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Deformation patterns in thin films under uniform laser irradiation
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The mechanical behavior of thin films subjected to laser irradiation is described by a dynamical model that
is based on coupled evolution equations for the deformation and vacancy density fields. Lattice vacancies are
generated in a thin layer as a result of shallow absorption of electromagnetic laser radiation. The strain field
associated with lattice dilatation due to vacancies is shown to couple with bending and stretching mechanical
deformation fields. The dynamical model developed here is an extension of the work of Emel’yanov in two
respects:~1! the coupling between the diffusion and mechanical deformation fields is rigorously developed
with additional cross-field contributions;~2! new equations for reduced dynamics are derived from this model,
and are used to analyze the physical conditions for the onset of a deformational instability. For a given
material, the threshold for this instability is correlated mainly with laser power. We also show that, although
the instability threshold and critical wavelengths are given by the linear part of the dynamics, the selection and
type of deformation patterns induced by this instability require a nonlinear formulation. Both numerical and
analytical analysis are performed here. According to the relative importance of nonlinearities arising from the
defect or from the bending dynamics, square or hexagonal planforms are shown to be selected. Furthermore, it
appears that one-dimensional gratings are always unstable in isotropic systems. The results for square patterns
are consistent with experimental observations, while those for hexagonal and one-dimensional gratings show
the importance of anisotropies on their final selection.@S0163-1829~97!03847-2#
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I. INTRODUCTION

Laser-induced instabilities are becoming particularly i
portant in several aspects of surface modification techn
gies. On the one hand, laser-surface interaction may con
the structure and properties of thin films, coatings, and se
conductor surfaces. Strong laser radiation induces struc
and morphological changes in matter which are respons
for the degradation of light-emitting devices, cumulative
ser damage of optical components, and nonuniform mel
of semiconductor surfaces, to cite only a few of the
aspects.1–4 Furthermore, laser annealing and fast recrysta
zation may lead to special types of structures including m
ten and crystalline phases, and laser-assisted thin-film d
sition processes, which should also be in the mainstream
this activity.5 Many of these phenomena proceed through
formation of regular structures on the surface of the mate
and laser-surface interaction is evidently a field where p
terning phenomena are overwhelming. Hence, the meth
of nonlinear dynamics will hopefully lead to a better unde
standing of the mechanisms of pattern formation, select
and stability in films and coatings under laser irradiation.

The main instability mechanism in laser-irradiated ma
rials is due to the coupling between defect dynamics and
deformation of the surface.6 The interaction of electromag
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netic laser radiation with thin films leads to very strong a
sorption of photon energy in a shallow layer that is a fe
wavelengths deep from the surface. As a result, substa
nonequilibrium concentrations of lattice defects are gen
ated. The type of lattice defects depends on the photon
ergy, wavelength of laser irradiation, and material. Examp
of such defects are electron-hole pairs in strongly absorb
semiconductors, interstitials and vacancies in thin films, a
voids and dislocation loops in prolonged irradiation. It is t
coupling between defect generation, diffusion, and the de
mation field that leads to pattern forming instabilities. As
result, the description of such phenomena should be base
the dynamics of the defect fieldNd in the thin film and the
elastic continuum of the host material described by the d
placement vectorU(r ,t)5(Ux ,Uy ,Uz) with appropriate
boundary conditions; both dynamics being coupled throu
the defect-strain interaction. Various types of defect str
tures may be induced in such dynamical systems. For
ample, in the case of thin films under laser irradiation, re
lar deformation patterns may appear on the film surfa
when the laser intensity exceeds some threshold. In spat
extended irradiation zones, one- and two-dimensional g
ings have been widely observed.7,8 In particular, when irra-
diation proceeds with focused beams, such as in la
15 361 © 1997 The American Physical Society
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15 362 56D. WALGRAEF, N. M. GHONIEM, AND J. LAUZERAL
induced film deposition6 or in etching experiments,9 roselike
deformation patterns are observed, where a finite numbe
petals develop around a central uniform spot. One strik
experimental observation is that the number of petals
creases with the intensity of the laser beam.

Our aim in this paper is to perform a dynamical analy
of the formation, selection, and stability of two-dimension
deformation patterns in thin films under uniform laser irr
diation. We first develop a dynamical model which leads
deformational instabilities in such systems. This model is
extension of a model first introduced by Emel’yanov.6 We
also discuss the conditions for instability, while pattern fo
mation beyond the instability threshold is performed throu
nonlinear analytical and numerical analyses. In Sec. II,
discuss the geometry of the system, and in Sec. III
present a method for calculating temperature distribution
the film. The dynamics of vacancy density evolution are th
derived in Sec. IV. On the basis of the first law of therm
dynamics, the equation governing the deformation field
given in Sec. V. The stability of undeformed states in wea
adherent films under uniform irradiation is discussed in S
VI, while Sec. VII is devoted to weakly nonlinear analys
amplitude equations, and pattern selection. Finally, num
cal results are analyzed in Sec. VIII and conclusions
presented in Sec. IX.

