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Multipole representation of the elastic field of dislocation ensembles
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A multipole expansion method is developed to determine the elastic field of dislocation loop ensembles of
arbitrary geometric complexity. The method results in reduction of the severe computational requirements in
large-scale dislocation dynamics~DD! computer simulations without an artificial cutoff on the interaction
range. Order ofN, O(N), algorithms for DD simulations is immediately accessible on the basis of the
developed procedure. Examples of dislocation interaction with large dislocation arrays representing a tilt
boundary and a dislocation wall show that the method results in speeding up the calculation of Peach-Kohler
interaction forces by a factor of 100, with an error of less than 0.4%. The multipole expansion reveals a
physical connection to Kro¨ner’s continuum theory of dislocations, with the zeroth order moment being Nye’s
dislocation density tensor. Higher-order tensors in the expansion correspond to moments of a basic tensor
comprised of the tangent and Burgers vectors, and can be used to characterize the spatial distribution of
dislocation loop ensembles.

DOI: 10.1103/PhysRevB.69.174102 PACS number~s!: 61.72.Lk, 02.60.Cb
tic
a

a
an
y
r
o

es
n

ic
er
lu
ic

ide
lv

d
is
ar

a
o

m
a
on
e

ea

c

uc-
of

n
our
ch

f

nge

ete

or

c-
are
in

e-
er-
he
lo-
of

ca-
I. INTRODUCTION

The development of a physically based theory of plas
ity has been one of the most challenging endeavors
tempted in recent years. Despite the recognition of the in
equacy of continuum mechanics to resolve import
features of plastic deformation, attempts to include the ph
ics of plastic deformation through constitutive relations a
far from satisfactory. This is particularly evident for the res
lution of critical phenomena, such as plastic instabiliti
work hardening, fatigue crack initiation, persistent slip ba
formation, etc.

An alternative method for providing access to the phys
of plastic deformation at the mesoscale is the direct num
cal simulation of discrete dislocation microstructure evo
tion, which is commonly known as the dislocation dynam
~DD! method.1–7

Although DD has been successfully applied to a w
range of physical problems, especially for problems invo
ing length scales in the 1029–1026 range,8,9 the extension of
the approach to larger length scales~e.g., for application in
polycrystalline material deformation! is still a daunting task.
The main impediment in this direction is the lack of metho
for systematic and rigorous ‘‘coarse graining’’ of discrete d
location processes. Notable recent developments in this
have been advanced by Lesar and Rickman.10

The main objective of the present work is to develop
coarse-graining approach for evaluation of the elastic field
large dislocation loop ensembles of arbitrary geometric co
plexity. The method is an extension of the Lesar-Rickm
multipole expansion of the elastic energy of dislocati
ensembles.10 The broad coarse-graining objective of th
present work is associated with a number of motivating r
sons for this development, as given below.

~1! To access the physics of plasticity through dire
0163-1829/2004/69~17!/174102~7!/$22.50 69 1741
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large-scale computer simulations of dislocation microstr
ture evolution. This is enabled by a substantial reduction
the speed of computation.

~2! To remove the cutoff distance limitation i
dislocation-dislocation interactions, and hence facilitate
understanding of microstructure evolution sensitivity to su
computational limitation.

~3! To allow efficient determination of the ‘‘effective’’ in-
fluence of dislocation arrays~e.g., in some representation o
grain boundaries!, or complex dislocation blocks~e.g., in
dislocation walls and tangles! on the interaction with ap-
proaching dislocations.

~4! To enable embedding into well established,O(N),
computational procedures for particle systems of long-ra
interactive force fields.11

~5! To shed more light on the connection between discr
dislocation dynamics, the Kro¨ner-Kosevich continuum
theory of dislocations,12 and moments of a basic local tens
that characterize the spatial distribution of dislocations.

We present the multipole expansion method~MEM! for-
mulation in Sec. II. InO(N) methods for calculation of the
effective fields in particle systems with long-range intera
tion force fields, moments evaluated for smaller volumes
usually transferred or combined with moments defined
other volumes. This issue will be explained in Sec. III. R
sults for the far-field expansion of the stress field and int
action forces are given in Sec. IV, while applications of t
method to dislocation arrays in special boundaries or dis
cation walls are presented in Sec. V. Finally conclusions
this work are presented in Sec. VI.

