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The elastic field of general-shape 3-D cracks
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We extend here the Bilby-Eshelby approach of 2-D crack representation with
dislocation pileups to treat 3-dimensional cracks of general geometry. Cracks of
any specified external bounding 3-D contour under general loading conditions are
represented by sets of parametric Somigliana loops that satisfy total (interaction,
self, and external) force equilibrium. Loop positions are solved by using a
time integration scheme till equilibrium is achieved. The local Burgers vector is
suitably adjusted to be proportional to the local applied surface traction on the
crack. The developed method is computationally advantageous, since accurate
crack stress fields are obtained with very few concentric parametric loops that
adjust to the external crack shape and the local force conditions. The method
is tested against known elasticity solutions for 3-D cracks and found to be
convergent with an increase in the number of pileup dislocation loops. The method
is applied to the determination of the stress field around a 3-DGriffith crack under
general loading and a grain boundary crack before and after branching.

1. Introduction

The connection between fracture and dislocations has been established during the
past few decades [1–5]. Based on the work of Eshelby in the early 1950’s, and later by
Bibly, Cottrell and Swinden(BCS) [6], Bibly and Eshelby [3], and many others,
a continuous distribution of dislocations was utilized to determine the elastic field of
two-dimensional cracks (i.e. under plane stress of plane strain conditions). Since the
dislocation line in the most general sense (Somigliana dislocation) represents the
boundary across which a displacement jump takes place, a collection of such
boundaries may be pieced together to match the Crack Opening Displacement
(COD) under specified load conditions. When the displacement jump is variable
along the dislocation line, we have the Somigliana dislocation, while if it is a fixed
vector (the Burgers vector), the Volterra dislocation is obtained. Both types are
possible in continuous solids. However, in a crystal lattice, the displacement jump
is fixed and constrained by the crystal structure. We will hence differentiate
dislocations in crystalline materials as crystal dislocations, which are associated with
plastic deformation, while Somigliana or Volterra dislocations used to represent
cracks will be termed crack dislocations. In this way, a crack in an elastic–plastic
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material can be viewed as a distribution of Somigliana or Volterra dislocations on
the crack plane, associated with another distribution of crystal dislocations within
the plastic zone of the crack tip.

The similarity between cracks and dislocation pileups was first recognized by
Eshelby, Frank and Nabarro [1]. Using classical orthogonal polynomials, they
determined the equilibrium of a discrete dislocation pileup under external loading.
For simple loading conditions, the dislocation distribution function can be
analytically obtained. The stress field generated by the dislocation pileup was
shown to be identical to that of a crack with freely slipping surfaces. An equivalent
method, in which a continuous distribution function is assumed, was first suggested
by Leibfried [7]. Instead of dealing with discrete dislocations, the slip plane is assumed
to contain a smeared-out sheet of infinitesimal dislocations, with a distributed
displacement jump of bf (x)dx between x and xþ dx, where x is the position on
the crack surface in 2-D. Thus the problem is converted to finding an unknown
distribution function, f (x), by solving the following singular integral equation:

P

Z 1

�1

f ðx0Þdx0

x0 � x
¼ FðxÞ ð1Þ

where P and F(x) are determined by the boundary conditions and applied load.
Friedel [8, 2] first described a crack with a normal displacement discontinuity by a
continuous distribution of freely climbing dislocations. Later, a detailed discussion
of crack dislocations was given by Bibly and Eshelby [3], where dislocations were
considered as discontinuities occurring naturally across un-welded cuts when a body
is stressed, while in a crystal dislocation, the cuts are subsequently rewelded.

When the thickness of the crack is finite, it can no longer be represented by 2-D
infinitely-long and straight dislocations. The stress field of a 3-D crack can be
obtained if one assumes that the surface is filled with a distribution function of
infinitesimal dislocation loops. Since the stress field of an infinitesimal loop can
be analytically obtained [9, 10] for an isotropic elastic material, the equilibrium
equation for the crack surface results in a hyper-singular integral equation of the formZ

S

f x0, y0ð ÞdS

r3
¼ �0ðx, yÞ ð2Þ

where, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q
, S is crack surface, and �0(x, y) is a known function

determined by the load and boundary conditions. Once the distribution function is
obtained, the stress field of the crack is completely determined [3].

