
The dynamics of dislocation interaction with sessile
self-interstitial atom (SIA) defect cluster atmospheres

Jianming Huang, Nasr M. Ghoniem *

Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA 90095-1597, USA

Accepted 1 June 2001

Abstract

The interaction dynamics between dislocations and radiation induced sessile self-interstitial atom (SIA) dislocation

loops in FCC metals are investigated. As a result of dislocation line flexibility, its equilibrium configuration is found to

be sensitive to the elastic field of nearby SIA dislocation loops. Dislocation line flexibility also influences the critical

stress to free trapped dislocations from pinning atmospheres (i.e. the critical resolved shear stress (CRSS)). Calculated

CRSS values differ by up to 100% from the estimates of Trinkaus et al. [J. Nucl. Mater. 249 (1997) 91; J. Nucl. Mater.

251 (1997) 172], which are based on cluster forces exerted on static rigid dislocations. The mechanism of dislocation

unpinning from random cluster atmospheres is shown to be a consequence of morphological instabilities on the dis-

location line. The initial location of the unlocking instability is always associated with regions of minimum line tension

in the vicinity of the lowest cluster density. The growth of dislocation shape fluctuations leads to a sequence of un-

zipping events, freeing the dislocation from the elastic field of cluster atmospheres. The relative critical shear stress to

unlock dislocations in FCC metals, ðsC=lÞ, is found to be in the range: 0.001–0.002, for random atmosphere cluster

densities of 1024–1025 m3, and in the range: 0.0014–0.003, for coherent cluster atmospheres of the same density range.

These values are factors of 4–6 smaller than Kroupa’s estimates. Implications of these results to the determination of

the upper yield point of irradiated FCC metals are discussed. � 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The flow stress of materials is achieved when
dislocations can move over microstructurally sig-
nificant distances. Thus, when dislocation motion
is inhibited, a higher stress level is required to
propagate dislocations within the crystal, and the

flow stress is thus increased. In most deforming
metals, the impedance of dislocation motion is as-
sociated with dislocation multiplication and sub-
sequent interaction with other nearby dislocations.
Dislocation immobilization takes place in the form
of sessile junctions, or the formation of dislocation
dipoles that are stable against further dissociation.
This scenario adequately explains work hardening
and the elevation of flow stress with further
straining of the metal. In some specific and tech-
nically important cases, however, the flow stress
can be substantially altered by small amounts of
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impurities, and this is especially evident in body
centered crystals (BCC). Moreover, the emergence
of an upper yield point in BCC metals results from
the interaction of dislocations with interstitial im-
purities. In some cases of alloyed FCC metals (e.g.
copper crystals containing zinc), the upper yield
point has also been observed [1]. To explain this
effect, Cottrell [2], and Cottrell and Bilby [3]
showed that the flow stress at the upper yield point
is a consequence of dislocation detrapping from
impurity clouds, which are attracted to disloca-
tions as a result of elastic interaction between
dislocations and impurity atoms.

The stress–strain behavior of irradiated pure
FCC metals is characteristically similar to that of
unirradiated BCC metals containing impurities. At
some critical irradiation dose (e.g. �0.1 dpa in
Cu), an upper yield point is experimentally ob-
served, followed by a drop in the yield strength.
Examined TEM samples show that most disloca-
tions are heavily decorated by small, sessile inter-
stitial clusters [4]. To explain the experimentally
observed yield drop behavior, the cascade-induced
source hardening (CISH) model has been pro-
posed [4], in analogy with the ‘‘Cottrell’’ atmo-
sphere concept. It is experimentally observed that
grown-in dislocations are decorated with defect
clusters, only under cascade damage conditions,
and not under electron irradiation (see, for a re-
view [5,6]). Defect cluster mobility and trapping in
the stress field of grown-in dislocations was con-
cluded to be the main cause of experimentally
observed decorations. The atmosphere decorating
dislocations in irradiated FCC metals is mainly
composed of small, sessile interstitial dislocation
loops, produced by coalescence outside the stand-
off distance. Highly mobile interstitial clusters,
which approach the dislocation at closer distances
are absorbed into the dislocation core [5,19]. The
CISH model was used to calculate the stress nec-
essary to pull decorated dislocations from the at-
mosphere of loops around them, so that these
freed dislocations can act as dislocation sources.
Utilizing Kroupa’s infinitesimal loop approxima-
tion, Trinkaus et al. [5] showed that the increase in
the CRSS in irradiated FCC metals is given by:

Ds � 0:4lðb=LÞðR=dÞ2
; ð1Þ

where l is the shear modulus, b; L;R and d are
the Burgers vector, inter-defect distance, defect
radius, and stand-off distance, respectively. In
these calculations, as in Kropua’s original analysis,
dislocations were assumed to be rigid. The phe-
nomenon of yield drop was proposed to result
from decoration of grown-in dislocations with
small clusters or loops of self-interstitial atoms
(SIAs) produced in displacement cascades.

Kroupa [7,8], and Kroupa and Hirsch [9],
viewed radiation (or quench) hardening to result
from the long-range elastic interaction between slip
dislocations and prismatic loops. In their model of
friction hardening, the force necessary to move a
rigid, straight dislocation on its glide plane past a
prismatic loop was analytically estimated to be
inversely proportional to the square of the loop
distance normal to the glide plane. Using an in-
finitesimal loop approximation, Kroupa [7] found
the stress tensor of a prismatic loop to be of the
form:

rij ¼ kijlbR2=2q3; ð2Þ
where kij is an orientation factor of on order of
unity, R is the loop radius and q the distance from
the loop center. In a rough estimation, this stress
was equated to the applied stress at the mid-point
between two loops, with the result

Ds=l � 4bR2n; ð3Þ

where n is the loop density. The hardening effect
was also estimated on the basis of the total forces
from randomly distributed loops on a moving
dislocation, and found as

Ds=l � 0:17b=l: ð4Þ
Kroupa’s model [7,8] of dislocation–defect cluster
interaction, and its extension by Trinkaus et al. [5],
is based on calculations of elastic interaction forces
between dislocations and defect clusters in rigid
and static configurations. Kubin and Kratochvil
[20] have recently developed analytical solutions to
the problem of interaction between an infinite, ri-
gid dislocation line, and a rigid dipolar loop
composed of four linear segments. The dynamics,
and hence the exact mechanism, of dislocation
detrapping from defect cluster atmospheres cannot
be ascertained from these models.
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The main goal of the present work is to deter-
mine the mechanisms by which dislocations are
trapped and detrapped by small sessile SIA dislo-
cation loops close to their glide plane. While
Kroupa’s theory can guide estimation of the re-
quired critical stress to unpin dislocations from
nearby dislocation loops, it does not provide pre-
cise quantitative details of the interaction dynam-
ics. We aim at explicitly including dynamics of
dislocation line deformation during its interaction
with dislocation loops. For this, we apply the
method of parametric dislocation dynamics (PDD)
[10,11], as briefly described in Section 2. Computer
simulations for the interaction between expanding
Frank–Read (F–R) dislocation loops and sessile
SIA clusters is considered in Section 3. We present
results which show the influence of isolated SIA
clusters on the equilibrium position of dislocations
in Section 3.1. The effects of nearby cluster atmo-
spheres on the dynamics of (F–R) dislocation
sources is then investigated in Section 3.2. The
mechanism by which dislocations are detrapped
from cluster atmospheres in the vicinity of the glide
plane is analyzed in Section 3.2. The dependence of
the CRSS on the cluster density and distance from
dislocations will also be assessed. The simple scal-
ing laws for CRSS, given by Eqs. (1) and (3) will be
contrasted with results of full-fledged dislocation
dynamics computer simulations. Finally, discus-
sions and conclusions are given in Section 4.