II. LASER IRRADIATION AND THIN-FILM
DEFORMATION

The system we consider here represents a thin film o
substrate, and is modeled by a thin horizontal crystall
layer submitted to a transverse laser beam. The film is
sumed to have a thicknessh, and its dimensions in thex and
y directions are assumed to be much larger thanh. The ge-
ometry of the corresponding model is represented in Fig

Due to thermal heating induced by laser irradiation,
increased vacancy density is created in the subsurface la
The corresponding transverse vacancy density profile res
in a force on the film that may induce bending deformatio
Even under uniform irradiation, this system may become
stable versus nonuniform deformations or vacancy den
variations. Physically, a local increase in the vacancy den
generates a lattice contraction in the film. This contract
has two effects: it locally reduces the defect formation
ergy, and, furthermore, induces a converging defect flux.
a result, both film contraction and local defect density w

FIG. 1. Geometrical setup of a thin film under laser irradiatio
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increase. On the other hand, a deformation bump in the
locally decreases the defect density. It furthermore increa
the defect formation energy and induces an outgoing de
flux. In this case, a deformation bump will increase while t
defect density will decrease. There is thus a feedback l
between local deformation and defect density variatio
which provides a destabilizing mechanism for uniform def
mations. However, vacancy diffusion tends to wash out n
uniformities in the system and provides a stabilizing mec
nism for uniform defect densities. Instability occurs when t
feedback loop effects dominate over diffusion, and this
stability is of the generation-diffusion-deformation
instability type.6

Two nonlinear mechanisms saturate the growth of t
instability. The first one comes from finite deformation ela
ticity, which limits the growth of the deformation. The se
ond one results from vacancy dynamics, where the extra
fect flux induced by surface deformation is proportional
the vacancy density. Consequently, defect fluxes from
gions of decreasing defect density decrease accordingly
feedback process, which thus limits defect localization.

Hence, the dynamical model that can describe the ev
tion of such a system should be based on~i! a nonuniform
laser-induced temperature field across the film;~ii ! the evo-
lution of vacancy density in strained crystals, including ge
eration and transport;~iii ! the deformation of a thin film in
the presence of a nonuniform vacancy density. These th
aspects are presented next, and are finally assembled in
dynamical model.

III. LASER-INDUCED HEATING OF THIN FILMS
AND TEMPERATURE DISTRIBUTION

Once laser light is absorbed in the thin film, local heati
will result in generation and diffusion of lattice defects. W
will only consider vacancies as the most likely defects to
generated in metallic films. The concentration of vacancie
heavily dependent on temperature. One thus needs to k
how the laser irradiation affects the local temperature of
crystal. We will consider here situations where the laser o
heats the material, and that equilibrium between laser ra
tion and the temperature field is reached on time scales m
shorter than the characterisitc time scale of vacancy den
evolution. Typically, the time scale for equilibration betwe
photon absorption and vacancy generation is on the orde
picoseconds, while that for vacancy diffusion is of the ord
of milliseconds.

The local temperature,T5T(x,y,z,t)5T(rW,z,t), is deter-
mined through the heat conduction equation

k~T!

D~T!
] tT5] ik~T!] iT1Q̇, ~3.1!

where k(T) is the thermal conductivity,D(T) is the heat
diffusivity (k5rCpD wherer stands for mass density an
Cp for the specific heat at constant pressure!, and Q̇ is the
volumetric laser heating rate. In this case, the source t
(Q̇) is calculated assuming that the light energy absorbed
the medium is transformed into heat. In the absence of ph

.
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56 15 363DEFORMATION PATTERNS IN THIN FILMS UNDER . . .
changes and chemical reactions, and assuming that the
light propagates in the2z-direction, it may be written as

Q~rW,z,t !5
c

4p
¹W ^EW xHW &5kW l¹W I , ~3.2!

whereI is the time average of the Poynting vector andkW l is
a unit vector in the direction of the light propagation. If on
assumes that the laser beam propagates in the2z direction,
the Beer-Lambert law yields

dI~z!

dz
5aI ~z!, ~3.3!

wherea54pka /l is the linear absorption coefficient (ka is
the absorption index andl the wavelength of the light in
vacuum!, which defines the absorption lengthl a5a21.

The source term may then be written
Q(rW,z,t)5I (rW,t) f (z) where I depends on the geometry o
the laser beam andf (z) describes the absorption of ligh
along the2z direction. We will consider constant and un
form absorption, and thusf (z)5a exp@a(z2h/2)#.

For the sake of simplicity, we will also consider system
and temperature ranges wherek and D are temperature in
dependent, and, in this case, Eq.~3.1! becomes

] tT5D~n1]zz
2 !T1

Q̇

rCp
~3.4!

~if k is temperature dependent, this dependence may
eliminated by using the Kirchoff transformation10!

Of course, this equation has to be supplemented by ap
priate boundary conditions. In the following, we will con
sider two limiting cases. The first case is for systems with
heat losses at the top and bottom boundaries, i.e., w
h6h/250 or hh/k!1, which is a good approximation fo
typical metallic films in air whereh.1024 W/cm2 K,
k.1021 W/cm K. This case corresponds to focused la
irradiation, where heat loss is established on the bounda
of the horizontalx-y plane. The second limiting case is fo
systems where substrate cooling is strong~e.g., by water or
other fluids!. This case applies to uniform irradiation, whe
steady-state temperature profiles can be established by
ancing the absorbed laser power with the cooling rate.

A. Focused laser irradiation

Heat dissipation in focused laser heating takes place
the far in-plane zones of the film, with little cooling throug
the substrate. Under these conditions, we have

]zT~rW,z,t !uz56h/250 ~3.5!

and the temperature of the film far from the central zo
@T(`,0,t)# will be taken as the room temperatureT0. Taking
explicitly into account the boundary conditions, the tempe
ture field may be written as

T~rW,z,t !5T01 (
n52`

1` E dqW
1

2hp
cos

npz

h
eiqW •rWTqW ,n~ t !

~3.6!

andTqW ,n(t) is solution of the equation
ser

be

o-
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r
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] tTqW ,n~ t !52Fq21S np

h D 2GDTqW ,n~ t !1Q̇qW ,n~ t !, ~3.7!

where

Q̇qW ,n~ t !5E
2h/2

h/2

dzE drW cos
npz

h
e2 iqW •rW

I ~rW,t ! f ~z!

rCp
~3.8!

and I depends on the type of irradiation~uniform, pulsed,
focused, etc.!. For f (z)5a exp@a(z2h/2)#, we have

Q̇qW ,n~ t !5E drW
I ~rW,t !

rCp
f ne2 iqW •rW ~3.9!

with

f n5
a2

a21S np

h D 2 @12~2 !ne2ah#. ~3.10!