For 2D applications, the distribution method provides an easy way to solve
problems involving the interaction of cracks and dislocations. For example, since the
shielding stress of screw crystal dislocations situated ahead of a mode-III crack tip
can be easily obtained from image screw dislocations, full elastic–plastic analysis of
mode-III cracks has been developed and used by many researchers. In all other cases,
however, determination of image forces due to the free surface of the crack is more
involved. Lardner [4] and Weertman [5] document the method of solving crack
problems in elastic–plastic solids with the aid of 2-D continuous dislocation
distributions. Instead of the analytical solutions to equation (1), Hills et al. [11]
developed a numerical scheme for the distribution function for 2-D and 3-D cracks,
and showed that the technique is more efficient than the finite element procedure.
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The objective of the present work is to extend the 2-D discrete representation
method to treat elasticity problems for general 3-D cracks and crack-dislocation
applications. Parametrization of crack surfaces with discrete dislocation loops will
enable extensions of the Parametric Dislocation Dynamics (PDD) method [12–15] to
fracture problems. Although the original thrust of the PDD method has been in
simulations of plasticity, the present extension would make it possible in the future to
model complex fracture problems involving both dislocation and crack ensembles.
The method of representing 3-D cracks with dislocation pileups is given in section 2,
where we describe the current theoretical and computational approach. Numerical
results for the stress field of standard 3-D cracks are given in section 3, and
compared to known solutions to ascertain the numerical validity of the present
method. An illustration of the utility of the method for complex-shape cracks is given
in section 4, where we determine the elastic field around a Griffith crack under
complex loading, and a branched 3-D grain boundary crack. This is followed by
discussion and conclusions in section 5.

2. Computational method

The stress state around a crack in an elastic body subjected to general external
loading is identical to the superposition of the following two contributions [16]:

. The stress generated in a crack-free body, subject to the external loading alone.

. The stress generated by the crack in the same body subject to a set of internal
tractions alone. This set represents counter-forces to those acting on welded
crack surfaces determined from the previous step.

The procedure is illustrated in figure 1, and is as follows. Firstly, we determine
the elastic field of the crack-free solid (i.e. the crack surfaces are welded) under the
applied load T1 & T2. The stress distribution r1 is thus obtained, and the force
vectors along the crack surface Tx & Ty determined. The second step is to apply the
counter-force system �Tx & �Ty on the crack surface and solve for the stress
distribution r2. The final stress distribution by the superposition of r1 and r2.

Friedel [2], and Bibly and Eshelby [3] proposed a dislocation method that is
equivalent to the previous procedure proposed by Bueckner [16]. Suppose that the
crack is filled with the same material layer by layer and then welded together, as
shown in figure 2. Under the applied load, the stress field can be obtained as rA. On
the other hand, each inserted material strip will generate a displacement jump, and
utilizing Green’s functions, the stress field due to the inserted strip is obtained. In this
way, each strip can be viewed as a dislocation loop. In 2-D crack applications, the
crack is assumed to be infinitely long in one direction. Thus, the material strip must
also be infinite in one direction, and the corresponding dislocation loop can be
assumed to be a dislocation dipole with two infinitely long and straight dislocations
of opposite line directions. In this case, the stress field can be obtained analytically,
and the total stress generated by these dislocation loops can be written as

rDðxÞ ¼ A

Z
D x0ð Þdx0

x� x0
ð3Þ
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where, A is a constant second rank tensor related to the applied loading and elastic
constants. D(x0) is a scalar distribution function representing the dislocation density
between x0 and x0 þ dx0. Thus, the total stress field r in the solid is

r ¼ rA þ rD: ð4Þ

T1

T2

=

T1

Tx
Ty

T2

Tx
Ty

+

Figure 1. Illustration of the superposition method for the solution of the general crack
problem [16].

z

x

Figure 2. Eshelby’s interpretation of crack dislocations by material insertion.
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This solution technique is identical to the Bueckner procedure [16]. Thus, the
main problem is to obtain the distribution function D(x0) by solving a singular
integral equation, as described below. On the crack surface, the free traction
boundary condition gives for the total traction vector

Ttot ¼ TA þ TD ¼ 0

ðrAðxÞ þ rDðxÞÞ � n ¼ 0

rAðxÞ þ A

Z
Dðx0Þdx0

x� x0
¼ 0:

ð5Þ

For finite size cracks, Bibly and Eshelby [3] assumed that the crack surface is
filled with infinitesimal dislocation loops. By solving similar singular integral
equations, one can obtain the total field of 3-D cracks. However, and in practice, the
numerical implementation of this method is cumbersome and requires intensive
calculations for geometrically complex cracks. We present here an alternative simpler
method for determination of the stress field around general-shape 3-D cracks under
arbitrary loading conditions.