2. Dynamics of dislocation interaction with SIA

dislocation loops

Recently, a concerted effort has focused on the
dynamical behavior of 3-D dislocation ensembles
(e.g. [10–17]). These methods embody varying de-
grees of details for resolving spatial and temporal
dislocation–dislocation interactions. In the fol-
lowing, we outline the unique features of our PDD
method for calculations of energies, stresses, forces
and motion of dislocation ensembles [10,11]. The
method provides high fidelity spatial and temporal
resolutions, which will be demonstrated in the
study of dislocation-defect dynamics in Section 2.

In the PDD method, each slip dislocation loop
emanating from F–R sources is segmented into Ns

segments (typically, Ns is in the range 7–30 nodes).
Each sessile prismatic defect cluster is assumed to
be circular, and its elastic field is described by the
infinitesimal loop approximation (Eq. (2)) [7]. A
segment, i on an F–R dislocation loop is para-
metrically described by the position vector com-
ponents r̂riðuÞ, as

r̂riðuÞ ¼
XNDF

m¼1

CimðuÞqm; ð5Þ

where CimðuÞ are shape functions, dependent on
the parameter u ð06 u6 1Þ, qm are generalized
degrees of freedom (DOF) for each node, and NDF

are the total number of assigned DFs. The velocity
of any point on the dislocation line is the time
derivative of the position vector components r̂ri:

Vi ¼
dr̂ri
dt

¼
XNDF

n¼1

Cin
dqn
dt

:

The generalized coordinates qm at each node are
the position vector (P) for linear segments, the
position and tangent vectors (T) for cubic splines,
and the position, tangent and normal vectors (N)
for quintic splines, respectively. In the present
application, curved segments of slip dislocation
loops are represented by cubic splines, and their
motion is confined to the glide plane. The stress
tensor components are given by the fast sum [10]:

rij ¼
l
4p

XNloop

c¼1

XNs

b¼1

XQmax

a¼1

bnwa

� 1

2
R;mppð�jmnr̂ri;u

�
þ �imnr̂rj;uÞ

þ 1

1 � m
�kmnðR;ijm � dijR;ppmÞr̂rk;u

�
; ð6Þ

where R;ijk... are successive derivatives of the radius
vector connecting a point on the loop and a field
point, bi the components of Burgers vector, and
�kmn the usual permutation tensor. For a disloca-
tion loop ensemble, such as the present situation,
we use the property of linear superposition. Thus,
the fast numerical sum is performed over the
following set: quadrature points ð16 a6QmaxÞ
associated with weight factors ðwaÞ, loop seg-
ments ð16 b6NsÞ, and number of ensemble loops
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ð16 c6NloopÞ. The parametric derivatives of the
position vector are r̂rk;u. The equations of motion
for the generalized DOF are based on a variational
principle for Gibbs free energy, derived from ir-
reversible thermodynamics [11]. The effects of the
kinetic energy of moving dislocations are not in-
cluded in this work.

Let Bak represent the elements of a diagonal
resistivity (inverse mobility) matrix (i.e. friction
coefficient in two glide and one climb directions).
The sum of the Peach–Kohler force, self-force,
Peierls lattice friction and climb forces (per unit
dislocation line length) is denoted by f t

k . The ef-
fective generalized force, fm on a curved segment is
given by: fm ¼

R 1

0
f t
i CimðuÞjdsj, while each resistiv-

ity matrix element, cmn, is computed as: cmn ¼R 1

0
CimðuÞBikCknjdsj. The global DOF for the entire

loop, Ql can be obtained by solving the set of
differential equations given by [11]:

Fk ¼
XNtot

l¼1

CklQl;t: ð7Þ

The local segment resistivity matrix ½cmn
 is added
into corresponding global locations in the global
resistivity matrix ½Ckl
, while the force vector is
mapped onto a corresponding global vector: Fk.
Here, the total number of DOF for the loop are:
Ntot ¼ NsNDF. The global resistivity matrix ½Ckl
 is
also symmetric and banded or sparse. The com-
ponent Ckl is zero if the DOF k and l are not
connected through a segment. Eq. (7) represents a
set of time-dependent ordinary differential equa-
tions which describe the motion of dislocation
loops as an evolutionary dynamical system. To
insure accurate temporal resolution for the dislo-
cation–cluster interaction dynamics, the time-step
is dynamically varied to achieve a pre-determined
level of relative accuracy in the position and
tangent vectors. The actual time-step is dictated
by the dislocation mobility, which is quite high
in FCC metals [5]. Numerical integrations of the
equations of motion are performed by the implicit
iterative methods of Gear [18]. Material data used
in the present computer simulations are as follows:
lattice constant ða ¼ 0:3615 nmÞ, shear modulus
ðl ¼ 45:5 GPaÞ, Poisson’s ratio ðm ¼ 0:35Þ, and
dislocation resistivity ðB ¼ 10�5–10�4 Pa sÞ.

3. Results of numerical simulations

For a systematic understanding of the influence
of sessile interstitial clusters on the flow stress of
irradiated materials, we investigate the dynamics
of dislocation interaction with various SIA cluster
configurations and sizes. In the following, defect
clusters are assumed to be circular prismatic in-
terstitial dislocation loops situated on planes that
are parallel to the glide plane of an F–R source.
Henceforth, the term ‘‘cluster’’ will be used for a
small prismatic, sessile interstitial loop, which is
composed of SIAs. Clusters have Burgers vectors,
selected from the set: b ¼ fða=2Þh110ig. The
Burgers vector of the expanding F–R source is
taken as: b ¼ ða=2Þ½�1101
. The equations of motion
for position and tangent vectors are solved for a
number of nodes on the expanding source (typi-
cally 5–31 nodes), and the shape is re-computed by
implicit iterative integration [18] to ensure stability
of the solution. In the following, we present com-
puter simulations for the dynamics of defect clus-
ter interaction with dislocations in FCC Cu.
Evaluation of cluster forces by the fast sum [10]
method with four cubic splines shows that the in-
finitesimal loop approximation [8] is reasonably
accurate. We henceforth use Kroupa’s approxi-
mation (Eq. (2)) to calculate cluster forces on F–R
dislocations.

3.1. The influence of isolated SIA clusters on
dislocation equilibrium

To analyze the dynamics of dislocation loop
interaction with a random field of defect clusters in
the near vicinity of the line, we need to first con-
sider a simpler case for the interaction between an
expanding F–R source and isolated SIA disloca-
tion loops. Fig. 1 reveals several features of the
interaction dynamics between an expanding F–R
source and two prismatic SIA dislocation loops of
parallel Burgers vectors and the same radius (100
a). The two clusters are situated above the glide
plane, with centers at the locations: (�100 a;
�1000 a; 100 a), and ð100 a;�1000 a; 100 aÞ. In
Fig. 1(a), the two clusters have b ¼ ða=2Þ½110
,
while the F–R source has b ¼ ða=2Þ½�1101
. The time
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intervals for each dislocation configuration are
also indicated in the figure.

The two clusters are initially attractive to the
dislocation line because of their Burgers vector
orientations with respect to the advancing dislo-
cation. Under the influence of a constant applied
stress ðr11 ¼ 100 MPaÞ, however, the F–R source
continues its expansion and passes under the two
clusters on its glide plane. By about 150 ps, the
dislocation reaches an equilibrium configuration
with the applied force and its own line tension. The
force of the two clusters is too small to play any
role at this final stage. The interaction of the same
F–R source with two identical clusters to those of

Fig. 1(a), except that their Burgers vectors are
both given by: b ¼ ða=2Þ½�11�110
 is shown in Fig.
1(b). When the same stress of r11 is applied in this
case, the repulsive forces from the two clusters do
not allow the F–R source to penetrate their col-
lective elastic field. Cluster repulsive forces, albeit
small, upset the balance between the applied and
self-forces on dislocation segments such that the
dislocation cannot bypass the cluster, as can be
seen from Fig. 1(b). The final equilibrium config-
uration of the F–R source dislocation is sub-
stan#132;tially different in the two cases, as can be
ascertained in the comparison shown in Fig. 1(c).
Contrary to what might be expected on the basis