II. FORMULATION OF THE MULTIPOLE
REPRESENTATION

The stress field at any point from a single closed dislo
tion loop can be written as13
©2004 The American Physical Society02-1
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s i j 5
mbn

8p R FR,mpp~e jmndl i1e imndl j !

1
2

12n
ekmn~R,i jm2d i j R,ppm!dlkG , ~1!

whereR5Q2P is the vector connecting field pointQ and
source pointP at dislocations@Fig. 1~a!#. The stress field pe
unit volume of an ensemble of dislocation loops in a volu
V, some of them may not be closed withinV, is given by

s i j 5
m

8pV H (
j51

NL
closed

R
j
FR,mpp~e jmndl i1e imndl j !

1
2

12n
ekmn~R,i jm2d i j R,ppm!dlkG

1 (
j5NL

closed
11

NL E
j
FR,mpp~e jmndl i1e imndl j !

1
2

12n
ekmn~R,i jm2d i j R,ppm!dlkG J , ~2!

where NL
closed is the number of closed dislocation loop

within the volumeV, NL
open is the number of open disloca

tion loops, which intersect the surfaces of the volumeV,
NL5NL

closed1NL
open is the total number of dislocation loop

in the volumeV.
Suppose that the distance between pointP on a disloca-

tion and a field pointQ is relatively larger than the sizeh of
a certain volume that contains the dislocation loop, as sho
in Fig. 1. PointO is the center of the volume. Let us write th
Taylor-series expansion of the derivatives of vectorR at
point O as follows:

R,i jm5R,i jm
o 1R,i jmk

o r k1
1

2!
R,i jmkl

o r kr l1
1

3!
R,i jmkln

o r kr l r n

1•••, ~3!

wherer5O2P andRo5Q2O.

FIG. 1. Illustration of the geometries of~a! a single volume with
centerO containing dislocations,~b! a single volume~centerO8)
containing many small volumes with centersOm.
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Substituting these expansions in Eq.~2!, and recognizing
that R,mpp

o , R,i jm
o , R,ppm

o and their higher-order derivative
depend only onRo, we find

s i j 5
m

8p H FR,mpp
o ~e jmnani1e imnan j!1R,mppq

o ~e jmnbniq

1e imnbn jq!1
1

2!
R,mppqs

o ~e jmngniqs1e imngn jqs!

1
1

3!
R,mppqst

o ~e jmncniqst1e imncn jqst!1•••G
1

2

12n
ekmnFR,i jm

o ank1R,i jmq
o bnkq1

1

2!
R,i jmqs

o gnkqs

1
1

3!
R,i jmqs

o cnkqst1•••G2
2

12n
d i j ekmnFR,ppm

o ank

1R,ppmq
o bnkq1

1

2!
R,ppmqs

o gnkqs1
1

3!
R,ppmqst

o cnkqst

1•••G J , ~4!

where we define the dislocation moments of zeroth or
within the volumeV as

a i j 5
1

V (
j51

NL
closed

R
j
Ei j

j dl1
1

V (
j5NL

closed
11

NL E
j
Ei j

j dl

5
1

V (
j5NL

closed
11

NL E
j
Ei j

j dl, ~5!

wheredl5udlu is an infinitesimal line length along the un
tangentt. The Eshelby rational tensorEi j , defined asEi j

j

5bi
jt j

j(P), is a local tensor because it is defined at pointP on
a loopj, wheret i

j is the tangent vector at positionP andbj

is the Burgers vector of the loop. It is clear that the on
contribution to the tensora i j is from open loops~i.e., the
second term!, since the contribution of closed-loops is ide
tically zero by virtue of the closed-loop property. Equatio
~5! gives Nye’s dislocation density tensora i j .14,15 This ten-
sor is directly related to the lattice curvature tensork by12

k5
1

2
Tr~a!I2a, ~6!

whereI is the second-order unit tensor. Higher-order tens
b,g,c, . . . correspond to higher-order moments of the E
helby rational tensor, and are defined as

b i jk5
1

V (
j51

NL E
j
r kEi j dl,

g i jkl 5
1

V (
j51

NL E
j
r kr lEi j dl,
2-2
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c i jklq5
1

V (
j51

NL E
j
r kr l r qEi j dl,

z i jklq •••p5
1

V (
j51

NL E
j
r kr l r q•••r pEi j dl. ~7!