The current strategy is that we use a discrete representation of the displacement
discontinuities across the crack surfaces instead of continuous distribution functions.
We also assume that the crack surface is filled with pileups of dislocation loops
(representing material strips) in mechanical equilibrium, much the same way as used
for the solution of 2-D problems. The position and shape of each dislocation loop are
determined by configurational force balance principles. Thus, the key problem is to
find the configuration of each dislocation loop and its shape, consistent with the
external loading and the constraint of the outside shape of the crack. Note that due
to the fact that we have true 3-D conditions, the crack dislocation is the general
Somigliana type. Configurational force equilibrium at every point of a dislocation
loop is given by

Ftot ¼ ðrA þ rI þ rSÞ � b� s ¼ 0 ð6Þ

where, rA, rI and rS are the local stresses at the point of interest generated by the
applied loads, interaction forces from other loops, and the self-stress, respectively.
Ftot is the total force, b is a local Burgers vector and s is the tangent vector to the loop
at the current point. Note that equation (6) is a discrete form of equation (5) and that
both represent the equilibrium equation for the crack surface. The dislocation stress,
rDðxÞ, given by the integral term in equation (5), is equivalently computed by
discretely summing the interaction stress, rI, and the dislocation self stress (because
of curvature) rS. Reference [4] gives a more detailed discussion of the
correspondence between the discrete and continuous representations of cracks.

Recall that the governing equations of motion of dislocation loop are obtained
from the second law of thermodynamics and expressed as [14]I

�

ðFtot � BVÞ � �rjdsj ¼ 0 ð7Þ

where V is a local velocity vector, B is the resistivity to dislocation motion (inverse
mobility), and ds is an infinitesimal arc length on the loop. The final equilibrium state
of equation (7) is reached when the total force is zero at every point on the contour �.
Thus this equilibrium configuration is the same as required by equation (6).
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The Parametric Dislocation Dynamics (PDD) method [17] has been developed to
solve the equations of motion of curved dislocations (derived from equation 7),
and will be employed here to solve the equilibrium conditions of a 3-D crack
(equation 6). Note that Burgers vector of each dislocation loop in a crack dislocation
pileup needs to be chosen carefully. In the present 3D simulation, we choose the
Burgers vector to be proportional to the traction vector at the crack surface

b ¼ �t ¼ �r � n ð8Þ

where n is the unit normal vector to the crack surface, t the traction (stress) vector,
and � is a control constant. If the applied load is not uniform, the local Burgers
vector will be variable along the loop, and hence the crack dislocation is of the
general Somigliana-type. To achieve high numerical precision the constant � should
be small since more dislocation loops can be fitted within the crack surface. The
selection of the local Burgers vector in accordance with equation (8) is motivated by
considering the limiting behaviour of the displacement vector as a point force is
applied to the crack surface, when one approaches the point of application along the
point force direction. The Green’s tensor functions, Gij give the displacement in
direction (i) for a point force in direction (j). If we consider the isotropic Green’s
functions and take the limit of field point approaching the source point (on the crack
surface) along the force direction, one can easily show that the off-diagonal terms are
zero, and that the displacement vector is aligned along the force vector, with a
magnitude of (4��R)�1, where R is the distance between field and source points.
Equation (8) is a statement of this analysis, where the displacement vector at the
crack surface is aligned with the traction vector on the crack surface.

The current computational strategy is summarized in the following steps:

(1) An initial distribution of dislocation loops whose shape conforms with the
outer crack shape is selected. The outermost loop has the exact contour of
crack surface, and is fixed during the simulation. As a result of the applied
stress, mutual and self interactions, each dislocation loop shape and size
adjusts in order to reach total equilibrium.