Fig. 1. The influence of two clusters on the deformation of an F–R source with b ¼ ða=2Þ½�1101
 in Cu on the (1 1 1)-plane. (a) Two

prismatic circular SIA dislocation loops with the diameter of 100 a and b ¼ ða=2Þ½110
 located in the local position

ð�100 a;�1000 a; 100 aÞ, and ð100 a;�1000 a; 100 aÞ, time intervals: (1) 1 ps, (2) 4 ps, (3) 52 ps, (4) 75 ps, (5) 150 ps, (6) final

equilibrium state. (b) The same SIA dislocation loops with b ¼ ð1=2Þ½�11�110
. (c) Comparison of the final equilibrium states of (a) and (b).
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of a rigid dislocation approximation, the elastic
field of even small clusters can have a dramatic
influence on dislocation equilibrium.

3.2. Dislocation interaction with distributions of
SIA loops

The complex interaction between an expanding
F–R source dislocation and the full field of mul-
tiple sessile SIA dislocation loops in a decoration
atmosphere is dependent on cluster density, the
spatial and size distribution of clusters, and on
the orientation distribution of individual Burgers
vectors. In an earlier study [21], we showed that
dislocation loop unlocking from a row of SIA
dislocation loops with parallel Burgers vectors
proceeds by development of shape instabilities. We
present here an examination of dislocation un-
locking dynamics from SIA defect cluster atmo-
spheres. Numerical simulations for the interaction
between various limiting SIA defect cluster con-
figurations and an expanding F–R source dislo-
cation will be presented.

In some irradiated BCC metals, coherent SIA
dislocation loops in the form of dislocation loop
rafts are experimentally observed. Cluster sizes,
orientations and spatial distributions appear to be
all uniform and the cluster atmosphere is coherent.
This limiting case (i.e. fully coherent SIA clusters)
will be analyzed. However, most TEM experi-
mental observations of decorated dislocations in
FCC metals do not show this high degree of co-
herence. The other limiting case that will be con-
sidered is the case of a random distribution of size,
spatial location and Burgers vector of clusters
within the atmosphere.

Consider first the interaction between the F–R
source and 100 prismatic SIA dislocation loops in
an atmosphere, which is contained in the parallel-
epiped bounded by: ð�500 a6 x6 500 aÞ, ð�1015
a6 y6 � 1000 aÞ, and ð15 a6 z6 30 aÞ. Defect
clusters here are assumed to have random Burgers
vectors, selected from the set: b ¼ fða=2Þh110ig,
and are given random locations within the paral-
lelepiped. During the motion of the F–R disloca-
tion, its local curvature changes, thus requiring
additional increments in the applied stress to allow
continued expansion of the F–R source. Fig. 2

depicts the interaction dynamics between the ex-
panding F–R source and the cluster atmosphere,
during the trapping (Fig. 2(a)) and detrapping (Fig.
2(b)) stages. The applied shear stress is increased by
4 MPa intervals, and the dislocation shape is
evolved till it reaches an equilibrium configuration,
up to the stress level of 36 MPa (Fig. 2(a)). It is
noted that the dislocation line shape changes sig-
nificantly as it approaches the SIA cluster atmo-
sphere. The continuously smooth line, which is
determined by the applied stress and line tension,
becomes highly curved in the vicinity of the cluster
atmosphere. As the applied shear stress increases to
a critical value (i.e. the flow stress – which is 40
MPa in this case), the dislocation line flattens and
develops incipient fluctuations, as can be seen in
(Fig. 2(c)). A morphological shape instability starts
in the middle section of the F–R source, when small
fluctuations are amplified by applied and self-for-
ces and the dislocation succeeds in penetrating
through the collective cluster elastic field. The F–R
dislocation loop becomes unstable once it over-
comes elastic field of the cluster atmosphere, and
would expand till another obstacle is encountered.
Details of the interaction dynamics are also shown
in Fig. 3, where the 3-D positions of 50 SIA clusters
within the atmosphere and the dislocation line
position at various time intervals are shown in (a),
while the projection of clusters and the dislocation
on the glide plane is illustrated in (b). Cluster radii
in this atmosphere are in the range: 3–5 a, and their
position and Burgers vector are both randomly
selected.

