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Abstract. The elastic field of complex 3-D dislocation ensembles is described by differential geometric
representations, which allow computer simulations of mesoscopic plastic deformation without additional ad hoc
approximations for short-range dislocation reactions.  The simple vector forms of differential geometry are
independent of the coordinate system, and facilitate studies of dislocation generation, pileup formation, grain-
boundary interaction, finite-length dipole nucleation and break-up, junction nucleation and destruction, interaction
with defect clusters, and self-consistent boundary conditions.  It is shown that the elastic field can be described in
terms of simple combinations of three basic vectors and their dyadics in real and reciprocal space.  These vectors
are the unit tangent, Burgers vector, and unit radial vector between a source point on the dislocation and a field
point.  With the only limitation being dislocation cores interpenetrating up to one Burgers vectors, a review of
recent progress and examples of the aforementioned short- and long-range dislocation reactions are given, with
particular emphasis on computational issues of space and time resolution.

1. INTRODUCTION

Large-scale computer simulations of the collective behaviour of dislocation ensembles has steadily
gained credence as a new tool for description of plasticity and fracture phenomena at length scales not
amenable to analysis by atomistic or continuum methods.  This approach represents a "missing link" in
the array of experimental and computational techniques designed to understand and dissect the physical
reasons for salient plasticity and material failure phenomena; such as heterogeneous material
deformation, patterning and plastic flow localization, ductile-to-brittle transitions, and computational
development of constitutive equations. Emerging applications of these techniques promise new
computational tools for design and optimization of material systems in such diverse fields as electronic,
opto-electronic, Micro-Electro-Mechanical (MEMS), and nuclear applications.

During the past decade, concerted efforts were focused on computational development of 3-d
Dislocation Dynamics (DD), and have resulted in closing the gap between atomistic and continuum
descriptions of plasticity (e.g. references [1-13], among others). At the present state of its development,
approaches for 3-d DD computer simulations can be classed into three main categories: (1) lattice-based
[1-3]; (2) force-based [4,7]; (3) differential stress-based [5,8]; and (4) parametric segment-based
[6,9,10,12-15]. The primary distinction between these computational techniques resides in their treatment
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of interaction forces between dislocations, self-forces on curved segments, and the variety of
approximations in treating short-range reactions, boundary conditions and the precision in computing
long-range forces.  Similar to the Finite Element Method (FEM) of continuum mechanics, the Parametric
Dislocation Dynamics (PDD) technique has been recently advanced to enable computational precision
and flexibility in treating complex dislocation interactions in real materials [9,10,12-15].  In addition to
the fast sum method for computations of elastic field variables [10], a rigorous formulation for the
equations of motion [12] for generalized Degrees of Freedom (DOF) represent the foundations of PDD.
However, PDD applications have been rather limited, thus requiring examples to illustrate the range of
possibilities that can be realized with the method.  More recent work has been aimed at the specific
question of how accurately does the method deal with space and time resolution of complex dislocation
processes [14].  A very simple and convenient form for the equations of the elastic field of parametric
dislocation segments has also been recently obtained [15], which should be helpful to furthering
investigations into a wide range of applications of PDD.

Our aim in this article is to give a concise review of the most recent developments of PDD, and in
particular the new vector forms of the elastic field [15], and their application to the study of the most
pertinent dislocation processes in DD simulations [16].  First, a differential geometry formulation of the
elastic field variables is presented in section 2.  This is followed by several examples, which illustrate the
power as well as limitations of the method, are then highlighted in section 3.  We show that the method
can naturally capture all short- and long-range dislocation reactions without additional ad hoc
assumptions, such as those made in 2-D DD
simulations of the previous decade. Finally,
summary and conclusions are discussed in
section 4.