(2) If the repulsive force from all loops on the innermost loop is small, the loop
will expand until it reaches a new equilibrium configuration. A fresh loop
is then generated at the centre with local Burgers vector determined by
equation (8). Hence the total number of crack dislocations is increased by one.

(3) If the repulsive force on the innermost loop is large forcing it to fall below
a critical stable size, it will collapse under its own self-forces. The loop is then
taken out, and the number of crack dislocations is decreased by one.

(4) Iteration of the dynamic loop addition–subtraction process continues until
a final equilibrium distribution is achieved.

(5) Utilizing the fast sum method [18] for each curved loop segment, the stress
field of the entire crack is finally obtained.

3. Numerical results and method validation

The method developed here allows for the efficient computation of the stress field
around 3-D cracks of general geometry. It can be applied to finite geometry with
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multiple interacting cracks, including the influence of free surfaces or interfaces.
Before we demonstrate the utility of the approach in analyzing a branched grain
boundary crack, we will first ascertain the numerical accuracy of the method in this
section, and extend the loading conditions for some of the most widely analyzed
cracks.

3.1. The penny-shape crack

The stress field in an infinite solid containing a penny-shape crack provides a
benchmark for fracture mechanics studies, and has thus been developed for various
loading conditions and geometries. Sack [19] and Sneddon [20] first solved the
problem of a penny-shape crack with an internal pressure in an infinite solid, while
Collins [21] later investigated the stress distribution of a penny-shape crack in a thick
plate. Kassir and Sih [22] studied an elliptical crack under arbitrary external loading,
and obtained results for the stress intensity factors under shear loading. Here, we
present numerical results for the current method applied to a penny-shape crack
under tension or shear loading, and then compare the results to analytical solutions.

Mode-II. Consider a penny-shape crack in an isotropic crystal with diameter of
2000a, where a is a specified length scale related to the magnitude of the Burgers
vector, as shown in figure 3a. The crack is under pure shear loading along the x-axis.
The local coordinate system is constructed at the centre of the crack. An initial
distribution of circular dislocation loops is inserted inside the crack, with a minimum
of 3 loops, including the outermost static loop that defines the crack contour. The
applied load generates a uniform shear stress field in the absence of the crack. Thus,
according to equation (8), the Burgers vector can be chosen as b¼ bi, where b is a
constant scalar, and can be adjusted to achieve a specified level of error, and i is a
unit vector along the x-axis. Since the Burgers vector is uniform and lies on the glide
plane, this type of crack dislocation is a traditional Volterra dislocation.

Figure 3b illustrates the final equilibrium distribution of crack dislocations under
the applied shear load �/�¼ 0.004, where � is the shear modulus. The length of the
Burgers vector is chosen as b¼ 0.4a, and Poisson’s ratio �¼ 0.31. As shown in the

(a) (b)

y

x

b

Figure 3. Equilibrium distribution of crack loops for a penny-shape crack under mode-II
(�zz/�¼ 0.004). (a) The local coordinate system, (b) Equilibrium distribution.
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figure, a total of 9 dislocation loops are fitted within the crack surface in a pileup that
is stabilized by the applied stress. Since the energy of a screw segment of unit length
is lower than a corresponding edge segment, a curved screw component tends to be
stiffer than that of the edge. Thus, initially circular loops tend to stretch along the
Burgers vector in an oval configuration. As the outer contour of the crack is circular,
a slight ovality develops in the innermost loops. The minimum distance between
the two outermost loops is around 10b, and 16 quadrature points are for Gaussian
integration [18].

The distribution of the shear stress �xx/� along the y-direction is shown in
figure 4a, while the relative error is displayed in figure 4b. The comparison is with the
analytical solutions of Kassir and Sih [22]. Beyond a short distance of �10a from the
crack tip, the stress decays rapidly and tends to vary slowly at longer distances from
the tip. The stress field is no longer proportional to r�1/2 as in the case of two
dimensional cracks. When the distance is less than 5a, the relative error is larger than
10%. As shown in reference [18], the relative error in the stress generated by a
dislocation loop tends to be higher when the field point approaches the dislocation
loop. To reduce the near tip error, shorter curved segments and/or a larger number
of Gaussian quadrature points are needed. In the present simulations, we use 16
quadrature points only, resulting in a relative error of less than 5% at distances
longer than 10a from the tip of the crack.