The influence of partial or full coherence of the
SIA cluster atmosphere on the dynamics of dislo-
cation detrapping is illustrated in Fig. 4(a) and
(b), respectively. When the clusters are partially
coherent, their size and position is selected ran-
domly, while their Burgers vector (and orienta-
tion) are all the same. It is interesting to note that
the morphological instability on the F–R disloca-
tion is initiated in the vicinity of the least dense
spatial region within the cluster atmosphere, as
can be clearly seen in Fig. 4(a). The case of a
fully coherent cluster atmosphere is illustrated in
Fig. 4(b), where the projection of dislocation and
cluster positions is shown on the glide plane.
Dislocation detrapping from a coherent cluster
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atmosphere features spatial asymmetry of the
dislocation unlocking instability, as can be seen
in Fig. 4(b). This asymmetry results from the
high coherence of the cluster elastic field, and the
variation of the dislocation line tension with ori-
entation. The dislocation penetrates the cluster
atmosphere in a region of minimum line tension,
as determined by the F–R dislocation Burgers
vector ðb ¼ ða=2Þ½�1101
Þ.

3.3. Scaling of the CRSS with SIA defect clustersize
and density

Dependence of the flow stress on the density
and size of clusters in decoration atmospheres can
be important when one needs to relate the flow
stress to the irradiation dose. The results of several
computer simulations for the interaction dynamics
between a dislocation line and a highly correlated
cluster atmosphere are shown as scaling graphs in

Fig. 5, together with the scaling relationship of Eq.
(1). The relative CRSS (in units of l) is shown in
Fig. 5 as a function of the inverse square stand-off
distance, for two fixed inter-cluster spacings (L)
of 50 a and 75 a, respectively. For large stand-off
distances and inter-cluster spacings, the critical
stress is larger than the analytical estimates. This
shift in the CRSS in the limit of large stand-off
distance above values obtained from Eq. (1) is
attributed to the finite length of the F–R source,
thus requiring a finite stress to overcome its line
tension. On the other hand, computed CRSS at
small stand-off distances become significantly
smaller than analytical estimates. For small stand-
off distances, the dislocation easily unlocks itself
by a shape instability, and calculated CRSS values
are smaller than analytical estimates. Variations in
computed CRSS in Fig. 5 result from the specific
statistical distribution of clusters within the at-
mosphere.

Fig. 2. Dynamics of dislocation unlocking mechanism from a cluster atmosphere of 100 randomly distributed sessile SIA dislocation

loops (of radius 3–5 a) situated above the slip plane, at stand-off distances in the range: 15–30 a. Their projection on the slip plane is

also shown: (a) equilibrium dislocation line configurations at 4 MPa intervals, (b) unstable dislocation configurations at a constant

shear stress of 40 MPa and at 5 ps intervals and (c) details of unlocking instability.
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The influence of the SIA cluster density and
coherence on the CRSS is shown in Fig. 6, where
the relative value of the CRSS is shown as a

function of the local density of SIA clusters within
the atmosphere. As one expects, the CRSS in-
creases with the SIA cluster density. However, the

Fig. 3. Closeup for the interaction between an F–R source ðb ¼ ða=2Þ½�1101
Þ and a random SIA loop atmosphere of 50 sessile SIA

dislocation loops near the glide plane. SIA loops have a random distribution of size, space and Burgers vectors: (a) 3-D view and (b)

projection on the glide plane.

