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Effects of glissile interstitial clusters on microstructure self-organization in irradiated materials
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We analyze the formation and selection of self-organized defect microstructure in irradiated materials within
the framework of a kinetic model for point and clustered defects. We take explicitly into account the influence
of glissile interstitial clusters on the stability and morphology of ordered microstructure. Under void growth
conditions, we find that the anisotropic motion of interstitial clusters provides a key element for microstructure
morphology selection. In particular, it results in the formation of the void lattice in parallel orientation with the
underlying crystal structure, in agreement with experimental observations. We also find that bcc and fcc void
lattices develop in bcc and fcc crystals, respectively, while in hcp crystals, voids form ordered arrays parallel
to basal planes. It is also predicted that a fcc void lattice is unstable, explaining the experimental difficulty for
void lattice formation in fcc crystals.
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I. INTRODUCTION

Extensive experimental observations on irradiated materi-
als have systematically shown the existence of fully or par-
tially ordered defect populations in materials under energetic
particle irradiation, such as irradiation by ions, neutrons or
electrons. Various types of defect microstructure~e.g., voids,
precipitates, vacancy clusters, stacking fault tetrahedra, gas
bubbles, and interstitial atom clusters! have been experimen-
tally observed to be partially arranged in self-organized spa-
tial patterns. Implantation of metals with energetic helium
results in remarkable self-assembled bubble superlattices
with wavelengths in the range of 5–8 nm. Ion and neutron
irradiation, on the other hand, produce a wide variety of self-
assembled three-dimensional defect walls and void lattices,
with wavelengths that can be tailored in the range of tens to
hundreds of nanometers.1 Striking observations have shown
complete spatial isomorphism between the periodic structure
of defect distributions and that of the fundamental atomic
lattice. These experimental observations are particularly true
for the spatial ordering of bubble and void defect
structures.2–7 An important aspect of void lattice formation
in metals is the orientation of void patterns along crystallo-
graphic directions. Detailed and systematic observations of
defect ordering under ion irradiated nickel and copper have
shown the development of periodic defect walls.8 Formation
of the walls of defect clusters in polycrystalline and single-
crystalline Cu and Ni were observed at medium temperatures
and high irradiation doses. The experimental observations of
Jaeger and co-worker have clearly demonstrated strong an-
isotropic arrangements of stacking fault tetrahedra and va-
cancy type clusters in walls along the$100% planes of the fcc
crystal lattice. Because of the equivalency between$100%
planes, labyrinth structures were observed.9 These arrange-
ments show a periodicity of 60 nm, with the walls having a
thickness of less than half the periodicity length and defect-
free zones are observed in between the walls. One of the
significant observations is that the spatial wavelength is

rather insensitive to temperature, dose, and displacement
damage rate.

Thermodynamic concepts of energy minimization were
used to interpret void lattice structures in irradiated materi-
als, and precipitate ordering during aging of alloys.10 How-
ever, the energy minima that are obtained do not correspond
to the observed void lattice parameters or symmetries. In
addition, the elastic interaction between voids is too weak to
trigger morphological selection.11 An important class of
models, originating in the early approach of Foreman.12 are
based on the effect of the anisotropic diffusion of self-
interstitial ~SIA! atoms on voids. There are one and two-
dimensional models of this type.13–15,11In these models, the
mechanism of void ordering is based on a detailed evaluation
of SIA fluxes received by voids as a function of their spatial
arrangement. The models predict that the growth rates of
aligned voids are faster than those for isolated ones, which
actually shrink. In the same spirit, other models have been
proposed, which consider the interaction between interstitial
loops and voids as the main selection mechanism of the void
microstructure.16 This class of models favor equilibrium-type
concepts rather than dynamical ones. They also require pre-
existing random distributions of voids and point defects.
They depend on defect mobility, but not on defect production
rates or interactions. Furthermore, it is known that spatially
uniform point defect and dislocation distributions may easily
become unstable under irradiation.8 Hence, the resulting de-
fect microstructure should also affect void distributions.

Recently, a coherent understanding of the spatial evolu-
tion of the microstructure, including void ordering, has been
sought within the theoretical framework describing
irradiation-induced self-organization of material defects.17 In
this approach, rate equations describing the evolution of each
relevant defect density are derived. These equations are
based on the fundamental elements of defect dynamics,
namely, point defect creation, recombination, and migration
to the microstructure. Uniform solutions are searched, and
their stability versus inhomogeneous perturbations studied.
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Instability criteria that depend on kinetic rate coefficients,
and thus on material parameters, may then be found.18–22