We can write the stress field resulting from a dislocat
ensemble within the volumeV as

s i j 5
mV

8p (
t50

`
1

t! FR,mppa1•••at

o ~e jmn^znia1•••at
&

1e imn^zn ja1•••at
&!1

2

12n
ekmnR,i jma1•••at

o ^znka1 . . . at
&

2
2

12n
d i j ekmnR,ppma1•••at

o ^znka1•••at
&G , ~8!

where^z i jk •••& represent the moments defined above diff
ent orders, asa i j , b i jk , g i jkl , etc. These moments depen
only on the selected center pointO and the distribution of the
dislocation microstructure within the volume. They can
evaluated for each volume independently. After the mome
are determined, the stress field and interaction forces
other dislocations that are sufficiently well separated fr
the volumeV are easily obtained.

III. RULES FOR COMBINATION OF MOMENTS

For a fixed field point, if the distance of a volume to th
point is larger than its characteristic size, we can utilize m
ments obtained from smaller subvolumes to generate
ments for the total volume. This procedure is similar to t
‘‘parallel axis theorem’’ for shifting moments of inertia fo
mass distributions in mechanics. Suppose that this large
ume is composed of several subvolumes and we have m
pole expansions for each subvolume, we develop here a
cedure to obtain multipole expansion for the large volu
from those for the subvolumes instead of doing the calcu
tions again for each dislocation loop. This idea is very su
able for hierarchical tree algorithms, such as the Greeng
Rokhlin method.16 We will describe formulations for
combination of multipole expansions in this section.

Assume that a large material volumeV centered atO8
containsM small subvolumes centered atOm, with their vol-
umes asVm, wherem is an index@Fig. 1 ~b!#. Here,rm is the
vector connectingOm and O8. The new vector connecting
the centerO8 and a point on a dislocation isr 85r1rm,
where rm5O82Om. With the dislocation moments for th
mth small material volume asa i j

m , b i jk
m , . . . , we canwrite

the moments of dislocations in themth subvolume in the
large volume as follows:

a i j
m85

1

V (
j5NL

closedm
11

NL
m

E
j
Ei j

j dl5 f ma i j
m ,
17410
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b i jk
m85

1

V (
j51

NL
m

E
j
r k8Ei j

j dl5
1

V (
j51

NL
m

E
j
~r k1r k

m!Ei j
j dl

5
1

V (
j51

NL
m

E
j
r kEi j

j dl1
1

V (
j51

NL
m

E
j
r k

mEi j
j dl

5 f m~b i jk
m 1r k

ma i j
m!,

g i jkl
m8 5

1

V (
j51

NL
m

E
j
r k8r l8Ei j

j dl

5 f m~g i jkl
m 1r k

mb i j l
m 1r l

mb i jk
m 1r k

mr l
ma i j

m!,

•••, ~9!

wheref m5Vm/V, NL
m andNL

closedm are volume fraction, the
number of total dislocation loops, and the number of clos
loops in themth volume, respectively.

Then, the total moments of dislocation loop distributio
within the large volume are given by

a i j 5 (
m51

M

a i j
m85 (

m51

M

f ma i j
m ,

b i jk5 (
m51

M

b i jk
m85 (

m51

M

f m~b i jk
m 1r k

ma i j
m!,

g i jkl 5 (
m51

M

g i jkl
m8 5 (

m51

M

f m~g i jkl
m 1r k

mb i j l
m 1r l

mb i jk
m 1r k

mr l
ma i j

m!,

•••. ~10!

