negative coherency strain. Therefore,
the super-dislocation and the precipitate have a repulsive interaction force.

R x

z
Dislocation

Precipitate
o

r
(x,z0)

Figure 3. Coordinate system for calculations of precipitate coherency strengthening.
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Upon increasing the applied shear stress, the leading super-partial starts to cut
through the precipitate. Once the dislocation moves inside the precipitate, it is
strongly pushed to the outside of the precipitate by the interaction. After breaking
away from the precipitate, the super-dislocation is still influenced by a repulsive
interaction force that enhances its glide. On the other hand, as shown in Figure 4b,
the central part of the super-dislocation spontaneously dissociates inside the
precipitate, because most of the precipitate is on the tension side of the dislocation
and the precipitate has an attractive interaction force with the super-dislocation.
Thus, the super-dislocation tends to stay inside the precipitate so that the maximum
interaction appears at the center of the precipitate. When the applied shear stress
reaches the CRSS, the dislocation can finally cut through the precipitate.

Figure 5 shows the increase in the CRSS due to the precipitate coherency strain.
In the figure, the CRSS is calculated using four different computational methods: (1)
PDD, (2) PDD with the GPN model, (3) rigid PDD, and (4) rigid PDD with the
GPN model, and the results are all plotted in the same figure. In order to compare
the simulation results to classical analytical solutions [4], the CRSS calculated by
Equation (15) is also plotted. It is observed that when the dislocation is placed at the
center of the !-precipitate, the CRSS does not increase, while the maximum CRSS
occurs when the dislocation slip plane is at z/R¼"0.75. A shear stress must be
applied to the dislocation to overcome the coherency strain field, even when the
dislocation does not directly cut the precipitate, because of the long-range nature of
the strain field, as can be seen in the figure. The results of calculations using the full
PDD method, the rigid PDD method, and those of Equation (15) show excellent
agreement. However, the results of the (rigid) PDD with the GPN model differ

(a)

(b)

Figure 4. Snapshots of the dislocation core structure during the interaction between a
super-dislocation and a !-precipitate accounting only for precipitate coherency strain. (a) Slip
plane position: 3 nm above the mid-plane; (b) slip plane position: 3 nm below the mid-plane.
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significantly, particularly when the dislocation is on the slip plane at z/R¼"0.75.
Since Equation (15) is derived with the assumptions that dislocation is perfectly
straight, and that the core structure is ignored, the agreement between the rigid PDD
method and Equation (15) is reasonable. Since the results of the full PDD simulation
are also identical to those of the rigid PDD method, we conclude that the influence of
the dislocation line flexibility on the coherency strengthening mechanism must be
negligibly small. Thus, the significant difference between the results of Equation (15)
and those of the (rigid) PDD with the GPN model must be attributed to the influence
of the core structure of the dislocation.

The present simulation results will now be utilized to extend the applicability of
Equation (15) by incorporating the influence of the core structure of dislocations as
they interact with precipitates. Referring to the coordinate system of Figure 3, we
decompose the super-dislocation into four partial dislocations Di, where the
positions of each partial dislocation xi are assumed to be x2¼ x1þwc, x3¼ x2þwa

and x4¼ x3þwc, where wc and wa are the widths of the complex stacking-fault
between two partial dislocations of a super-partial dislocation, and the anti-phase
boundary between the super-partial dislocations. For simplicity, we consider an
infinitely long straight edge super-dislocation in an infinite isotropic elastic body,
and include the elastic interaction between the partial dislocations as well as the
energy of the complex stacking-fault and anti-phase boundaries. The widths wc and
wa can be calculated by solving the following equilibrium equations:

Gbe2

2! 1$ "ð Þ
1

wc
þ 1

wc þ wa
þ 1

2wc þ wa

! "

þGbs2

2!
$ 1

wc
þ 1

wc þ wa
$ 1

2wc þ wa

! "
¼ #c ð16Þ

Gbe2

2! 1$ "ð Þ $
1

wc
þ 1

wa
þ 1

wc þ wa

! "

þGbs2

2!

1

wc
$ 1

wa
þ 1

wc þ wa

! "
¼ #a $ #c: ð17Þ
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Figure 5. The increase in the CRSS as a function of the slip plane position as a result
of coherency strengthening by the precipitate strain field.
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Similar to Equation (15), taking the summation of the K(xi), and finding the
maximum, the CRSS can be calculated as

!crss ¼
P4

i KðxiÞjmax

bL
: ð18Þ

Figure 6 shows the results of the PDD with the GPN model simulation, and
compared to calculations based on Equation (15) as well as Equation (18). The
CRSS increase calculated by Equation (18) is considerably smaller than those
calculated by Equation (15), which is in excellent agreement with the numerical
simulation results. Thus, it is clear that the influence of the core structure of
dislocations on coherency strengthening is very significant (the maximum is lowered
by a factor of almost 3), and that the influence can be accurately accounted for using
the proposed Equation (18).