The combination of nonlinear interactions, bias, and mobility
differences between several defect populations easily induces
pattern forming instabilities. Similar to other pattern forming
systems~e.g., chemical, hydrodynamic, etc.!, the derivation
of instability criteria through the linear stability analysis of
uniform defect distributions is not sufficient to determine the
spatial orientations of self-organized patterns. A nonlinear
analysis of the post-bifurcation regime is required to estab-
lish the conditions for pattern symmetry and orientation. The
selected microstructure crucially depends on nonlinear inter-
actions between unstable spatial modes.23 Furthermore, the
microstructure symmetry and orientation may hinge on spa-
tial anisotropies inherent to crystalline materials. In particu-
lar, it has been shown that loop and void patterns have par-
allel orientations with the directions of maximum cluster
mobility.22

In a series of papers, Walgraef and co-workers1,21,22,24,25

derived reaction-diffusion models for the coupled evolution
of various families of defects involved in microstructure for-
mation under irradiation. These models were analyzed from
the point of view of nonlinear dynamics and pattern forma-
tion theory. They first considered point and line defects only,
and the spatial ordering of vacancy loops. Then, in order to
describe microstructure formation and evolution in general,
they extended the dynamical model to include volume de-
fects such as voids or stacking fault tetrahedra and discussed
how the presence of such defects could affect microstructure
evolution. The only mobile defects in this model are the
point defects. They showed how different mobilities and bias
in point defect evolution could trigger instabilities in uniform
defect distributions and induce the formation of self-
organized defect microstructure.22 Based on these theoretical
approaches and on experimental findings, the following con-
ditions appear to be necessary for the formation of ordered
defect microstructure:

~1! Direct formation of vacancy clusters by collision cas-
cades;

~2! preferential absorption of interstitials over vacancies
at preexisting dislocations;

~3! a degree of anisotropy influencing the evolution of
clustered defects. This could either be a result of point defect
diffusional anisotropy, or the anisotropic elastic interaction
between defect clusters.

Recent molecular-dynamics computer simulations of col-
lision cascades have shown that SIA clusters can also be
directly produced in the neighborhood of cascades.26 Glissile
clusters of this type may be absorbed at void sinks, and im-
plications of this phenomenon to swelling and other macro-
scopic phenomena have been recently discussed.1,27–31 It
would thus be important to study the effects of glissile SIA
clusters on the dynamics of microstructure formation in the
framework of the dynamical approach described so far. The
aim of this paper is to generalize the dynamical model intro-
duced in Ref. 22 by incorporating the direct production of
glissile clusters in collision cascades, and their subsequent
dynamics. In Sec. II we introduce and discuss this general-
ized model and its uniform solutions. In Sec. III, we present

the linear stability analysis of uniform solutions and the on-
set of microstructure formation. We discuss microstructure
selection in the weakly nonlinear regime and compare our
results with experimental observations. Finally, conclusions
are outlined in Sec. IV

II. THE DYNAMICAL MODEL

We generalize here our model,22 by explicitly accounting
for glissile SIA clusters, which are directly produced in cas-
cades and diffuse one dimensionally along close-packed
crystallographic directions. Such clusters may be absorbed at
immobile sinks such as network dislocations, vacancy or in-
terstitial loops, voids, etc. They are characterized by a Bur-
gers vector parallel to one of the close-packed directions of
the crystal and we will consider the situation where the fre-
quency of changing their Burgers vector direction during
motion between sinks is equivalent in all motion directions,
thus their populations along motion directions are equal.
Glissile SIA clusters are divided into families characterized
by their Burgers vector and represented by partial concentra-
tions that satisfy different kinetic equations. With these re-
strictions, the model is then based on the following kinetic
equations:

] tci5K~12e i !2acicv1Di¹
2ci

2Dici~ZiNr
N
1ZiVr

V
1ZiI r I

1ZiCr
C
!,

] tcv5K~12ev!2acicv1Dv¹2cv2Dv@ZvN~cv2 c̄vN!r
N

1ZvV~cv2 c̄vV!r
V
1ZvI~cv2 c̄vI !r I

1ZvC~cv2 c̄vC!r
C
#,

] tcgp5egpK2~Dg!pPg
2cgp1~Dg!p¹p

2cgp ,

] tr I
5S 2pN

ubW u D S esK1DiZiI ci2DvZvI~cv2 c̄vI !

1 (
p51

N
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] trV
5

1

ubW ur V
0 F evK2r

VS DiZiVci2DvZvV~cv2 c̄vV!

1 (
p51

N

ap~Dg!pZgVPgcgpD G ,

] trC
5

~4pNc!
2

r
C

@DvZvC~cv2 c̄vC!2DiZiCci #

2pNc(
p51

N

ap~Dg!pPgcgp , ~1!

where Pg
25(ZgNr

N
1ZgVr

V
1ZgIr I

1ZgCrC)2 is the total
sink strength for one-dimensional diffusing SIA clusters. Its
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quadratic dependence in the defect densities is due to the fact
that, in one dimension, the motion of a diffusing cluster is
confined between two neighboring sinks, as discussed in
Refs. 32 and 33. The notations are similar to the ones used in
Ref. 22:cv corresponds to the concentration of vacancies and
ci to SIA’s, while the new variablecg represents the concen-
tration of glissile SIA clusters.r