In a few cases of experimental interest, analytical so
tions may be obtained for the temperature field. One of th
consists in irradiation with a GaussianCW laser beam of
intensity I (rW,t)5I 0exp@2r2/r0

2#, where I 0 is the maximum
beam intensity andr 0 is the beam radius. Performing th
integral in Eq. ~3.9! and solving Eq.~3.7!, we obtain the
temperature distribution in Eq.~3.6!. In this case, the equi
librium surface temperature distribution becomes, in the h
absorption limit (ah@1),

T1~rW !5T~rW,h/2,̀ !5T01
P~12R!

2Apkr 0

e2~r 2/r 0
2
!I 0S r 2

2r 0
2D ,

~3.11!

where I 0(z)5J0( iz) is the zeroth order modified Bess
function. P is the laser power (P5pr 0

2I 0) and R is the re-
flectivity coefficient of the film. This result is in agreeme
with the Green’s-function technique~see Bauerle10!. The
temperature increase at the center of the spot is thus10

T1~rW !2T05
P~12R!

2Apkr 0

~3.12!

while the transverse temperature profile at the center of
spot is, foru2z2hu,2a21,

T~0,z,`!.T01
P~12R!

2Apkr 0
FerfcS 2z2h

2r 0
De@~2z2h!/2r 0#2

2
2

ar 0
2Ap

ea[z2~h/2!]G ~3.13!

and for u2z2hu.2a21

T~0,z,`!5T01
P~12R!

2Apkr 0

erfcS 2z2h

2r 0
De[ ~2z2h!/2r 0] 2

,

~3.14!

where erfc is the complementary error function.
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B. Uniform laser irradiation

Here, in-plane irradiation is spatially uniform and coolin
is provided through the substrate. The in-plane symmetr
uniform irradiation implies that the heat flux vector is on
along thez axis, and the problem is simplified as follow
The surface conductance is zero at the upper surface o
film, but is different from zero at the bottom because
substrate cooling. The corresponding boundary conditi
are

]zT~rW,z,t !uz51h/250,

]zT~rW,z,t !uz52h/252
h

k
@T~rW,z,t !2T0#uz52h/2 .

~3.15!

With these boundary conditions, the temperature fi
may be written as

T~rW,z,t !5T~z,t !5T01 (
n52`

1`
Ln

hLn12kh
Tn~ t !cosknz,

~3.16!

where Ln5kkn
21h2 and kn is defined by the relation

tan(knh)5h/kkn . Tn(t) is the solution of the equation

] tTn~ t !52kn
2DTn~ t !1Q̇n~ t !, ~3.17!

where

Q̇n~ t !5
I af n

rCp
5

I a

rCp

a2

a21kn
2@12cos~knh!e2ah#,

~3.18!

where I a5I 0(12R) is the laser-light intensity that is no
reflected by the surface. In the high absorption limit,ah
@1, the temperature profile is then

T~z,t !5T01
2I a

k (
n50

1`
a2

kn
2~a21kn

2!

Ln

hLn12kh

3@12exp~2kn
2Dt !#cosknz

.T01
I a

k (
n50

1`
a2

hkn
2~a21kn

2!
@12exp~2kn

2Dt !#

3cosknz. ~3.19!

Since the spectrum ofuknu has a finite lower bound, which i
given by tan(k0h)5h/kk0 with 0,k0h,p/2, the tempera-
ture profile~3.19! tends to a steady state, given by

T~z!5T01
I a

k S h

2
1z1

e2ah

a
~12ea~z1h/2!!

1
k

h
~12e2ah! D . ~3.20!

The top and bottom surface temperatures,T1 and T2 , are
given by

T15T01
I a

k S h1
e2ah

a
~12eah!1

k

h
~12e2ah! D ,
of

he
f
s

d T25T01
I a

k S 12e2ah

a
1

k

h
~12e2ah! D , ~3.21!

and we may write

T~z!5T11~T12T2!

aS z2
h

2D112ea~z2h/2!

ah211e2ah
.

~3.22!

For strong surface absorption (a@1), the temperature pro
file is linear and may be written as

T~z!5T11
T12T2

h S z2
h

2D . ~3.23!

IV. VACANCY DYNAMICS IN A STRAINED CRYSTAL

Let us analyze first vacancy dynamics in a strained cry
with a nonuniform temperature field. This dynamics is bas
on vacancy transport, generation, and annihilation.

A. Vacancy transport in a strained crystal

Vacancy transport is evaluated by considering the cha
in the vacancy concentrationC(rW,t) in a strained crystal with
distributed linear absorption sinks~i.e. voids, dislocations,
grain boundaries, etc.! In the volume elementd3r , and
within the time intervaldt, the change in the vacancy popu
lation is

DC~rW,t !d3r . ~4.1!

We define the following quantities:~1! L(rWuRW ) is the va-
cancy jump probability from locationrW to a new location
RW 1rW ~cf. Fig. 2! per unit time.~2! lv(rW) is the probability
that a vacancy is absorbed at a homogenized microstruc
sink per unit time per sink.~3! Cs(rW) is the concentration of
homogenized sinks.~4! g exp$2@Ef(rW)/kT#% is the local rate
of vacancy generation in the strained crystal.~5! Ef(rW) is the
local vacancy formation energy.~6! g is the entropy of va-
cancy generation;g.1.