4.2. Stacking-fault strengthening

If the energy of the stacking-fault between two partial dislocations is larger inside the
precipitate than in the matrix, an additional shear stress must be applied on the
dislocation to overcome that energy difference, D", and allow the dislocation to cut
through the precipitate. Nembach derived an analytical expression to calculate the
required shear stress due to stacking-fault strengthening [3]. An extended dislocation,
composed of two partial dislocations and a stacking-fault in-between, was
considered, and the length of each partial dislocation inside the precipitate, L(x),
was used to find the interaction force between the precipitate and the dislocation K:

KðxÞ ¼ ðLðxÞ $ Lðxþ wÞÞD", ð19Þ

where w is the distance between the leading and trailing partial dislocations, L(x)
and L(xþw) are the lengths of the leading and trailing partial dislocations, at x
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t c
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Figure 6. The increase in the CRSS as a function of the slip plane position as a result
of coherency strengthening by the precipitate strain field, calculated by direct numerical
simulation, and compared to the results of Gerold and the proposed analytical model given by
Equation (18).
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and xþw, inside the precipitate, respectively. The CRSS can be calculated by finding
the maximum interaction force, and is given by [3]

!crss ¼
KðxÞjmax

bL
: ð20Þ

To determine the accuracy of the analytical solution of Nembach, and any
possible effects of the exact core structure on stacking-fault strengthening, we
perform numerical simulations where the influence of the coherency strain is
removed by setting 2¼ 0, and that of the stacking-fault is accounted for by giving the
"-surface information of both the "- and " 0-phases. When part of the fractional
dislocation is located in the "-phase, the lattice restoring stress of "-phase, which can
be calculated from the "-surface of "-phase, is given to that part, whereas the lattice
restoring stress of the " 0-phase is given to the part of the fractional dislocation inside
the " 0-phase. The simulation volume used here is identical to that used in the
previous section, and the diameter of the precipitate is changed in the range from 2
to 30 nm. The slip plane position of the super-dislocation is fixed at the center of the
precipitate. Figure 7 shows snapshots of the dislocation configuration as it interacts
with the precipitate (here the precipitate diameter is 16 nm). It is clear that the
super-dislocation and the precipitate are attracted to one another, and that the
super-dislocation is first absorbed by the precipitate. When the dislocation enters
the "-precipitate, the anti-phase boundary disappears, and the complex stacking
fault is changed to an intrinsic stacking-fault, which has a lower energy than the
complex stacking-fault. Thus, the super-dislocation tends to be attracted inside
the precipitate to reduce the interaction energy. Increasing the externally applied
shear stress, the dislocation gradually starts to bow-out, and finally breaks away
from the precipitate when the applied shear stress reaches its critical value
(the CRSS).

Figure 8 shows the results of the numerical simulations (both the full PDD-GPN
model, and the rigid PDD-GPN model). Also, the results of Equation (20) are
plotted for comparison. As the precipitate diameter increases, the CRSS also
increases, which is a consequence of an increase in the stacking-fault area between
partials when they enter into the precipitate. Additionally, the results of all numerical
simulations with both methods, and those of Equation (20), are within a few percent.

Figure 7. Snapshots of the interaction between a super-dislocation and a "-precipitate as a
result of differences in the stacking-fault between the matrix and precipitate (stacking-fault
strengthening).
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Therefore, Equation (20) reasonably accounts for stacking-fault strengthening, as
long as the dislocation core can be described by two isolated peaks of displacement
distributions (i.e. well-isolated partials). The core structure of dislocations is then an
important factor in determining the CRSS, and Equation (20) can be used in cases
where the two partial dislocations are well-isolated.

4.3. Mixed strengthening

Precipitate strengthening is a result of several factors, such as the stacking-fault,
coherency, and modulus strengthening mechanisms. However, in the present case
of nickel-based superalloys, precipitate strengthening is primarily due to the
stacking-fault and the coherency strengthening mechanisms, because the difference
in the elastic moduli between the matrix and precipitate is very small. Therefore, we
describe here !-precipitate strengthening as a combination of the stacking-fault and
coherency strengthening effects, and propose a method to evaluate the overall CRSS
increase when the two mechanisms are operating simultaneously. The simulation
volume and boundary conditions used in this section are the same as those used
in previous simulations, while the diameter of the !-precipitate is fixed to 8 nm.
Figure 9 shows the dependence of the CRSS on the location of the slip plane. As can
be seen, in the stacking-fault strengthening mechanism, the distribution of the CRSS
is symmetric about the center of the precipitate, and shows a maximum at the center.
When the position of the slip plane is outside the precipitate, there is no increase
in the CRSS increase, as expected.