N
is the network dislocation

density,r
V

is the vacancy loop density,r
I

is the sessile in-
terstitial loop density andr

C
is the void sink density (r

C

54pNcRc with Nc being the void number density andRc
begin the mean void radius!. K is the displacement damage
rate, egpK and esK are the glissile and sessile interstitial
cluster production rates, respectively.p labels individual
close-packed directions among theN present in the crystal
~explicit examples will be considered later on!, e i5es
1(p51

N apegp , andev is the cascade collapse efficiency.a is
the recombination coefficient,bW is the Burgers vector,r V

0 is
the mean vacancy loop~or cluster! radius, andZ.,. are the
bias factors~which may usually be approximated byZiN
5ZiI 5ZiV511B and ZvI5ZvN5ZvV5ZvC5ZiC51, B
being the excess network bias!. c̄vN , c̄vV , c̄vI , and c̄vC are
the concentrations of thermally emitted vacancies from net-
work dislocations, vacancy and interstitial loops, and voids,
respectively.ZgN,V,I are cross-section coefficients for absorb-
ing glissile SIA clusters, and are proportional to the typical
absorption distance for each type of sink. In particular,ZgC
.(1/16pNC). ~Ref. 32! (ZgN.ZgV.ZgIÞZgC). (Dg)p is
the diffusion coefficient of glissile SIA clusters along thep
direction andap is the fraction of absorbed SIA in thep
direction. Let us recall that the basic processes responsible
for defect density evolution remain unchanged. Their net
production rate results from the balance between displace-
ment damage rate, responsible for the generation of Frenkel
pairs, and loop production rates. Vacancy and interstitial
loops are assumed to be produced directly by cascades, and
their production rate is proportional to the corresponding
cascade collapse efficiency. Point defects are annihilated
through pair recombination or absorption at line~dislocations
and loops! or volume ~voids or bubbles! defects. The sink
strengths for point defect absorption areZixr

x
andZvxr

x
for

interstitials and vacancies, respectively (x representing the
type of line or volume defect!. The difference betweenZix ,
Zvx , andZgx introduces new bias in defect evolution.

The main element in the present model is thus the pres-
ence of glissile SIA clusters, which has not been previously
analyzed. SIA clusters are produced directly by a cascade
effect and interact with all microstructural sinks in Eq.~1!.
For each sink, their absorption cross section is proportional
to the mean radius and the sink density. Their motion is
highly anisotropic, following well-defined crystallographic
directions. These directions correspond, for example, to
^111& directions in bcc lattices and̂110& directions in fcc
lattices.

A. Model equations in scaled variables

Let us first simplify model~1! on taking into account the
equivalence of close-packed directions„egp5eg ,(Dg)n
5Dg ,an5a… and on introducing the following scaling rela-
tions:

lv5DvZvNr
N
, D̄ .5D . /lv , a/lv5g,

P5gK/lv ,

r
V,I ,C
* 5

r
V,I ,C

r
N

, xi ,v5gci ,v ,

x̄vN^^x̄vV. x̄vI. x̄vC5 x̄vL ,

Z5
ZgC

ZgN
, m5

Di

Dv
, n5

DgZgN
2 r

N

Dv
, t5lvt,

t I5
bar

N

2pNDv
, tV5brv

0r
N
g, tC5

ar
N

2

~4pNc!
2Dv

.

~2!

It may then be written in dimensionless form, and the result-
ing dynamics is given by

]txi5P~12e i !2xixv1mD̄v¹2xi

2mxi@~11B!~11r
V
* 1r

I
* !1r

C
* !],

]txv5P~12ev!2 x̄vL2xixv1D̄v¹2xv

2~xv2 x̄vL!~11r
V
* 1r

I
* 1r

C
* !,

] txgp5egP2nxgp~11r
V
* 1r

I
* 1Zr

C
* !21D̄g¹p

2xgp ,

t I]tr I
* 5esP1m~11B!xi2~xv2 x̄vL!

1an~11r
V
* 1r

I
* 1Zr

C
* !(

p
xgp ,

tV]trV
* 5evP2r

V
* S m~11B!xi2~xv2 x̄vL!

1an~11r
V
* 1r

I
* 1Zr

C
* !(

p
xgpD ,

tC]trC
* 5

1

r
C
* F ~xv2 x̄vL!2mxi

2an~11r
V
* 1r

I
* 1Zr

C
* !(

p
xgpG . ~3!

B. Uniform solutions

As discussed in Ref. 22, point defect densities evolve
much more rapidly as compared to the microstructure, and
may be adiabatically eliminated from the dynamics. Since
glissile SIA clusters have also very high diffusivity, their
dynamics will likewise be adiabatically eliminated. Their
concentrations may thus be expressed as functions of dislo-
cation, loop and void densities. In the case of uniform defect
densities, one has, in the sink dominated regime (a^^1).22
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~xv
02 x̄vL!5

P~12ev!2D

A0
,

xi
05

P~12e i !

m~11B!B0
,

xgp
0 5

egP

nC0
2 , ~4!

where D5 x̄vL2 x̄vN. x̄vL , A0511rV
01r I

01rC
0 , B051

1rV
01r I

01rC
0 /(11B), andC0511r

V

01r
I

01Zr
C

0.
Hence, the uniform steady states for point defect and SIA

cluster densities are given by

t I]tr I

05esP1
P~12e i !