2. FORMULATION

Fig. (1) shows a schematic representation of a
curved dislocation segment, which is
described by a scalar parameter w.  The
segment is completely defined by the
dependence of the position vector P on the
scalar parameter.  The radius vector R defines
the relationship between a source point on the
dislocation at P and a field point at Q.  Now
define the vectors: Burgers vector b, tangent
vector T, unit tangent vector t and unit radius
vector e:
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Differential forms for the elastic field variables of isotropic materials can be obtained from the Bravais
vector triplet in real and reciprocal space [15].  For example, the displacement vector u and stress tensor
σσ, can be obtained by affine mappings of the scalar interval dw onto the vector interval du and second
order tensor interval dσσ, respectively.  Similarly, the differential interaction energy dEint is obtained by
mapping the scalar double differential I IIdw dw  for two separate parametric dislocation segments.  These
affine mapping transformations can be written as [15]:
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Fig. (1): Parametric representation of a general curved
segment.
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In Eqn. (1), µ is the shear modulus, ν Poisson's ratio, I the unit tensor, and s is an arbitrary unit vector.
The equation can be easily programmed to obtain the total field arising from many curved segments by
straightforward quadrature sums [10], which is standard in FEM formulations. EOM for the generalized
coordinates P, T and N (normal vector) are then obtained from variational principles and the segment is
parametrically reformulated after each
integration time step [12].  The elastic field of
simple dislocation geometry (e.g. infinitely
straight or circular loops, and finite straight
segments) can be easily obtained by integration
with respect to the scalar parameter w [15]. The
form of Eqn. (1), which is different from
standard textbook expressions that are based on
Burgers equation [16], is quite convenient for 3-
d computations, because it is vector-based, does
not involve higher order tensor components, and
independent of the coordinate system.

3. DISLOCATION REACTIONS

In this section, we present results of computer
simulations for some of the most salient
dislocation mechanisms that are involved in
large-scale simulations of mesoscopic plastic
deformation.

3.1 Generation

Dislocation generation by the Frank-Read     (F-
R) mechanism has been extensively studied
during the past decade, and is generally
considered a good test of newly developed
computational techniques.  Nonetheless, issues
of computational accuracy and resolution have
not been systematically investigated.  Fig. (2)
displays a projection on the (111) plane in FCC
Cu for the time evolution of the dislocation line
of an F-R source that is activated on the same
glide plane.  A uniaxial impact stress σ11 =50
MPa along [100] is suddenly applied, and
corresponds to a critical resolved shear stress

(CRSS) of 0.041%
τ
µ

= . The dislocation

mobility is taken as M=104 Pa-1 s-1, while E=50
GPa and ν=0.31. All distances are measured in
units of the lattice constant a (0.36 nm for Cu).
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Fig. (3): Response of an F-R source to a stress ramp slower
than 1 MPa / ps.  All conditions are of the same as Fig. (2).
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Fig. (2): Time evolution of an F-R source in FCC Cu
at the intervals: (1) 10ps, (2) 20ps, (3) 30ps, and (4)
equilibrium state.  F-R source b = [-1 0 1].
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21 cubic spline segments have been used in the simulations, with as few as 3 segments giving sufficient
accuracy [14].  The EOM have been implicitly integrated for stability at a relative accuracy of 10-5, using
Gear's methods for stiff, ordinary differential equations [17].  While the response of the F-R source to
low stress impact-type loading results in an equilibrium shape within tens of picoseconds, Fig. (3) shows
the F-R source evolution following a stress ramp with a stress rate slower than 1 MPa/ ps.  The conditions
of Fig. (3) are the same as in Fig. (2), except that in this case the F-R source develops in a quasi-
equilibrium fashion to adjust to the instantaneous stress till it becomes unstable at σ11 = 200 MPa

( 0.163%
τ
µ

= ).  The self-force is not restraining any more at this stress level, and the F-R source expands

without additional increase in the applied stress.  The dislocation line acts like a string that is stiffer in the
screw orientation than the edge orientation, and

thus stretches along 101=   b .  The degree of

such asymmetric deformation depends on the
stress rate and its magnitude in relationship to
the self-force, but it is always observed in the
simulations.

Once the F-R source is unstable, it will
continue its expansion till the opposite arms
come within one Burgers vector, at which
instant node rearrangements take place in the
simulations, and a new loop is formed.  Fig. (4)
shows the dynamics of this short-range
annihilation reaction and the ensuing relaxation
of the asymmetric cusp on the freshly
generated loop.  The simulation is carried out
for the same conditions as in Figs. (2&3)

except the Burgers vector 
1

101
2

=   b  at an

impact stress σ11 =100 MPa.  Generation of the
fresh loop is achieved at 28.3 ns.