Mode-I. The surfaces of a penny-shape crack subject to pure tensile loading normal
to the unloaded crack plane displace along the tensile axis. If the displacement profile
is to be recovered by the insertion of dislocations, one would expect that such
dislocation loops must be prismatic, with their Burgers vectors along the tensile axis,
and that they would also climb along their prismatic surfaces. We simulate here
a penny-shape crack loaded in tension with an initial distribution of prismatic edge
Volterra dislocation loops of constant and uniform Burgers vectors selected
according to equation (8) as b¼ bk, where k is a unit vector along the tensile
direction. Sneddon [20] has obtained analytical solutions to the same problem
enabling us to determine the numerical features and precision of the present method.

Numerical

Analytical
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Figure 4. Comparison of the calculated stress component �zz/� along the y-direction with
the analytical solutions of Kassir and Sih [22] (a) �zz/�. (b) The relative error.
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Figure 5 and table 1 present a comprehensive assessment of the method’s
accuracy, and point out to the means of controlling the numerical precision in the
stress field. The information would naturally be useful in applications where no such
analytical results exist. The relative error in �zz along the tensile z-direction obtained
from the present method is compared with the analytical results of Sneddon [20]. It is
shown that, when the length of the Burgers vector is increased, mutual repulsive
forces between concentric dislocation loops are large, and the final stable number of
dislocation loops is small. Large field errors are associated with a small number of
loops. For example, when b¼ 0.8a, only 4 concentric loops are sufficient to represent
the crack, albeit at the expense of a high relative error (e.g. 91.00% at a distance of
5a from the tip). When b decreases to 0.2a, 18 dislocation loops equilibrate inside the
crack, and the same error decreases to 7.65%. The stress field is convergent to any
desired accuracy, if a sufficient number of dislocation loops is used. However, the
computational burden increases significantly for larger populations of dislocation
loops, and efficient computational and theoretical methods are thus required, as
outlined in references [17, 23]. The relative error of �zz along the z-axis is shown in
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Figure 5. Comparison of the relative error in �zz for the penny-shape crack under the
external loading �zz/�¼ 0.004. (a) along the radial direction, (b) along the tensile direction.

Table 1. The relative percent error in �zz along the radial direction of a penny-shape crack
under mode-I loading. The number of concentric loops is shown in the first row, and the value
in brackets is the length of the Burgers vector in each case. The first column is for the distance

from the crack tip. All distances are in units of a; an arbitrary length scale.

d:n 4 (0.8) 6 (0.6) 9 (0.4) 12 (0.3) 18 (0.2)

2 166.39 109.97 57.16 32.60 7.65
5 91.00 58.16 28.80 15.33 0.64
10 57.32 36.62 18.21 9.42 �0.87
20 37.42 24.65 12.55 6.38 �1.20
50 23.82 16.64 8.64 4.34 �1.06
100 18.35 13.48 7.09 3.61 �0.76
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figure 5b, where it is clear that the stress at the crack centre is convergent in a
controllable manner and approaches the applied stress as b decreases.

The displacement vector on the crack surface is continuous in regions in-between
dislocation loops, and has a discontinuity of exactly b across any loop boundary.
However, if the number of loops is sufficiently large, the 3-dimensional shape of the
crack opening displacement (COD) and hence the crack shape can be reconstructed.
The displacement vector field distributed inside the crack surface (i.e. the COD)
vanishes on the outer crack boundary, and is used as a reference for the COD.
Figure 6 shows the COD as a function of the radial distance from the crack centre.
Numerical results are compared with analytical solutions [20]. When b¼ 0.2 (n¼ 18),
the maximum error in the COD (at the centre) is 3.3%. This error can be made
arbitrarily small with an increase in the number of loops.