B0
2

P~12ev!2D

A0
1

NaegP

C0
,

tV]trV

05evP2FP~12e i !

B0
2

P~12ev!2D

A0
1

NaegP

C0
GrV

0,

tC]trC

052
1

r
C

0 F P~12e i !

~11B!B0
2

P~12ev!2D

A0
1

NaegP

C0
G .

~5!

III. SPATIAL INSTABILITIES AND MICROSTRUCTURE
FORMATION

The stability of uniform defect distributions may be stud-
ied through the linear evolution of small inhomogeneous per-

turbations. As shown in Ref. 22, point defect perturbations
may be expressed as an expansion in powers of the loop
density perturbations, and their Fourier transform may be
written, in vectorial form, as

dxWq5 (
n>1

E dk . . . E dkn21~21!(n)Dq, . . . ,kn21

(n) TW q

3drq2k•••drkn21
1•••, ~6!

where

dxWq5S dxi ,q

dxv,q

dxgi ,q

•••

dxgN,q

D , ~7!

TW q51
P~12e i !

m~11B!B0

P~12ev!2D

A0

aegP

C0

. . .

aegP

C0

2 , ~8!

Dq, . . . ,kn21

(n) 51
1

Bq•••Bkn21

0 0 •••

0
1

Aq•••Akn21

0 •••

0 0
~2C0!n

nnCq1•••Ckn211
•••

0 0 •••

~2C0!n

nnCqN•••Ckn21N

2 , ~9!

and

drq5r0drW q ~10!

with

r05S r
V

0 r
I

0 r
C

0

11B

r
V

0 r
I

0 r
C

0

r
V

0 r
I

0 2Zr02
C

D ~11!

and

drW q5S dr
Vq

dr
Iq

dr
Cq

D . ~12!

Furthermore, Bq5B01q2D̄v /(11B), Aq5A01q2D̄v ,
Cqp5C01qp

2Dg* , with (Dg* 5D̄g /Aan), and
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dxi5xi2xi
0 , dxv5xv2~xv

02 x̄vL!, dxgp5xgp2xgp
0 ,

dr
V
5

r
V
* 2r

V

0

r
V

0 , dr
I
5

r
I
* 2r

I

0

r
I

0 , dr
C
5

r
C
* 2r

C

0

r
C

0 ,

~13!

wherexi
0 , xv

0 , r
V

0 , r
I

0, andr
C

0 are the uniform defect densi-
ties.

This adiabatic elimination of point defect and SIA cluster
densities leads thus to a reduction in the dynamics of sessile
interstitial clusters, dislocation loops and void densities,
which govern the evolution of the whole system. The evolu-
tion equations of nonuniform loop and void densities may
then be cast in the following vectorial form:

t]tdrW q5LdrW q1MdxWq1E dkdrW q2kNdxW k

1E dkdrW q2kPdrW k1•••, ~14!

where

t5S t
V

0 0

0 t
I

0

0 0 t
C

D , ~15!

L5S 2
evP

rV
0 0 0

0 2
~esP1G!

r
I

0
0

0 0
2

r
C

02
Ḡ

D , ~16!

M5S 2m~11B! 1 2nC0 ••• 2nC0

m~11B!

r
I

0
2

1

r
I

0

nC0

r
I

0
•••

nC0

r
I

0

2
m

r
C

02

1

r
C

02
2

nC0

r
C

0
••• 2

nC0

r
C

0

D ,

~17!

N5S 2m~11B! 1 2nC0 ••• 2nC0

0 0
nC0

r
I

0
•••

nC0

r
I

0

m

r
C

02
2

1

r
C

02

nC0

r
C

0
•••

nC0

r
C

0

D
~18!

and

P5S 0 0 2n

0 0
n

r
I

0

0 0 2
Ḡ

r
C

02

D ~19!

with

G5
P~12e i !

B0
2

P~12ev!2D

A0
1

aNegP

C0
,

Ḡ5
P~12e i !

~11B!B0
2

P~12ev!2D

A0
1

aNegP

C0
,

and supplemented with equations~6!.

A. The onset of spatial instability of the microstructure

In order to determine the possible development of spatial
instability in the system, one has to know, in the first place,
the evolution of the uniform loop and void defect densities,
which may be evaluated through Eqs.~6! and ~14!.