3.2 Finite-Size Dipoles

Nucleation and break-up of dislocation
dipoles appears to play a significant role
in the evolution of Persistent Slip Bands
(PSBs) under conditions of fatigue
loading [18].  Unlike 2-D simulations
where additional rules were invoked for
the process of formation and destruction
of such dipoles [e.g. 18], Fig. (5)
illustrates the natural time evolution of a
finite-size dipole. In this case, two
parallel straight segments lying on
parallel (111) planes are pinned on both
ends, and separated by an inter-planar

distance of az 340= . Both dislocations
are intially of mixed character, with have

101=   b  and tangent vectors of

opposite directions along 110   .  Each

dislocation was divided into 5 curved
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Fig. (5) Finite-size dipole formation without applied stress.  The
dipole is composed of two parallel segments on (1 1 1) planes,
separated by an inter-planar distance of 
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 with b=[-1 0 1].
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segments and represented by cubic splines, and allowed to interact and deform without an externally
applied stress.  As a result of their mutual interaction, the two dislocations attract one another till they
form a middle mixed-character dipole section that is nearly straight.  The length of the middle dipolar
section is only limited by the line tension as a result of curvatures formed during the evolution process.
An external stress is then applied on the dipole to determine the conditions for its destruction.  When the
direction of the stress is such that the two dislocations move past one another (forward motion), a
relatively high level of stress is required to breakup the dipole, because it must also overcome developed
line tensions, as can be seen from Fig. (5).  The required value of the stress in this case is σ11 =250 MPa

(
τ
µ

= 0 2%. ).  On the other hand, when the stress direction is reversed, the motion of the two dislocations

is assisted by the line tension, and the required stress is significantly lower.  Scaling relationships for
dipole break-up stress are developed in reference [14].

3.4 Dislocation Junctions

2-D simulations have shown that
dislocation junctions stabilize cell
structures [18].  However, junction
rules were introduced as a result of the
limitations of 2-D simulations.
Additionally, strain hardening as
determined by forest interaction
mechanisms is dictated primarily by the
intrinsic junction strength.   In the PDD
technique, junction formation and
destruction is treated in exactly the
same manner as finite dipoles, with the
simple limitation that dislocation cores
are not allowed to interpenetrate.  Thus,
no special rules are required to study
the stability and dynamics of junctions.
Once attractive segments belonging to
different dislocations approach one
another, the two participating segments
are stopped when the distance between
them ≤ b.  Fig. (7) shows several stages for the evolution of an attractive dislocation junction in FCC
metals, formed by the interaction of two F-R sources operating on two intersecting (111)-type planes.

The first F-R source is: ( )1
101 111

2
   , while the second is given by: ( )1

110 111
2

   .  In these simulations,

the number of segments on each F-R source was varied between 4 and 8, giving indistinguishable results
for the evolution dynamics and critical breakup stress.  Computer simulations indicate that attractive
junctions can form extremely fast, within tens of ps, as can be seen for the final equilibrium state of an
unstressed attractive junction in Fig. (7-a).  On the other hand, significant applied stress is necessary to

partially unzip the junction, as can be ascertained from Fig. (7-b) at σ11 = -50 MPa ( 0.0408%
τ
µ

= ),

where the final equilibrium configuration of the junction at this stress is shown.  Fig. (7-c) shows the
equilibrium configuration of a totally destroyed (separated) junction at an increased applied stress of σ11

= - 100 MPa ( 0.082%
τ
µ

= ).  The two glide planes are symmetric with respect to the uniaxial applied

stress, with identical CRSS acting on each.  While the unstressed junction in Fig. (7-a) is stable under the
equilibrium of attractive forces along their common section and the self-forces on their curved arms,
quasi-static unzipped configurations in Fig. (7-b) are stabilized with the additional external cumulative
forces.  When the influence of external forces exceeds a critical value (junction strength), a fully
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Fig. (6): Dynamic evolution for forward break-up
of a mixed-character finite-size dipole in FCC
metals on the (11) plane.
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unzipped configuration is evolved, as can be seen in
Fig. (7-c).  It is interesting to note here that very few
curved segments are sufficient to capture this type of
strong short-range interaction.