3.2. The 2-D Griffith crack

The classical 2-D Griffith crack under simple loading has been extensively modelled
with continuous and distributed dislocations, and has been used as a benchmark in
fracture mechanics [4, 5]. Here, we represent the same Griffith crack with 3-D
discrete dislocation distributions, and compare the results to well-known analytical
solutions. Consider a finite Griffith crack of length 4000a in y-direction, and of width
400a in the x-direction. The crack surface normal is chosen along the z-direction, as
illustrated in figure 7. Since the crack has a large aspect ratio (the ratio of width to
length is 10), the stress field at the crack centre can be approximated by 2-D
solutions. Since the two ends of the crack surface are open, we will not use closed
loops as in the previous case of a penny-shape crack, but will rather introduce
dislocation dipoles as the basic elements. The simulation technique here starts with
two dislocations of the same Burgers vector but of opposite line direction. We allow
the two dislocations in this dipole to move freely, satisfying force equilibrium. An
external load keeps such pairs from attraction and annihilation. However, for every
applied load, there is a critical distance between the dislocations, below which the
pair is unstable and annihilates. When the separation distance between the dipoles
is sufficiently large, a new dipole is added to the equilibrating set of dislocations, just
as we did in the penny-shape crack.
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Figure 6. Comparison of the numerical results for the Crack Opening Displacement (COD)
with analytical solutions [20] for n¼ 18. (a) COD distribution along the crack diameter.
(b) 3-D crack shape.
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The Griffith crack is subjected to an applied tensile load of �zz/�¼ 0.004 along
the z-direction, and the system of equilibrium equations is solved for the inserted
dipoles, as outlined earlier. The distribution of crack dislocations is shown in
figure 7b. It is seen here that in the middle section of the crack (�500a� y� 500a),
dislocations are perfectly straight. Thus, the stress field in this section can be
approximated by 2-D plane elasticity. The relative error of stress component �zz at
the crack centre along the x-direction from the crack tip is shown in figure 8 and
table 2. The number of crack dislocations is inversely proportional to the length of
selected Burgers vector, as can be observed in both the table and figure. As we found
in the penny-shape crack solution, when b is decreased, the solution converges to the
analytical results.

4. Applications

4.1. Complex loading of a Griffith crack

When a Griffith crack is loaded by a general stress tensor, a mixed mode of
deformation occurs. In this case, crack dislocations must perform combined glide
and climb motion to reach their equilibrium state. Moreover, if the stress field
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Figure 7. Distribution of crack dislocations for a Griffith crack under mode-I loading with
applied tension �zz/�¼ 0.004 along the z-direction. (a) Coordinate system (b) Distribution f
crack dislocations with a Burgers vector of 0.15a. (c) three-dimensional crack shape.
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is nonuniform over the crack surface, the Burgers vector on each dislocation is no
longer constant, but will vary depending on the local value of the stress field, and
hence the representative dislocation is of the general Somigliana type. Consider mixed
mode I & II loading of the same Griffith crack presented in the previous section. We
take a representative loading state with tensile component of �zz/�¼ 0.004, and a
shear component �zz/�¼ 0.002. The stress tensor on crack surface is thus

r ¼ 10�3�
0 0 2
0 0 0
2 0 4

0
@

1
A:

Selecting and appropriate value for the constant �, and using equation (8), for
the Burgers vector of each crack dislocation, we obtain plane.

b ¼

�0:05
0

�0:1

0
@

1
A:

Distance from Crack Tip (a)
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b=0.4,n=6
b=0.3,n=8
b=0.2,n=12
b=0.16,n=14

Figure 8. Comparison of the relative error in �zz; the same conditions as in figure 7.

Table 2. The relative percent error of �zz for the Griffith crack under mode-I loading.
The number of dislocations is shown in the first row, and the value in brackets is the length
of the Burgers vector in each case. The first column is for the distance from the crack tip.

All distances are in units of a; an arbitrary length scale.

d:n 6(0.4) 8(0.3) 12(0.2) 14(0.16)

2 93.73 57.15 22.75 8.44
5 48.15 27.30 8.51 �0.05
10 29.64 16.38 4.73 �1.26
20 18.86 10.58 3.40 �0.88
50 10.22 6.12 2.55 �0.07
100 5.87 3.75 1.86 �0.24
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The equilibrium distribution of crack dislocations is shown in figure 9a, where we
used a total of 22 crack dislocations. Unlike the previous case of a Griffith crack in
pure mode-I or mode-II loading, all representative dislocations here have a mixed
character of their Burgers vector. We show the dependence of the relative percent
error in �xx on the distance ahead of the crack tip at different angles � from the
x-axis in figure 9b. As shown in the figure, when the distance is larger than 10a,
the relative error decreases to less than 5% for a 22-dislocation representation of the
crack. Shallower orientations from the x-axis (i.e. smaller values of �) are found
to have smaller relative errors, as can be seen in figure 9b.