It is clear that the CRSS outside the precipitate is identical to that due to the
coherency strain mechanism, while inside the precipitate both the coherency and
stacking-fault mechanisms operate simultaneously. In fact, as the slip plane gets
closer to the precipitate mid-plane, the influence of coherency strain diminishes,
while stacking-fault strengthening reaches its maximum. However, the distribution
of the CRSS when the two mechanisms operate simultaneously (mixed strengthen-
ing) has a complex structure as a function of the slip plane position, and its
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Figure 8. Dependence of the CRSS on precipitate diameter for the stacking-fault
strengthening mechanism alone.
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maximum cannot be simply the sum of the two independent maxima for each
mechanism separately, a procedure that is common in precipitation hardening
estimates. To further demonstrate this point, we also used a simple summation rule
for the CRSS resulting from the stacking-fault and the coherency strengthening
mechanisms, and plot the results in Figure 9 (dashed line). Here, the simple sum does
not represent overall precipitate hardening very well. When the dislocation is on the
compression side of the precipitate, the stacking-fault shrinks, while it widens when it
is on the tension side, giving rise to the asymmetric distribution of the CRSS as a
function of the slip plane position when the two mechanisms operate simultaneously,
a result that cannot be predicted by simple addition of the two effects.

The interaction forces between the super-dislocation and the precipitate, using
Equations (18) and (20), are calculated and plotted in Figure 10 as functions of the
dislocation position from the precipitate center, when the slip plane is at !2 nm from
the mid-plane. It is observed that the peaks of the interaction force due to the
stacking-fault and the coherency mechanisms appear at different positions,
suggesting that the summation of the CRSS (which is equivalent to summing
the maximum forces) is not a good way to represent the true spatial dependence of
the CRSS for mixed strengthening. The figure also shows the total interaction force
due to the stacking-fault and coherency strengthening mechanisms as a function of
dislocation position. Since the dislocation has to overcome the maximum total
interaction force, we calculated the CRSS at different slip planes, using only
the maximum interaction force, and we show the results in Figure 11. We compare
here the CRSS as a function of the slip plane position, using the full PDD-GPN
model, and comparing it to the more simplified model of using only the maximum
value of the calculated shear stress at each slip plane. These two methods show
excellent agreement, indicating that, in order to calculate the CRSS for mixed
strengthening, the maximum interaction force for a given slip plane can be first
computed and stored, and then used in subsequent DD simulations without having
to perform detailed simulations.
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Figure 9. The CRSS as a function of the slip plane position for coherency (triangles)
and stacking-fault (open circles), simple summation (dashed line), and full calculation
(open squares).
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5. Conclusions

A computational method for investigations of the role of dislocation flexibility and
the dislocation core structure on the dislocation–precipitate interaction has been
developed. The method is a combination of the PDD, with lattice resistance to
dislocation motion obtained from the GPN model. To quantitatively evaluate the
influence of dislocation flexibility on its interaction with precipitates, we added a
constraint condition on the dislocation shape in PDD simulations. The method
allows us to simulate the dynamics of rigid dislocations in internal and external stress
fields. Using the computational method, we studied !-precipitate strengthening in
nickel-based superalloys, and determined the roles played by the dislocation line
flexibility and its core structure. Conclusions of the present study are summarized in
the following:
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Figure 11. Comparison of the dependence of the CRSS on the slip plane position.
Numerical simulations with the full PDD-GPN model are compared with the analytical
model. The results of the analytical model are given as the maximum total interaction force
of the stacking-fault and the coherency strengthening.
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3784 A. Takahashi et al.

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

, L
os

 A
ng

el
es

 (U
CL

A
)] 

at
 0

9:
30

 2
0 

Fe
br

ua
ry

 2
01

2 



(1) Using four different interaction models (PDD, rigid PDD, PDD with GPN,
and rigid PDD with GPN), it is found that the influence of dislocation line
flexibility is negligibly small, whereas the dislocation core structure is
found to play a major role in determining the CRSS.

(2) An analytical equation for coherency strengthening is revised to incorporate
the dislocation core information into the evaluation of the CRSS. The revised
equation reproduces very well the results of detailed PDD simulations with
the GPN model.

(3) Again, the influence of the dislocation line flexibility on the stacking-fault
strengthening is found to be negligible.

(4) An analytical equation, which is derived with a dislocation model composed
of two partial dislocations and a stacking-fault in-between, precisely
reproduces the CRSS of the stacking-fault strengthening mechanism.

(5) The summation of the CRSSs of the stacking-fault and coherency strength-
ening mechanisms is found to give unacceptable values of the CRSS.

(6) Taking the summation of the shear stresses of the stacking-fault and
coherency strengthening mechanism, and finding the maximum of the total
interaction force reproduces very well the CRSS for mixed strengthening.
The developed method is a promising approach in determining the CRSS of
mixed types of precipitation strengthening mechanisms, without the detailed
simulations.
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