Consider first the growth rate of the void density. It is
easy to see that, when the net contribution of interstitials and
SIA clusters to the void growth rate exceeds the net contri-
bution of vacancies to the void growth rate, the asymptotic
microstructure evolution is restricted to the evolution of dis-
location loops only. Of course, due to the weak coupling
between the loops and void densities, any spatial instability
in loop densities will eventually induce transient structures in
the void density. This condition is consistent with the experi-
mental condition of irradiation at low temperatures~less than
one-third of the melting point!.

On the other hand, under conditions conducive for void
growth ~temperatures above one-third of the melting point!,
the situation is quite different, since a dimensional analysis
of the evolution equations~5! shows that both loop and void
densities increase first with time or irradiation dose, but may
reach a steady state, thanks to the effect of the one-
dimensional motion of glissile SIA clusters.31

The stability of uniform dislocation densities may be ana-
lyzed through the linear part of the evolution equation for
their inhomogeneous perturbations. This evolution is ob-
tained by combining Eqs.~6! and ~14!. Its linear part reads

t]tdrW q5@L2MDqTW qr
0#drW q5VqdrW q , ~20!

where

Vq53
2

evP

rV
0 1Lqr

V

0 Lqr
I

0 L̄qr
C

0

2Lq

r
V

0

r
I

0
2

~esP1G!

r
I

0
2Lq 2L̄q

r
C

0

r
I

0

L̄q

r
V

0

r
C

02
L̄q

r
I

0

r
C

02

2

r
C

02
Ḡ1 L̄̄q

1

r
C

0

4 ,

~21!
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where

Lq5
P~12e i !

B0Bq
2

P~12ev!2D

A0Aq
1aegP(

p

2ZrC
0

C0Cqp
,

~22!

L̄q5
P~12e i !

~11B!B0Bq
2

P~12ev!2D

A0Aq
1aegP(

p

2ZrC
0

C0Cqp
,

~23!

L̄̄q5
P~12e i !

~11B!2B0Bq
2

P~12ev!2D

A0Aq
1aegP(

p

2ZrC
0

C0Cqp
.

~24!

The determination of the instability threshold is com-
pletely similar to the one made in Ref. 22. At the same level
of approximation, one finds that the linear growth rate of
Fourier modes of wave vectorqW is proportional to

vq}
b2bc

bc
2j0

2S q22qc
2

qc
2 D 2

1jg
2(

p

1

11D'qp
2

. ~25!

On writing this expression in unscaled variables, one finds
that the bifurcation parameterbc is given by

bc5
r

V

0

11r
V

01r
I

0U
c

5
2AevB

B1 ē1k
B

11B

, ~26!

whereē5ev2e i1(D/P) andk5r
C

0/(11r
V

01r
I

0). Further-
more,

qc
25

11r
V

01r
I

0

D̄v

B2 ē2k~2B1 ē !

B1 ē1k
B

11B

~27!

and

j0
25

~B2 ē !2

8B2
, jg

25
aZegbc

2r
C

0

ev~11Zk!2
, D'5

Dg*

C0
.

~28!

j0 and jg characterize the set of unstable wave vectors be-
yond instability (b.bc), and provide a linear selection
mechanism for microstructures. In isotropic systems, a band
of wave numbers, such thatqc

2@12A(b2bc)/j0
2bc#

3^q2^qc
2@11A(b2bc)/j0

2bc# is unstable, andj0 defines the
width of this band at a given value of the bifurcation param-
eterb. For largej0, the unstable band is sharp and the wave
number of the microstructure is expected to be close toqc ;
while for smallj0, the unstable band is wide and the micro-
structure is expected to be less regular, with a high content of
harmonics.

On the other hand, glissile cluster dynamics introduces
new terms, proportional tojg , which affect the linear selec-
tion of growing spatial modes. Effectively,jg breaks the ori-
entation degeneracy and favors the growth of modes with

wave vectors perpendicular to the directions of SIA motion.
Their growth rates, and thus the anisotropy effect, increase
both with SIA and void density. More precisely, the modes
with maximum growth rate, which are expected to build the
structure beyond instability, correspond to the wave vectors
that maximize the total glissile cluster contribution(p1/(1
1D'qp

2). Since this contribution depends on crystal struc-
ture, let us consider a few explicit examples.

For the simplest case of easy axis anisotropy, where glis-
sile clusters move along thex direction, their diffusion con-
tribution is1/(11qx

2D'). This implies that the fastest grow-
ing fluctuations are such thatqx50 or that their wave vectors
are perpendicular to thex direction, as illustrated in Figs.
1–3. As a result, at least for the early stages of microstruc-
ture evolution, the domains of maximum defect density are

FIG. 1. Representation of positive growth rates,vq.0, in the
(qx ,qy) plane in the absence of glissile SIA clusters (eg50),
showing the orientation degeneracy of unstable modes (b52bc ,
qc51, j051, jg50).