4.2. Branched grain boundary crack

In poly-crystalline materials, inter-granular failure proceeds by a process of
separation between adjacent grain boundary surfaces. The separation may be over
a small area, or may extend throughout the entire grain boundary, thus totally
separating two adjacent grains. In this case, a three-dimensional crack is formed with
the external contour conforming to grain edges. For fracture to proceed further,
separated grain boundary surfaces will have to branch onto neighbouring grains,
and a case of a branched grain boundary crack is formed. We will treat both
possibilities here.

Grain boundaries may be hexagonal, although other polygonal shapes are
observed. For illustrative purposes with no loss of generality, however, we present
here the stress field characteristics of a fully de-bonded hexagonal boundary under
an external tensile load of �zz/�¼ 0.0033. Figure 10a shows the equilibrium position
of representative crack dislocation loops, where we fixed the outer hexagonal loop
and used the techniques described earlier to determine the distribution, number, and
configuration of inserted loops. Only 12 concentric loops were found to sufficiently
represent the grain boundary crack. The 3-dimensional shape of the crack is shown
in figure 10b, while the �zz iso-surfaces are shown in figures 10c and 10d, for a stress
value 10 and 6 times the applied stress, respectively.
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Figure 9. Griffith crack under mixed mode I & II loading. (a) Crack dislocation distribution.
(b) The relative error of �zx along different angles � from the x-axis.
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Let us now assume that a grain boundary crack, with a hexagonal bounding
contour, has now branched in between neighbouring grain boundaries. We take a
case of symmetric branching on two inclined planes at 60� from the horizontal
z¼ 0 plane. We represent this crack with a set of non-coplanar crack dislocation
loops, with the outer loop fixed at the specified branched crack boundary. The
equilibrium configuration of the concentric loop set is shown in figure 11. The
resulting 3-dimensional crack shape under the same applied loading of
�zz/�¼ 0.0033 is shown in figure 12. The set of figures 13 are representative of
the stress field �zz on various planes, where 13a–13c are on the planes x¼ 0,
x¼ 866, and x¼ 1000, respectively. At x¼ 0, we see two singularities, at x¼ 866
they collapse into only one (the hexagon apex), and at x¼ 1000, the field is regular
because it is outside the crack surface. Similar observations can be obtained from
figures 13d–13f. Contours on the z-planes are all outside the crack, and are thus
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Figure 10. Characteristics of a grain boundary crack on a hexagonal face, (a) Discrete loop
representation, (b) 3-D shape of crack opening, (c) stress iso-surface �zz/�a¼ 10, (d) stress
iso-surface �zz/�a¼ 6.
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regular. Figure 14 shows a two-dimensional plot for the Crack Opening
displacement (COD), and thus the crack profile on the x¼ 0 plane. Note that
the crack surface is almost flat in the central zone.

5. Conclusions

Based on the method of Parametric Dislocation Dynamics (PDD), a new approach
has been developed for determination of the stress field of 3-dimensional cracks of
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Figure 12. COD profile for the branched grain boundary crack. Note that the displacement
is enlarged 25 times to allow visualization.
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Figure 11. Crack dislocation loop distribution and coordinates under an external loading
of �zz/�¼ 0.0033 for the branched grain boundary crack.
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general and complex shapes. The main idea is that we parameterize the external
shape of the crack by sets of Somigliana crack dislocation loops, where the Burgers
vector is a local property determined from the local stress tensor and the normal
vector to the crack surface at the point of interest. The distribution and number of
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crack dislocation loops is determined by satisfying the equilibrium and stability
conditions for the set of representative loops. The method has been demonstrated
to be very accurate, with controlled and convergent precision for some well-known
cases of 3D cracks, namely the penny-shape and the Griffith cracks. Error control is
dependent on where the solution is desired, with more stringent requirements close to
the crack tip. Higher accuracy follows from the numerical studies of the PDD [17],
where the number of integration quadrature points and their distribution has a direct
bearing on the desired error.