Balancing gains and losses in a volume elementd3r , di-
viding this relation byDtd3r , and taking the limit forDt→0,
one has

FIG. 2. Definition of the geometrical parameters associated w
vacancy transport in strained crystals.
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56 15 365DEFORMATION PATTERNS IN THIN FILMS UNDER . . .
]C

]t
5g expF2

Ef~rW !

kT
G2lv~rW !Cs~rW !C~rW !1

1

VE d3R

3$C~rW2RW ,t !L~rW2RW uRW !2C~rW,t !L~rW uRW !%, ~4.2!

whereV is the total volume of surrounding neighbors.
Furthermore, we define the local vacancy mean lifeti

as

t~rW !51/lv~rW !Cs~rW !. ~4.3!

If both C(rW,t) andL(rW uRW ) change slowly, which is justified
away from sharp boundaries, one can expand the pro
C(rW2RW ,t)•L(rW2RW uRW ) in a Taylor series. At the lowest sig
nificant order, one obtains

]C~rW,t !

]t
5g expF2

Ef~rW !

kT
G2

C~rW,t !

t~rW !

2
1

V

]

]xi
S E d3R„L~rWuRW !Xi…DC~rW,t !,

1
1

V

]2

]xi]xj
S E d3R„L~rWuRW !XiXj…DC~rW,t !.

~4.4!

Tensor notation and summation over repeated indices
understood throughout the present development.

We further define

FW 5$Fi%5
1

VE d3R„L~rWuRW !Xi… ~4.5!

and

D̄̄5$Di j %5
1

2VE d3R„L~rWuRW !XiXj…, ~4.6!

whereFW is the first moment of the jump probability function
or the drift vector for vacancy transport, andD is the second
moment of the jump probability function, or the diffusio
tensor for vacancy transport.

Substituting Eqs.~4.5! and ~4.6! into ~4.4!, we obtain

]C~rW,t !

]t
5gexpF2

Ef~rW !

kT
G2

C~rW,t !

t~rW !
1

]2

]xi]xj
Di j ~rW !C~rW,t !

2
]

]xi
Fi~rW !C~rW,t !. ~4.7!

Equation~4.7! is now the governing equation for vacanc

transport in the thin film. The specific forms ofEf(rW), D̄̄(rW),
andFW (rW) in a strained crystal remain to be determined.

In a crystal, the jump vectorRW takes on discrete value
lW (a), wherea is an index for neighboring positions@i.e., in

specific~111!, ~110!, etc. directions#. The integrals inD̄̄(rW)
andFW (rW) become sums over neighboring positions, of nu
ber N:
e

ct

re

-

Fi5
1

N (
a51

N

L~rWu lW ~a!!l i
~a! , ~4.8!

Di j 5
1

2N (
a51

N

L~rWu lW ~a!!l i
~a!l j

~a! . ~4.9!

The jump probability will, in a strained lattice~or gener-
ally with effects of electric fields or other force fields! de-
pend on the jump direction:

L~rWu lW ~a!!5n0expF2
Em~rW, lW ~a!!

kT
G , ~4.10!

where Em(rW, lW (a)) is the migration energy of the vacanc
which is dependent on the interatomic potential at (rW) in
direction l (a), andn0 is the atomic vibrational frequency.

Consider now the variation in the interatomic potent
energy of a vacancy in a nonstrained and in a strained lat
as shown in Fig. 3.

Figure 3 illustrates the variation in vacancy energy in t
unstrained~denoted by superscript 0! and the strained crys
tal. Ef is formation energy,Es is the saddle-point energy
andEm is the migration energy, i.e.,

Em~rW, lW !5Es~rW !2Ef S rW1
lW

2
D . ~4.11!

Therefore, in a strained lattice, the jump probability tak
the form

L~rWu lW !5n0expF2
Em~rW, lW !

kT
G , ~4.12!

L~rWu lW !5n0expF 2

Es~rW !2Ef S rW1
lW

2
D

kT
G . ~4.13!

We expand the saddle-point energy to first order inlW, and
neglect the difference in the vector lengthlW (a) in the de-
formed and undeformed states.

FIG. 3. Schematic spatial variation of the interatomic poten
energy of a vacancy in an unstrained and in a strained lattice.
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Fi5n0expF2
Em

0 ~rW !

kT
G 1

N (
a51

N

l i
~a!H 11

1

2kT
l j
~a!

]Es~rW !

]xj
J

~4.14!

and

Di j ~rW !5 (
a51

N

n0expF2
Em

0 ~rW !

kT
G 1

2N

3H 12
1

2kT
l k
~a!

]Es~rW !

]xk
J l i

~a!l j
~a! , ~4.15!

whereEm
0 (rW)5Es

0(rW)2Ef
0(rW) is the migration energy in an

unstrained lattice. Noting that in a FCC crystalN512,
(a51

N l i
(a)l j

(a)5Nl2d i j , and(a51
N l i

(a)l j
(a)l k

(a)50, we have

Fi5
1

kT
Di j ~rW !

]Es~rW !

]xj
, ~4.16!

where the local diffusion coefficient is defined as

Di j ~rW !5
l 2

6
n0~rW !expF2

Em
0 ~rW !

kT
Gd i j 5D~rW !d i j . ~4.17!

Equation~4.7! for vacancy transport finally takes the for

]C~rW,t !

]t
1¹W .JW~rW !5g expF2

Ef~rW !

kT
G2

C~rW,t !

t~rW !
~4.18!

whereJW is the transport flux vector, given by

JW~rW,t !52F¹W D~rW !C~rW,t !2
1

kT
D~rW !C~rW,t !¹W Es~rW !G .

~4.19!

The formation and saddle-point energies that appear in th
equations depend on the strain, as we will discuss in the
section.

B. Strain field effects on vacancy formation
and saddle point energies

For a center of dilatation, the interaction energy in
isotropic elastic medium is given by

Ei52vsH , ~4.20!

wherev is the relaxation volume of the defect, andsH is the
hydrostatic component of the stress field.