Fig. 4. Interaction dynamics between an F–R source ðb ¼ ða=2Þ½�1101
Þ and a coherent atmosphere of 50 sessile SIA loops near the glide

plane. SIA loops have the same size and Burgers vector of b ¼ ða=2Þ½110
: (a) semi-coherent: SIA loops are randomly spaced and

(b) fully coherent: SIA loops are equally spaced.
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density scaling is dependent on the degree of co-
herence within the atmosphere, and is not linear
for highly coherent SIA cluster atmospheres. The
CRSS is higher by about 15–40% for coherent SIA
clusters, as compared with random cluster atmo-

spheres. It is important to note that the density
scaling expressed by Kroupa’s equation (3) is lin-
ear, and that it gives results that are a factor of 4–6
higher than our current calculations. The discrep-
ancy may be attributed to the rigid, infinite dislo-
cation assumption of Kroupa and the uniform
spatial distribution statistics used in his estimate.

4. Conclusions

The mechanism of F–R source dislocation un-
locking from this special type of Cottrell-like de-
fect atmosphere (i.e. CISH) has been clarified in
the present work. Earlier estimates of the unlock-
ing stress, which are based on the assumption
of complete dislocation rigidity during its interac-
tion with SIA dislocation loops do not provide the
same scaling of the CRSS with the inter-cluster or
stand-off distances. For small inter-cluster or
stand-off distances (which are typical of decorated
dislocations), the present work shows that the
unlocking stress can be a factor of two smaller
than values obtained when one assumes rigid dis-
location interactions. Two possible mechanisms of
dislocation unlocking from highly coherent atmo-
spheres have been identified: (1) shape instability
initiated in regions of minimum line tension on the
dislocation; (2) shape instability caused by small
morphological fluctuations in regions of less-than-
average SIA dislocation loop density. The dislo-
cation line first becomes unstable in regions of
lowest SIA cluster spatial density. In competition
with this driving force is the influence of line ten-
sion variation, as the dislocation line itself will
have its weakest spots near edge orientations. In
cases of high cluster coherence, the unlocking in-
stability is always observed to start on dislocation
segments of minimum line tension.

One of the main conclusions of the present
study is that the flexibility of dislocations has been
grossly underestimated in earlier attempts at de-
riving scaling laws for the CRSS dependence on
SIA cluster density or stand-off distance. As a re-
sult of dislocation flexibility, the CRSS is found to
deviate substantially from the scaling given by Eq.
(1), as well as the Kroupa density scaling, ex-
pressed in Eq. (3). While the estimates of these

Fig. 5. Scaling relationship for the relative CRSS with the

normalized stand-off distance (units of lattice constant), for

various fixed inter-SIA loop spacings.

Fig. 6. Dependence of the relative CRSS on the local density of

fully random and fully coherent SIA dislocation loops.
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equations are based on static idealized dislocation–
cluster configurations, the current computer sim-
ulations underscore the critical role of dislocation
dynamics in obtaining more precise values. At the
root of dislocation unlocking from SIA dislocation
loop atmospheres is the initiation of a morpho-
logical instability on the dislocation, which prop-
agates to free the line by a sequence of successive
unzipping events. It is also clear that the corre-
sponding unlocking stress to free decorated dislo-
cations can be substantially smaller than values
obtained on the basis of static calculations alone.

The density and structure of SIA dislocation
loops within the decoration atmosphere is difficult
to determine experimentally with current TEM
methods. However, it is likely that the local SIA
dislocation loop density is in excess of 1025 m3.
Depending on the degree of coherence within the
atmosphere, our simulations indicate that the
CRSS may be in the range: 1:8 � 103–2:8 � 103 l,
at a density of 1025 m3. If one considers a poly-
crystalline Taylor factor of �3 to determine the
corresponding uniaxial stress, the upper yield
point in irradiated Cu is estimated to be in the
range: 270–420 MPa. Since these values are higher
than experimentally observed upper yield points of
irradiated Cu [21], it appears that unlocking of
heavily decorated dislocations is initiated in areas
of stress concentrations (e.g. precipitates, grain
boundaries, triple point junctions, or surface ir-
regularities).
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