Equation~10! can be written in a compact form as

z i ja 1•••an
5 (

m51

M

f mH (
p50

n F (
q51

Cn
p

@~r t1
mr t2

m
•••r tp

m!

3^z i j t p11•••tn
m &#G J , ~11!

wheren50,1,2, . . . is theorder of the moment. Here,(
q51
Cn

p

means thatr m’s subindex group oft1 , . . . ,tp are selected
from then index group ofan in a permutational manner, an
group of indicestp11 , . . . ,tn are the correspondingn2p
indices ofan after the selection.

IV. NUMERICAL RESULTS

Based on the equations developed in the previous
tions, we numerically implement here the multipole expa
sion for the stress field of a dislocation ensemble, expres
by Eq.~8!. We consider here the results of the full calculati
based on Eq.~2! as reference, and calculate relative erro
from the MEM asusMEM2s re fu/s re f . Tests are performed
on a volume withh510 mm for different expansion order
2-3
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and different values ofR/h. Dislocations are generated ra
domly inside the volume and with a density of
3108 cm/cm3. Numerical results are shown in Fig. 2. Fro
these results, it is clear that the approximate moment s
tions converge fast. For different values ofR/h, the second-
order expansion gives a relative error less than 1%, while
fourth-order expansion gives a relative error less th
0.05%.

V. APPLICATIONS TO DISLOCATION BOUNDARIES
AND WALLS

A. Dislocation interaction with a tilt boundary

An important consequence of heavy plastic deformatio
the rearrangement of dislocations into well-separated tan
or periodic arrays. Dislocation tangles evolve into walls th
can act as sources of new dislocations, or stop approac
glide dislocations from neighboring volumes. On the oth
hand, some grain boundaries can be represented by dis
tion arrays. The elastic field generated by grain boundarie
compatibility can thus be determined from the dislocat
array representing its structure. Such dislocation microst
tures have profound effect on the deformation characteris
of materials, and more often, some effective properties
needed. In this section, we investigate the feasibility of
fective elastic representation of periodic dislocation arr
and dislocation walls utilizing the MEM derived earlier. W
will first analyze the effective influence of a tilt boundary o
the deformation of a dislocation emitted from a near
Frank-Read~F-R! source. We will then investigate the natu
of the Peach-Koehler force on dislocations approachin
dense entanglement of dislocations within a dislocation w
The following examples are for single crystal Cu, with t
following parameters: shear modulusm550 GPa, lattice
constanta53.615310210 m, Poisson’s ration50.31.

Figure 3 shows the geometry of a 1° tilt boundary co
taining 35 dislocations with1

2 @ 1̄01# Burgers vector. A F-R
source is located 1mm away from the tilt boundary. The
source, which lies on the@111# glide plane, emits disloca
tions with @ 1̄21̄# tangent vector and12 @ 1̄01# Burgers vector
as well. The initial length of the F-R source dislocation b
tween pinned ends is 700a. A constant uniaxial stress of 2
MPa is applied in the@100# direction.

FIG. 2. Relative error of the MEM vs~a! the expansion ordern,
~b! the R/h value for a simulation volume with an edge length
10 mm.
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Dislocation motion under the influence of the externa
applied stress and the internal stress generated by the
boundary is determined by using the method of parame
dislocation dynamics.3,13 Interaction forces between the ti
boundary and the F-R source dislocation are calculated
two methods:~1! the fast sum method,2 which adds up the
contributions of every dislocation segment within the boun
ary; ~2! the current MEM up to second-order quadropo
term. Dislocation configurations at different time steps a
shown in Fig. 4~a!. The relative error in the MEM in the
position of the dislocation~at its closest point to the tilt
boundary! is shown in Fig. 4~b!. The results of the simulation
show that the MEM is highly accurate~error on the order of
0.4%), and that the overall dislocation configuration is ind
tinguishable when evaluated by the two methods. Howe
the MEM is found to be 22 times faster than the full fie
calculation.