The relaxation volume of the vacancy is taken as a fr
tion of the atomic volume,v520.2V for a vacancy,V be-
ing the atomic volume. The interaction energyEi is the
source of the spatial variation in bothEf andEs , and causes
the shift in the interatomic potential. Thus the changes
energy from unstrained to strained crystal areEs5E0

s1Ei

and Ef5E0
f 1Ei . We will also assume thatE0

s and E0
s are

independent of position in the unperturbed crystal.
The hydrostatic stress is given by

sH5
1

3
s i i 5Ke i i , ~4.21!
se
xt

-

n

where e i i is the first strain invariant,s i i is the first stress
invariant, andK is the bulk modulus. Hence, the interactio
energy isEi50.2VKe i i .

Assume that the displacement field is represented by
vectorUW 5(U1 ,U2 ,U3), then

e i i 5
]U1

]x1
1

]U2

]x2
1

]U3

]x3
5¹W •UW . ~4.22!

Let uv520.2VK520.2b3K (b is the Burger’s vector!.
Thus,

Ei52uv¹W •UW . ~4.23!

Equation ~4.23! shows that for a negative volume chan
~vacancy!, the interaction energy is positive. Sinc
Es(rW)5E0

s2uv¹W •UW , its gradient is¹W Es(rW)52uv¹W (¹W •UW ).
Rearranging Eq.~4.18!, we obtain

]C~rW,t !

]t
5g expF2

Ef
02uv¹W •UW

kT
G2

C~rW,t !

t~rW !

1¹ i¹ j„Di j C~rW,t !…1
uv

kT
¹ i„Di j C~rW,t !¹ j~¹W •UW !….

~4.24!

Since the change in the formation energy of a vacanc
small compared to the unstrained value, letC0(T)
5g exp@2Ef

0/kT#, and write the generation term as

C0~T!exp@uv¹W •UW /kT#.C0~T!S 11
uv

kT
¹W •UW D .

If one, furthermore, uses the standard notations

]

]t
5] t ,

]2

]x2 5]xx
2 , ¹W 51W x]x11W y]y ,

D5]xx
2 1]yy

2 ~4.25!

and considers a diffusion tensor whereDxx5Dyy5D i ~the
in-plane diffusion coefficient!, Dzz5D' ~the transverse dif-
fusion coefficient!, the other components being zero, one c
rewrite Eq.~4.24! in the form

] tC5C0S 11
uv

kT
¹W •UW D1D']zz

2 C1D iDC2
C

t

1
uvD'

kT
]z„C]z~¹W •UW !…1

uvD i

kT
¹W •„C¹W ~¹W •UW !…

~4.26!

V. DEFORMATION EQUATIONS FOR THIN FILMS

In this section, we develop the governing equations
the mechanical deformation of thin films in sufficient det
to allow an exposition of the importance of underlying a
sumptions. The basic theme in this section is to obtain eq
tions for the relative balance of energy exchanges in the
during its dynamical deformation. We therefore start from
brief description of deformation kinematics, followed by d
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velopment of equations for the kinetic and strain ene
components per unit surface area of the film. We cons
three distinct components of the elastic strain energy:
energy stored in bending deformation, the energy store
stretching deformation, and the energy stored in lattice d
tation ~or contraction! as a result of defects.11,12

A. Deformation kinematics

Figure 4 shows the geometry and kinematic variables
deformed thin film. Here, we useXW , dXW as the vector and its
increment, which describes a line element at pointP in the
Lagrangian~material! frame. The elementdXW deforms todxW

at xW in the deformed~Eulerian! frame. The transverse trans
lation of P to P8 is j* . The displacement vector isUW . We
further decomposeUW into a transverse componentj* and an
in-plane componentUW p , i.e.,

UW 5UW p1j* eW35xW2XW . ~5.1!

Since the thin film is under simultaneous bending a
stretching deformation, we can also write the displacem
vector as

UW 5UW B1UW S5eW1~Ux1Ua!1eW2~Uy1Ub!1eW3~j1dj!.
~5.2!

Hence, the transverse displacement isj* 5j1dj, where
j is the transverse displacement of a corresponding poin
the midplane. We takej* .j.

Ux and Uy are the displacement vector components a
result of pure bending, whileUa andUb are those associate
with in-plane stretching by in-plane forces~or stressessab).
Before we proceed to evaluate the strain components w
follow from the way we prescribed the displacement vec
in Eq. ~5.2!, we state the following underlying assumption
~1! Since the reference plane is the mid-plane of an isotro
linearly elastic film, there will be no coupling between ben
ing and stretching strain energy components.~2! Strain ten-
sor components are all computed in the Lagrangian refere
frame. The elastic strain energy is independent of the fra
but the in-plane stress tensor components (s̄ab) must also be

FIG. 4. Definition of geometrical variables in a deformed th
film.
y
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evaluated in the Lagrangian frame. Hence (s̄ab) is the first
Piola tensor, which is nonsymmetric, and is related to
Cauchy stress tensor (s i j ) as

s̄5F21sF ~5.3!

or

s̄ab5Xa,is i j xb, j . ~5.4!

~3! Under large deformation, the cross section of the film
assumed to remain planar, thus satisfying the Lo
Kirchhoff assumption, and shear stresses are therefore d
garded.

For finite elastic deformation, it can be readily shown th
the Lagrangian strain tensor componentse i j are given by

e i j 5
1
2 ~Ui , j1U j ,i1Uk,iUk, j ! ~5.5!

If we now introduce Eq.~5.2! into Eq. ~5.5!, we note that
the three-term productUk,iUk, j is insignificant for strain
components associated with the bending displacementsUx
and Uy . For the stretching strains, however, the three-te
product has only one significant term,Uz,aUz,b , as a result
of large transverse displacements.

B. Strain tensor components

First, let us determine the strain components associa
with bending (e i j

B). The bending deformation is characterize
by the existence of a neutral surface@characterized by the
superscript~0!#, which in our case is the midplane of the th
film. The displacement vector for midplane points is giv
by

Ux
~0!5Uy

~0!50, Uz
~0!5j~x,y!. ~5.6!