Due to its relative simplicity compared to other methods for 3-D cracks that rely
on hyper singular integral solution techniques, the present approach offers some
definite computational advantages. Moreover, since the approach is an extension of
the well-established PDD for dislocation dynamics, much of the same techniques
can be used for large-scale computations involving multiple complex-shape cracks,
as well as crack-dislocation ensembles.

References

[1] J.D. Eshelby, F.C. Frank and F.R.N. Nabarro, The equilibrium of linear arrays of

dislocations, Phil. Mag. 42 351 (1951).

[2] J. Friedel, Fracture, chapter 24 (Wiley, New York, 1959), pp. 498–523.
[3] B.A. Bibly and J.D. Eshelby, Fracture (Wiley, New York, 1968).
[4] R.W. Lardner, Mathematical Theory of Dislocations and Fracture (University of Toronto

Press, 1974).
[5] Johannes Weertman, Dislocation Based Fracture Mechanics (World Scientific Publishing

Co. Pte. Ltd., 1996).
[6] B.A. Bilby, A.H. Cottrell and K.H. Swinden, The spread of plastic yield from a notch,

Proc. Roy. Soc. Ser A 272 304 (1963).

[7] G. Leibfried, Z. Phys. 130 214 (1951).
[8] J. Friedel Les Dislocations (Gauthier-Villars, Paris, 1956).
[9] J.M. Burgers, Some considerations on the field of stress connected with dislocations

in a regular crystal lattice, Proc. K. Ned. Akad. 42 293 (1939).
[10] F.R.N. Nabarro, The synthesis of elastic dislocation fields, Phil. Mag. 42 1224 (1951).
[11] D.A. Hills, P.A. Kelly, D.N. Dai and A.M. Korsunsky, Solution of Crack Problems, the

Distributed Dislocation Technique (Kluwer Academic Publisher, 1996).
[12] N.M. Ghoniem and L.Z. Sun, Fast sum method for the elastic field of 3-D dislocation

ensembles, Phy Rev B 60 128 (1999).
[13] N.M. Ghoniem, Curved parametric segments for the stress field of 3-D dislocation loops,

Transactions of ASME. J. Eng. Mat. & Tech. 121 136 (1999).

[14] N.M. Ghoniem, S.-H. Tong and L.Z. Sun, Parametric dislocation dynamics: A

thermodynamics-based approach to investigations of mesoscopic plastic deformation,

Phys. Rev. 61 913 (2000).
[15] N.M. Ghoniem, J. Huang and Z. Wang, Affine covariant-contravariant vector forms for

the elastic field of parametric dislocations in isotropic crystals, Phil. Mag. Lett. 82 55

(2001).
[16] H.F. Bueckner, The propagation of cracks and the energy of elastic deformation,

J. Appl. Mech. 35 1225 (1958).
[17] Jianming Huang and Nasr M. Ghoniem, Accuracy and convergence of parametric

dislocation dynamics, Modelling Simul. Mater. Sci. Eng. 11 21 (2003).

The elastic field of general-shape 3-D cracks 4211



[18] N.M. Ghoniem and L.Z. Sun, Fast sum method for the elastic field of 3-d dislocation
ensembles, Phys. Rev. B 60 (1999).

[19] R. Sack, Proc. Phys. Soc. 58 729 (1946).
[20] I.N. Sneddon, The distribution of stress in the neighbourhood of a crack in an elastic

solid, Proc. Roy. Soc. 187 229 (1946).
[21] W.D. Collins, Some axially symmetric stress distributions in elastic solids containning

penny-shaped cracks. i. cracks in an infinite solid and a thick plate, Proc. Roy. Soc. 266

359 (1962).
[22] M.K. Kassir and G.C. Sih, Three-dimensional stress distribution around an

elliptical crack under arbitrary loading, Journal of Applied Mechanics, Trans. ASME

33 601 (1966).
[23] Zhiqiang Wang, Nasr M. Ghoniem and Richard LeSar, Multipole representation of the

elastic field of dislocation ensembles. Phys. Rev. B, 69 174102-1 to 174102-7 (2004).

4212 The elastic field of general-shape 3-D cracks