B. Dislocation interaction with a dense dislocation wall

The physical role of dislocation walls in material defo
mation is recognized to be significant because they con
the free path of mobile dislocations within subgrains.17 Dis-
location walls generally contain high dislocation densitie
Therefore, explicit large-scale simulation of the interacti
between these walls and approaching dislocations
present computational difficulties. If the nature of decay

FIG. 3. Illustration of a tilt boundary. A single dislocation from
an F-R source lies on the@111# glide plane with Burgers vecto
1
2 @ 1̄01# interacts with the tilt boundary.

FIG. 4. ~a! Dislocation configurations at different simulatio
time steps:t150 ns, t250.31 ns, t350.62 ns, t451.23 ns; ~b!
relative error of the dislocation position along the lineX in ~a!.
2-4
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the elastic field away from the wall is determined, this wou
be helpful in studies of dislocation interaction with su
walls without the excessive details.

A special algorithm was designed to implement the ME
in dense dislocation walls. The wall was divided into ma
small volumes, and a hierarchical tree structure was c
structed on the basis of these small volumes. Each leve
the hierarchical tree contains one or several nodes that
respond to specific volumes of the wall. Larger volumes c
respond to higher levels of the tree. For each volume,
determine the properties: center, size, dislocation distr
tion, and various moments. Dislocation moments for
lowest level volumes are first calculated. Then, by using
~11!, dislocation moments for upper tree levels can be ea
determined.

The procedure for calculations of the Peach-Koeh
~P-K! force on an approaching dislocation at pointP is as
follows.

~1! The distance between the volume center and the p
P is first evaluated. If the distance is larger than the volum
size, MEM is used.

~2! If the distance is smaller than the volume size and
volume does not have sub-volumes, the P-K force is de
mined by full calculation.

~3! If the distance is smaller than the volume’s size a
the volume has subvolumes, the algorithm checks on
distance betweenP and the center of each subvolume, a
the above procedures are repeated.

Figure 5 shows a dislocation wall structure with a dens
of 531010 cm/cm3. The wall dimensions are 535
30.2 mm3. The P-K force on a small dislocation segme
located at various positions along the center lineX, with
Burgers vector12 @101̄# was evaluated by both MEM and fu
calculations. The results of the P-K force and the relat
errors are plotted in Fig. 6.

While the relative error using MEM of order 2 is ver
small @see Figure 6~b!#, a great advantage in computation
speed is gained. The results show that the CPU time~on a
Pentium-4 CPU, 2.26 GHz! increases almost linearly from

FIG. 5. Dislocation wall structure with dislocation density
31010 cm/cm3. A small dislocation segmentS with Burgers vector
1
2 @101̄# lies alongx.
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416 sec to 3712 sec for the full calculation, when the num
of dislocations in the wall increases from 250 to 2200. Ho
ever, the CPU time does not change much for the ME
~varying from 39 sec to 40 sec! for the same increase in th
number of dislocations. For the case of 2200 dislocatio
within the wall, a speedup factor of almost 100 is achiev
for the MEM. Recognizing that the CPU time for the MEM
is almost constant and mostly dependent on the hierarch
tree structure, it is concluded that the method is very suita
for large-scale simulations, which involve high dislocatio
densities.

It is of interest to determine the decay nature of the ela
field emanating from dislocation walls. Figure 6~a! shows a
comparison between various forms of the spatial decay of
P-K force as a function of the distanceR away from the wall,
normalized to the force atR050.59mm. It is seen that the
force decays faster thanR22, and it can be simply repre
sented by an exponential function of the form

F~R!5F~R0!e2a(R2R0), ~12!

wherea51.36mm21. Such simple exponential represent
tion is a result of the self-shielding of the dislocations with
the wall.

VI. CONCLUSIONS

The MEM presented here shows a number of features
facilitates investigation into the physical and computatio
aspects of large dislocation ensembles in materials unde
ing plastic deformation. The following conclusions a
drawn from the present work.

~1! By re-expressing the elastic field of dislocation e
sembles as a series solution of moments, the relative co
butions of open loops, dipoles, quadropoles, etc., are ea
separated out.