Since the film is thin, and only small adhesion forces ex
on the bottom surface, then all transverse stress tensor c
ponents are nearly zero~plane stress conditions!. Therefore,
it can be shown13 that the nonzero components of the stra
tensor are

exx
B 5Ux,x52zj ,xx , eyy

B 5Uy,y52zj ,yy ,

exy
B 5Ux,y52zj ,xy , ezz

B 5
n

12n
z~j ,xx1j ,yy!. ~5.7!

Now we turn our attention to the strain components as
ciated with stretching the film (eab

S ). For pure stretching, the
strain tensor is given from Eq.~5.5! as

eab
S 5 1

2 ~Ua,b1Ub,a1 1
2 j ,aj ,b!, ~5.8!

where the indicesa andb go overx andy, and summation
over repeated indices is understood. The in-plane stretc
strain tensor expressed byeab

S will be associated with an
out-of-plane Poisson strain.

Therefore, the in-plane Cauchy stress tensor compone
which are associated with stretching, are

saa5
E

12n2 ~eaa1nebb!, sbb5
E

12n2 ~ebb1neaa!,
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sab5
E

11n
eab . ~5.9!

The strain energy stored in stretching the film can be co
puted from the strain and stress tensor components de
oped earlier. In principle, the deformation gradient ten
should contain contributions from thermal expansion, latt
dilatation due to vacancies, and coupled bending strains.
der membrane stretching assumptions, however, the film
reduced to a small volume near the midplane, where ben
and defect strains are nearly zero. It will also be shown t
the contribution of thermal strains is negligible compared
lattice dilatation by defects.

C. Variational principle for the free energy

Considering the total volume of the thin film, we ca
write the general form of the first law of thermodynamics

DUt1DEK1DEP5Q1W, ~5.10!

whereDUt is the total elastic strain energy and

DUt5FB
t 1FS

t 1FD
t , ~5.11!

whereFB
t is the elastic energy stored in film bending;FS

t is
the elastic energy stored in film stretching;FD

t is the elastic
energy stored in elastic dilatation by defects~vacancies!;
DEK is the kinetic energy change of the film, equal

*V
1
2 rŪ ,t•Ū ,tdV; DEP is the potential energy change~equal

to 0 for the present case!; Q is the heat added to the film
~equal to 0 for steady-state temperature profiles!; and W is
the work done by external forces, equal to*dSP(j)dj
~whereP is the adhesive force per unit surface area of
film and dS is the surface element area!.

Because the film will undergo large deformation in t
transverse direction, a simple argument shows that the w
done by adhesive forces can be neglected compared to
total elastic energy stored in straining the film. The equil
rium equation describing deformation of the thin film is o
tained by considering the total variation in the relevent
ergy terms of the first law. Thus,

dFB
t 1dFS

t 1dFD
t 1dEK50. ~5.12!

We will now consider the total variation in each ter
separately, and then assemble the terms for the equatio
transverse equilibrium.

a. Strain energy of bending.The elastic energy per un
volume is given by12

FB5
E

2~11n!S e ik
2 1

n

122n
e l l

2 D . ~5.13!

Substituing the six strain components given by the E
~5.7! into Eq. ~5.13! above, we get

FB5z2
E

2~11n!S 1

122n
~j ,xx1j ,yy!

21~j ,xy
2 2j ,xxj ,yy! D .

~5.14!

Denotingj ,xx1j ,yy5Dj, and integrating over the volume o
the film, we get
-
el-
r
e
n-
is

ng
at
o

s

e

rk
the
-

-

of

s.

FB
T5

Eh3

24~12n2!
E E @~Dj!212~12n!~j ,xy

2 2j ,xxj ,yy!#dS.

~5.15!

Consider now the total variation ofdFB
t as composed of two

parts. It can be shown that

d
1

2E dS~Dj!25E dSdjD2j2 R
G
dldj

]Dj

]n

1 R
G
dlDj

]dj

]n
, ~5.16!

where]/]n denotes differentiation along the outward norm
to the contour bounding the thin film, whereG represents the
contour describing the edge of the film.

We will further assume here that clamped conditions ex
on the contourG, thus

j5dj5
]j

]n
50 ~5.17!

on G.
This condition also allows one to write

E E $~jx,y
2 !2j ,xxj ,yy%dS

5E E @~qxqy!22qx
2qy

2#jqWj2qWdqW 50, ~5.18!

wherejqW is the Fourier transform ofj(rW).
The total variation in bending energy is finally given b

dFB
t 5

Eh3

12~12n2!
E E D2jdjdS. ~5.19!

b. Strain energy of stretching.The stretching elastic en
ergy per unit volume is

FS5 1
2 eab

S s̄ab . ~5.20!

The in-plane strain componentseab
S are assumed to be un

form within the thickness of the film. Thus the total stra
energy in stretching the film is

FS
T5

h

2E E dSeabs̄ab ~5.21!

and the total variation is given by12

dFS
T52hE E dS$s̄ab,bdUa1~ s̄abj ,a!dj%.

~5.22!