FIG. 2. Representation of positive growth rates,vq.0, in the
(qx ,qy) plane, in the presence of glissile SIA clusters (egÞ0), with
high mobility along thex axis. Fastest growing unstable modes
have qx50 and correspond to spatial modulations parallel to the
high mobility axis of glissile clusters (b52bc , qc51, j051,
jg50.5, D'54).
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expected to be parallel to thex direction, or to the direction
of motion of the SIA clusters. Furthermore, the instability
threshold is lowered tob5bc(12jg

2). To know if the micro-
structure saturates in this orientation, one nevertheless needs
to perform the post-bifurcation analysis. In the case of hcp
crystals, glissile SIA clusters preferentially move on basal
planes, or (x,y) planes, along close-packed directions, de-
fined as thex direction and the directions making 2p/3
angles with it. Their contribution to the linear growth rate of
unstable modes is then

1

11D'qx
2

1
4

41D'~qx1A3qy!2
1

4

41D'~qx2A3qy!2

5
3112D'q'

2 19D'
2 q'

4

~116D'q'
2 19D'

2 q'
4 1D'

3 q1
2q2

2q3
2!

, ~29!

where 4q'
2 5qx

21qy
2 and q15qx , q25(qx1A3qy)/2, q3

5(qx2A3qy)/2. Hence, the modes that maximize the
growth rate are such thatqz5qx50, or qz50 and qx

56A3qy ~see Fig. 4!. These modes define a hcp structure in
parallel orientation with the original lattice. The correspond-
ing critical wavelength and instability thresholds are slightly
modified as:

qhcp
2 5qc

2F12S jg

j0
D 2 12D'qc

2

~413D'qc
2!2

1OS jg
4

j0
4D G ,

bhcp5bcH 12jg
2F1213D'qc

2

413D'qc
2

1OS jg
2

j0
2D G J . ~30!

For bcc crystals, the close-packed directions are the

^111&, ^11̄1&, ^111̄&, and^11̄1̄& directions and the glissile
clusters contribution to the linear growth rate is

1

11D'~qx1qy1qz!
2

1
1

11D'~qx2qy1qz!
2

1
1

11D'~qx1qy2qz!
2

1
1

11D'~qx2qy2qz!
2

. ~31!

This expression is maximum for the six pairs of wave vec-
tors that precisely define a bcc lattice in parallel orienta-
tion with the original one„(qx50,qz56qy56q), (qy
50,qz56qx56q), (qz50,qx56qy56q)… ~see Fig. 5!.

FIG. 3. Representation of positive growth rates,vq.0, in the
(qx ,qy) in the presence of glissile SIA clusters (egÞ0), with high
mobility along the x axis. The fastest growing unstable modes
have qx50 and correspond to spatial modulations parallel to the
high mobility axis of glissile clusters (b52bc , qc51, j051,
jg51/A2, D'54).

FIG. 4. Representation of positive growth rates,vq.0, and its
maxima, in the (qx5X, qy5Y) plane, in the presence of glissile
SIA clusters (egÞ0), with high mobility along the close-packed
direction of a hcp lattice. The fastest growing unstable modes cor-
respond to spatial modulations parallel to the high mobility axis of
glissile clusters (b5bc , qc51, j052, jg51, D'55).

FIG. 5. Representation of the growth rate,vqc
.0, of critical

modes, and its maxima, as a function of orientation, i.e., in the (u,
f, qx5qc cosu sinf, qx5qc sinu sinf, qx5qc cosf) plane, in
the presence of glissile SIA clusters (egÞ0), with high mobility
along the close-packed direction of a bcc lattice. The fastest grow-
ing unstable modes correspond to spatial modulations parallel to the
high mobility axis of glissile clusters, which generate a bcc micro-
structure in parallel orientation with the crystal lattice (b5bc , qc

51, j052, jg51, D'55).
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The corresponding critical wavelength and instability thresh-
olds are also slightly modified, and

qbcc
2 5qc

2F12S jg

j0
D 2 4D'qc

2

~114D'qc
2!2

1OS jg
4

j0
4D G ,

bbcc5bcF122jg
2S 214D'qc

2

114D'qc
2

1OS jg
2

j0
2D D G . ~32!

For fcc crystals, the close-packed directions are the^110&,
^11̄0&, ^101&, ^101̄&, ^011&, and ^01̄1& directions and the
glissile clusters contribution to the linear growth rate is

1

11D'~qx1qy!2
1

1

11D'~qx2qy!2
1

1

11D'~qy2qz!
2

1
1

11D'~qy1qz!
2

1
1

11D'~qx1qz!
2

1
1

11D'~qx2qz!
2

.

~33!

In this case also, this expression is maximum for the four
pairs of wave vectors that precisely define a fcc lattice in
parallel orientation with the original one (qx56qz56qy
56q) ~see Fig. 6!. The corresponding critical wavelength
and instability thresholds are modified as follows:

qf cc
2 5qc

2F12S jg

j0
D 2 6D'qc

2

~114D'qc
2!2

1OS jg
4

j0
4D G ,

bf cc5bcH 123jg
2F214D'qc

2

114D'qc
2

1OS jg
2

j0
2D G J . ~34!