3.5 Interaction with Defect Clusters

Irradiation-induced defect clusters are responsible for
radiation hardening and the onset of plastic
instability.  We consider here the interaction between
the F-R source and 50 prismatic self-interstitial atom
(SIA) dislocation loops in an atmosphere. The cluster
atmosphere is contained in the parallelepiped
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bounded by: (-500 a ≤x ≤ 500 a), (-1015 a ≤y ≤ -1000 a), and (15 a ≤z ≤30 a).  Defect clusters here are
assumed to have random Burgers vectors, selected from the set: b= 1/2 [110], and are given random
locations within the parallelepiped.
Fig. (8) shows the interaction
dynamics between an F-R source
expanding against the influence of
the collective force of a cluster
atmosphere.  The applied shear
stress is increased by 4 MPa
intervals, and the dislocation shape
is evolved till it reaches an
equilibrium configuration, up to a
stress level of 36 MPa.  It is noted
that the dislocation line shape
changes significantly as it
approaches the SIA cluster
atmosphere.  The continuously
smooth line becomes highly curved
in the vicinity of the cluster
atmosphere.  As the applied shear
stress increases to a critical value
(40 MPa), the dislocation line
flattens and develops incipient
fluctuations. Finally,
morphological shape instabilities in
the middle section of the F-R
source enable the F-R source
dislocation to penetrate through the
cluster elastic field. Fig. (8-a)
shows 3-D positions of 50 SIA
clusters and the interacting
dislocation line position at various
time intervals, while the projection
of clusters and the dislocation on
the glide plane is depicted in Fig.
(8-b). Cluster radii in this
atmosphere are in the range: 3-5 a,
and their position and Burgers
vector are both randomly selected.

3.6 Boundary Conditions

Two types of boundary conditions
have been developed for the PDD
method.  A superposition method
has been used for free surfaces (i.e. image forces) by combining the elastic field of residual surface
tractions, computed by the FEM technique, with the field generated by parametric dislocations (e.g. Eqn.
1) [19].  On the other hand, translational strain invariance has led to the development of a special Periodic
Boundary Condition (PBC) for simulations of small Representative Volume Elements (RVEs), which can
be used to obtain information on spatial distributions of the microstructure or on constitutive relations.  In
the PBC, dislocation loops are generated with segments lying on randomly selected slip planes, and the
segments are connected with sessile superjogs so as to ensure mechanical equilibrium for closed loops.  If
a part of the loop is detected to be outside the RVE, the parametric position vector is mapped periodically
onto the RVE.  This technique preserves translational strain invariance and mechanical equilibrium, and
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solves the problem of artificial dislocation depletion at the simulation boundaries.  A dislocation
microstructure obtained with this method is shown in Fig. (9-a), together with a TEM slice in Fig. (9-b).

4. CONCLUSIONS

Recent developments in the PDD method for computer simulations of mesoscopic plastic deformation
have been reviewed in this article.  The following encouraging features of the method have been
revealed: (1) development of new and convenient vector forms for the elastic field of dislocations; (2)
accurate and stable interaction dynamics of all short-range reactions without additional ad hoc
assumptions; (3) resolution of spatial and temporal interaction events with a few generalized DOFs; (4)
implementation of self-consistent boundary conditions for free surfaces, and for RVEs.  Nevertheless,
challenging questions remain ahead before full and reliable utilization of the method can finally be
achieved.  These are: (1) extensions to anisotropic elastic media at a reasonable computational cost; (2)
rigorous and efficient implementation of the superposition principle for PDD with the FEM technique;
(3) a rigorous methodology for approximating the far field of dislocations to avoid N2 interactions; (4)
elasto-plastic formulation with finite lattice rotations; (5) dislocation interaction with surface steps; and
(6) applications to material design for systems of optimized strength and ductility.
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