The first term in the integral is identically zero as a result
in-plane equilibrium in the Lagrangian frame, thus

dFS
T52hE E dS~ s̄abj ,a!dj. ~5.23!

c. Strain energy stored in lattice dilatation.The energy
stored in lattice dilatation per unit volume is given by
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FD
v 5C•~ED

0 1Ei
B1Ei

S!, ~5.24!

whereED
0 is the self-energy per defect, andEi

B and Ei
S are

the components of interaction energy due to bending
stretching, respectively.ED

0 .uv . For bending only, one as

sumes that ]zUz5]zj50, and ¹W •UW 52mznj, with
m5122n/12n. Ignoring the contribution of the stretchin
energy in doing work on the strain field of defects, we g
for the total bending energy stored in lattice dilatation in t
thin film,

FD
t .uvE E E

2h/2

h/2

@11mzDj#CdzdS ~5.25!

and, sincedC/dj5]C/]j, its variation is

dFD
t .uvE E E

2h/2

h/2 F]C

]z
1zmDCzGdjdzdS,

5uvE E @C12C21mDI ~C!#djdS, ~5.26!

where C15C(rW,h/2,t), C25C(rW,2h/2,t), and I (C)
5*2h/2

h/2 zC(rW,z,t)dz, and up to contour integrals which van
ish in clamped conditions, as shown earlier.

For an exponential axial distribution of vacancy conce
tration, we get

FD
v .uvE E H ~C12C2!1mDE

2h/2

h/2

3C1z expFgS z2
h

2D G J djdS,

5uvE E @f1mcD#C1djdS, ~5.27!

where f512exp(2gh) and c5(h/2g)@11exp(2gh)#
2(1/g2)@12exp(2gh)#.

d. Variation in kinetic energy.The change in the kinetic
energy per unit volume is given by

DEK
v 5

1

2
r

dUW

dt
•

dUW

dt
. ~5.28!

Since the major component of the displacement vectorUW is
along thez direction, the velocity vector will be approxi
mated by the time rate of change of the transverse displ
mentj. Thus, per unit area of the film, we have

DEK
S. 1

2 rhj̇2. ~5.29!

The total variation of the kinetic energy of the thin film
given by

dEK
t 5 1

2 rhE E dj̇2dS5rhE E d2j

dt2
djdS. ~5.30!

e. Equation of motion.From Eq.~5.12! above, and Eqs
~5.19!, ~5.23!, ~5.27! and ~5.30!, and since the displacemen
and surface elementsdj anddS are independent, we get
d

,

-

e-

] t
2j1

Eh2

12r~12n2!
D2j2

1

r
~ s̄abj ,a! ,b

52
uv

rh
@C12C21mDI ~C!#. ~5.31!

The velocity of dilatational acoustic waves is given by

c5A E

r~12n2!
. ~5.32!

Since the film is thin, the in-plane first Piola stress ten
variation will be ignored. This will allow us to rewrite the
third term in Eq.~5.31! as

1

r
~ s̄abj ,a! ,b5

1

r
s̄abj ,ab . ~5.33!

The in-plane stress tensors̄ is given by

s̄ xx5
E

2~12n2!
@j ,x

2 1nj ,y
2 1~11n!aDT1zNxx#,

s̄ yy5
E

2~12n2!
@j ,y

2 1nj ,x
2 1~11n!aDT1zNyy#,

s̄ xy5
E

11n
@j ,xj ,y1~11n!aDT1zNxy#, ~5.34!

and

Nab5~12n!j ,ab1ndabj ,aa . ~5.35!

In these relationships, the stretching, thermal and bend
strains are included. The thermal expansion coefficient ia
andDT is the average~across the thickness! temperature rise
in the film.

If we now define a normalized in-plane stress tensor a

sab* 5
12n2

E
s̄ab ~5.36!

we finally obtain

] t
2j1

c2h2

12
D2j2

c2

2
sab* j ,ab52

uv

rh
@C12C21mDI ~C!#

~5.37!

VI. LINEAR STABILITY OF UNDEFORMED STATES
UNDER UNIFORM IRRADIATION

A. The dynamical model

Combining the results of the preceding sections, the
namics of the system may thus be supposed to be gove
by the coupled evolution of the vacancy density and the fi
bending. Neglecting the defect-bending interaction ene
(k!1) and the stress tensor temperature dependence,
aT is of the order of 1023 in usual experimental conditions
one obtains the model introduced by Emel’yanov:6
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] tC5D']zz
2 C1D iDC2

C

t
1¹W

uvD iC

kT
¹W ~¹W •U!

1¹z

uvD'C

kT
¹z~¹W •U!1g expF2

Ef

kTG~11uv¹W •U!

~6.1!

~in usual experimental conditions,D it.1025 cm2 and
uuvu.10210 erg!.

¹W –U52zmDj, ~6.2!

] t
2j1

c2h2

12
D2j2

c2

2
s i j ] i j

2 j1
uv

rh
~C12C2!50,

~6.3!

whereC65C(rW,6h/2,t) and

sxx.@~]xj!21n~]yj!2#, ~6.4!

syy.@~]yj!21n~]xj!2# ~6.5!

sxy.22~12n!~]xj!~]yj!. ~6.6!

B. Instability of undeformed states

In this paper, we will analyze the problem of thin film
irradiated over large area bycw or pulsed lasers, while fo
cused laser beam irradiation is discussed elsewhere.13 Let us
then consider the ideal situation of horizontally uniform
radiation of the film surface. We will, furthermore, assum
that the temperature profile has reached its equilibrium va
Its evolution is sufficiently slow compared to vacancy ge
eration, and can be to considered as quasistationary. In
absence of deformation, the equilibrium vacancy den
profile C0(z) is then the solution of the steady or quasistea
state equation

] tC
05D']z

2C02
1

t
C01g expF2

Ef

kT~z!G , ~6.7!

with the boundary conditions

]zC
0uz5h/25]zC

0uz52h/250. ~6.8!

Hence, the transverse variation of the defect density follo
the temperature variation across the film. As discussed
Sec. III, this profile is linear in the limit of strong absorbin
layers, and we may write@cf. Eq. ~3.23!#:

T5T11
T12T2

h S z2
h

2D . ~6.9!