Hence, the one-dimensional motion of SIA glissile clusters
provides a linear selection mechanism, favoring the growth
of structures that are in parallel orientation with the host
lattice. One has now to check whether or not these structures
are stable in the nonlinear domain beyond the instability.

B. Microstructure selection in the weakly nonlinear regime

Once again, we follow the method used in Ref. 22, which
is based on the adiabatic elimination of fast relaxing vari-
ables. In a first step, point defect densities have been ex-
pressed as series expansions in powers of void and loop den-
sities. Furthermore, as discussed in Ref. 22,tC ,t I@tV .
Hence, interstitial loop and void densities evolve on shorter
time scales than vacancy loop density, and may be expressed
as linear combinations of the eigenmodes of the linear evo-
lution matrix. This leads to the following relations that ex-
press how they are linked to the vacancy loop density:

dr Iq}2
ev

rV
0e i

drVq , drCq~eg!}drVq . ~35!

The fact thattC@t I@tV also implies that the elements of
the matricesM andN are such that their lower components
decrease with time or dose, and that the dynamics remains
driven by the vacancy loops. For weak deviations from the
uniform density, and at leading order ine5(b2bc)/bc and
(q2qc)/qc , the vacancy loop density plays thus the role of
the order-parameter-like variable of the system. According to
the general methods of nonlinear dynamics and instability
theory, its dynamics may be expressed, in Fourier space, as a
power-series expansion ‘‘in the manner of Landau.’’23 Close
to the instability point, in the weakly nonlinear regime, it
may be limited to cubic nonlinearities, and is given by

t0]tdrVq5vqdrVq1E dkvqc
drVq2kdrVk

1E dkE dk1uqc
drVq2kdrVk2k1

drVk1
,

~36!

where the linear growth ratevq is given in Eq.~25!. At this
level of approximation, the other constants,vqc

anduqc
, cal-

culated in Ref. 22, in the absence of SIA clusters, are only
modified by small corrections proportional toeg /C0.

Equation~36! has the generic structure of order-parameter
equations describing reaction-diffusion systems close to a
pattern forming instability of the Turing type. It allows one
to analyze pattern selection and stability. It is now well
known23 that, in three-dimensional systems, this equation ad-
mits, near threshold, and for scalar nonlinear interactions be-
tween dynamical modes, which is the case here, stable solu-
tions corresponding to hcp and bcc lattices. fcc solutions are
only marginally stable and planar arrays may develop well
beyond threshold. These structures are stable in finite do-

FIG. 6. Representation of the growth rate,vqc
.0, of critical

modes, and its maxima, as a function of orientation, i.e., in the (u,
f, qx5qccosu sinf, qx5qcsinu sinf, qx5qccosf) plane, in the
presence of glissile SIA clusters (egÞ0), with high mobility along
the close-packed direction of a fcc lattice. The fastest growing un-
stable modes correspond to spatial modulations parallel to the high
mobility axis of glissile clusters, which generate a fcc microstruc-
ture in parallel orientation with the crystal lattice (b5bc , qc51,
j052, jg51, D'55).
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mains around the instability, and the width of these domains
is proportional to the intensity of the nonlinear dynamical
couplings.23 As a result, the linearly selected structures are
compatible with the weakly nonlinear dynamics that governs
the system beyond instability, in agreement with experimen-
tal observations. Furthermore, a very natural difference be-
tween the dynamics of void lattice formation in bcc and fcc
crystals appears in our description. Effectively, bcc lattices
appear through a subcritical bifurcation or first-order-like
transition, and are dynamically stable, while fcc lattices ap-
pear supercritically~cf. the Appendix!, and are only margin-
ally stable. As a result, the bcc structures grow and reach
steady state on much shorter time scales and are much more
robust than the fcc structures, which develop long-lived,
long-range perturbations. Furthermore, the SIA density is
much lower in the fcc materials than in the bcc ones, which
strongly reduces the anisotropy effect in the first ones. This
aspect may explain the experimental difficulty in forming fcc
void lattices.

In summary, glissile SIA clusters only weakly affect in-
stability threshold, but strongly affect the symmetry and ori-
entation of the microstructure. The selected microstructure
has its domains of high defect~especially void! density ori-
ented parallel to the directions, or planes, of high cluster
mobility. In three-dimensional crystals, this results in a mi-
crostructure in parallel orientation with the underlying lat-
tice. However, the stability of the microstructure may vary,
according to its symmetry. For example, the hcp and bcc
structures may appear subcritically and are stable, while the
fcc structures are supercritical and are only marginally
stable. At sufficiently high irradiation dose, these structures
may become unstable and disappear in favor of planar wall
arrangements.