~2! The method results in significant computational a
vantages as compared to calculations performed in most
location dynamics simulation method. First, vast compu
tional speedup is achieved, especially in simulations of de
dislocation interactions. Second, the method offers a sim
algebraic procedure for transfer of moments from one v
ume to another, in a manner similar to the parallel axis th

FIG. 6. ~a! P-K forces on a small dislocation segment at diffe
ent positions along directionx, ~b! relative error of the P-K force
from MEM with respect to that from full calculation.
2-5
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rem for moments of inertia in the mechanics of distribut
masses. This property is well suited to algorithms based
hierarchical tree methods that are now efficiently used
O(N) calculations.

~3! The zeroth order term in the MEM expansion is t
Nye’s dislocation density tensor, which is a direct measure
lattice curvature, and is affected only by open dislocat
loops within the ensemble. Diagonal components of this t
sor describe screw dislocations, while off-diagonal com
nents represent edge dislocations. On the other hand, hig
order moments of the Eshelby tensor are associated
definite length-scale measures that may be useful in con
tions between discrete dislocation simulations and the c
tinuum theory of dislocations.

~4! The analysis of dense dislocation walls indicates t
the Peach-Koehler force has an exponential decay char
as a result of mutual shielding effects of multipole disloc
tions within random ensemble constituting the walls.
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APPENDIX A: R AND ITS DERIVATIVES

R is the vector connecting field pointQ and another point
P on the dislocation orO, center of the volume~see Fig. 1!.
R and its derivatives are used in expressions of displa
ments, strains, stresses, and energies of dislocations.13 Here,
we define a way to expressR and its derivatives in compac
tensor forms.

Define

R5$xi% and g5H xi

RJ , ~A1!

whereR5uRu. Thus,

R,i5
xi

R
5gi , ~A2!

R,i j 5
d i j

R
2

xixj

R3
52

1

R
~2d i j 1gigj !, ~A3!

R,i jk52
d jkxi1d ikxj1d i j xk

R3
1

3xixjxk

R5

5
1

R2
@2~d jkgi1d ikgj1d i j gk!13gigjgk#, ~A4!
R,i jkl 52
d i j dkl1d ikd j l 1d i l d jk

R3
1

3~d jkxixl1d ikxjxl1d i j xkxl1dklxixj1d j l xixk1d i l xjxk!

R5
2

335xixjxkxl

R7
5

2
1

R3
@~d i j dkl1••• !23~d jkgigl1••• !1335gigjgkgl #, ~A5!

•••. ~A6!
Based on the above derivations and after careful analy
we can write these derivatives as

R,a1a2•••an
5S 21

R D n21

(
m50

un/2u H ~21!m~2n2322m!!!

3 (
Cn

2m(2m21)!!

~d t1t2
d t3t4

•••d t2m21t2m

3gt2m11
gt2m12

•••gtn
!J , ~A7!

wheret1 , t2 , . . . , t2m are a group of indices selected fro
an in a permutation manner, andt2m11 , . . . , tn are the other
group of an after such a selection. The summatio

(Cn
2m(2m21)!! means taking sum over all combinations.
is, By defining

15$ei% ~A8!

and

R„n…5$R,a1a2•••an
% ~A9!

we can write Eq.~A7! as

R„n…5S 21

R D n21

(
m50

un/2u H ~21!m~2n2322m!!!

3 (
Cn

2mC2m
2

@~P ^
n22mg!~P ^

2m1!#J . ~A10!
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In this equation,m is the number ofd ’s and is from 0 to
un/2u which indicates the largest integer not larger thann/2.
The symbolP ^

n indicates that there are a number ofn
items ofg or 1 with the operation̂ . The second summatio

(Cn
2mC2m

2
means doing summing in a permutation and co

bination manner, with the number of items1 as 2m and the
number of itemsg asn22m. For example, withm51 and
n54, we have
os

17410
-

(
Cn

2m(2m21)!!

@~P ^
n22mg!~P ^

2m1!#

5(
C4

2

@~P ^
2g!~P ^

21!#51^ 1^ g^ g11^ g^ 1^ g11

^ g^ g^ 11g^ 1^ 1^ g1g^ 1^ g^ 11g^ g^ 1^ 1.

~A11!
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