IV. CONCLUSIONS

In this paper, we extend our previous analysis of micro-
structure formation and evolution in irradiated metals and
alloys, to the case where glissile SIA clusters are formed by
cascade effect and participate in the dynamics. Hence a dy-
namical model has been derived, based on the coupled evo-
lution of three mobile defect populations, point defects and
SIA clusters, and three immobile ones, vacancy and intersti-
tial loops and voids. Point defects are assumed to diffuse
isotropically in the crystal, while SIA clusters move on
close-packed directions or planes of the host crystal.

In particular, we find that the presence of glissile SIA
clusters only slightly affects critical values of the bifurcation
parameter and wavelength. These quantities are sensitive to
the void density that decreases the instability threshold and
wavelength. Furthermore, the microstructure spatial instabil-
ity originates from vacancy cluster dynamics, as in our pre-
vious model. However, in agreement with earlier proposals,12

the anisotropic mobility of SIA clusters is an essential ele-
ment of the selection of the microstructure, since it lifts the
orientation degeneracy of unstable modes. We find that the
high defect mobility along close-packed directions results in
the alignment of the microstructure pattern with the host
crystal lattice. This finding is not obvious, since, in reaction-

diffusion dynamics, net anisotropy effects result not only
from the anisotropy of diffusion coefficients, but also from
nonlinear couplings between the different dynamical vari-
ables of the system.23 The instability may be enhanced or
reduced along specific directions, which are not necessarily
the high mobility ones. In the present case, the resulting
anisotropy is determined by the fact that, close to the insta-
bility, the behavior of the system is governed by vacancy
cluster dynamics. This leads to a series of results that are in
good agreement with experimental observations. For ex-
ample, bcc and fcc void lattices should develop in bcc and
fcc crystals, while in HCP crystals, voids should be ordered
parallel to the basal planes. Furthermore, our weakly nonlin-
ear analysis predicts the instability of fcc microstructure, and
this effect, coupled with the low observed SIA density in fcc
crystals, could be related to the experimental difficulty for
such lattices to form, in comparison with the easily obtained
bcc ones. One should also note that the importance of this
selection mechanism depends onD' , which decreases for
increasing void density. Hence, a less regular void micro-
structure may be expected at high void density.

In summary, we find that the incorporation of glissile SIA
clusters, with their particular anisotropic motion, in our ki-
netic rate theory model confirms their essential role in deter-
mining the void lattice orientation and symmetry, and con-
sistently reproduces experimentally observed microstructure
selection and stability.
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APPENDIX

The order-parameter-like variabledr
V

may be written, in

the case of fcc lattices, asdr
V
5( i 51

4 (AiexpiqW irW1Ai*exp

2iqW irW), where the qW i vectors are defined as (qx56qz
56qy56qf cc). The corresponding amplitude equations
may be derived from the order-parameter dynamics~36! and
with appropriate scalings, can be written as

Ȧ15Fb2bc

bc
14~qW 1¹W !2GA12A1~ uA1u212uA2u212uA3u2

12uA4u2!2A2A3A4* ,

Ȧ25Fb2bc

bc
14~qW 2¹W !2GA22A2~ uA2u212uA1u212uA3u2

12uA4u2!2A1A4A3* ,
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Ȧ35Fb2bc

bc
14~qW 3¹W !2GA32A3~ uA3u212uA1u212uA2u2

12uA4u2!2A1A4A2* ,

Ȧ45Fb2bc

bc
14~qW 4¹W !2GA42A4~ uA4u212uA1u212uA3u2

12uA2u2!2A2A3A1* . ~A1!

Since theqW i vectors do not form equilateral triangles, there is
no contribution from quadratic nonlinearities to the dynam-
ics, and the bifurcation is thus supercritical. Furthermore,
there is an extra contribution to the cubic nonlinearity, since
the qW i vectors satisfy the conditionqW 11qW 42qW 32qW 450. For
symmetry reasons, one may expect uniform steady state so-
lutions of the typeAi5R expiFi , such that

05S b2bc

bc
DR27R32R3 cosF0 ,

05R2 sinF0 . ~A2!

where F05F11F42F22F3. A linear stability analysis
shows that, from the two solutions,F050,R5R0

5A(b2bc)/8bc and F05p,R5Rp5A(b2bc)/6bc, only
the latter is stable. The stability of this solution versus uni-
form amplitude perturbations,ai(Ai5Rp1ai), is studied
through their linear evolution equations, which may be writ-
ten as

ȧi52S b2bc

2bc
D (

j 51

4

aj . ~A3!

The roots of the corresponding evolution matrix arev
522@(b2bc)/bc# andv50. As a result, uniform fcc struc-
tures are marginally unstable. AlthoughF0 and ( i uAi u are
stable modes~the corresponding eigenvalues are finite nega-
tive!, the marginally unstable ones are the amplitude and
phase differencesuAi u2uAj u and F i2F j . Furthermore, if
one considers spatially dependent amplitude equations, it is
easy to see that the marginally unstable modes may develop
long-ranged spatial fluctuations, which lead to long-lived de-
formations or distortions of the lattice structure.
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