T1 and T2 are the temperatures of the upper and low
surfaces, respectively, and may be calculated with
method described in Sec. III.C0(z) behaves thus as

C0~z!.C1
0 expgS z2

h

2D , ~6.10!

where C1
0 5gt exp@2(Ef /kT1)#, when gAD't!1, with

g5EfDT/kTS
2h . This gives

C0~h/2!5C1
0 , C0~2h/2!5C1

0 e2gh5C2
0 . ~6.11!
e.
-
he
y
y

s
in

r
e

The stability of the undeformed reference state ver
spatial perturbations in the horizontal plane is now p
formed, in order to determine the conditions for deformati
patterning instability. Such perturbations are defined
n(rW,z,t)5C(rW,z,t)2C0(z), or, in particular, n1(rW,t)
5C12C1

0 andn2(rW,t)5C22C1
0 exp2gh.

The dynamical model may thus be rewritten as

] tn15D iDn12
n1

t
1

hmuvD i

2kT1
¹W ~C1

0 1n1!¹W Dj

1
C1

0

t S 11
hmuv

2kT1
Dj D , ~6.12!

] tn25D iDn22
n2

t
2

hmuvD i

2kT2
¹W ~C2

0 1n2!¹W Dj

1
C2

0

t S 12
hmuv

2kT2
Dj D , ~6.13!

] t
2j52

c2h2

12
D2j1

c2

2
s i j ] i j

2 j2
uv

rh
~n12n2!

2
uvC1

0

rh
~12e2gh!. ~6.14!

Note that the transverse variation in the uniform defect d
sity, giving rise to the last term of the right-hand side of E
~6.14! is so small that the overall bending it induces is ne
ligable and will not be considered in the following.

On performing the following scalings,

]T5t] t , D̄5tD iD, m5
6muv

2D it

rc2h2k
,

b5
ch

A12D i
, z52

huv

2kDit
j, N5m~n11n2!,

n5m~n12n2!, e5mS C1

T1
1

C2

T2
D ,

h5mS C1

T1
2

C2

T2
D , ~6.15!

the dynamical model becomes

]TN5DN2N2hD~D11!z2¹W ~xn1dN!¹W Dz,
~6.16!

]Tn5Dn2n2eD~D11!z2¹W ~xN1dn!¹W Dz,
~6.17!

1

b2 ]T
2z52D2z2n1us i j ~z!] i j

2 z, ~6.18!

where u56(2kTDit/uuvuh2n)2, and where x5T1

1T2/2T1T2 andd5T12T2/2T1T2 .
The linear part of this dynamics is thus
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]TN5DN2N2dD~D11!z, ~6.19!

]Tn5Dn2n2eD~D11!z, ~6.20!

1

b2 ]T
2z52D2z2n. ~6.21!

The linear evolution matrix of the coupled deformatio
defect system is then, in Fourier transform,

S 1

b2 v21 q̄4 1 0

e q̄2~ q̄221! v111 q̄2 0

d q̄2~ q̄221! 0 v111 q̄2

D , ~6.22!

where q̄ is the dimensionless wave number, and the co
sponding characteristic equation is written

~v111 q̄2!F S 1

b2 v21 q̄4D ~v111 q̄2!2e q̄2~ q̄221!G50.

~6.23!

Since, in realistic experimental conditions,c.105 cm s
21, h.1022 cm, andD i.1025 cm2 s21), one thus has
b@1, and the relevant root for instability is

v15eS 12
1

q̄2D 2~11 q̄2!. ~6.24!

Hence,e plays the role of a bifurcation parameter, and, sin
instability occurs forv1>0, the marginal stability curve is
given by

e5
q̄2~ q̄211!

q̄221
~6.25!

and the instability threshold is given by

ec5~11A2!2.5.8, qc
45ec , ~6.26!

whereq is the scaled wave number.
Above the instability threshold, there is a band of unsta

wave numbers, going from toqm to qM , where

qM ~m!
2 5 1

2 @e216A~B21!224e# ~6.27!

The modes with maximum growth rate correspond to
mensionless wave numberq05e1/4, or to unscaled wave
length

l052pAtD ie
21/452p l e21/4 ~6.28!

Hence, it may be expected that spatial modulations
wave numberq equal to or close toq0 will grow first, lead-
ing to the formation of a deformation pattern with a wav
length that is typically of the order of 10mm. It is perhaps
interesting to recall that, in other pattern-forming system
the wavelength of the final selected patterns may be diffe
from q0, according to nonlinear effects or experimen
setups.15–17 Furthermore, in systems where the band of u
stable wave vectors extends to 0~in infinitely extended sys-
tems!, such as in spinodal decomposition or in Kuramo
-

e

e

-

f

-

,
nt
l
-

-

Sivashinsky dynamics,18 patterns are usually transients an
develop before the system reaches its final state. In
present case, the film is irradiated by cw lasers or la
pulses. The duration of the pulses limits the evolution of
deformation patterns that should thus result from the gro
of the most unstable spatial modes. It is interesting to n
that Eq.~6.28! provides a simple physical interpretation
the selected pattern wavelength. The main dependence
the vacancy mean-free path, with weak contributions fr
the critical bifurcation parameter. Thus, the wavelengthl0 is
of the order of 10 times the vacancy mean-free path in m
systems. In a well-annealed thin film,l0.10 mm, with
l .1 mm, consistent with experimental observations7,8

However, if other experimental conditions correspond to
thin film that contains a high density of initial defects, th
vacancy mean-free path would be short, and the corresp
ing pattern wavelength small. This finding can be read
tested in appropriate experimental settings.

In isotropic systems, there is an orientational degener
in the problem, since the instability threshold and the line
growth rate of the unstable modes only depend onq2. Not
only all the modes of the unstable band grow, but also
stable modes with any orientation may equally grow. T
survivors, and of course the final selected patterns, are d
mined by their nonlinear interactions. Thus, the nonline
saturation terms of the dynamics will determine which stru
ture should be selected and what its stability domain sho
be.

This study evidently requires a nonlinear analysis beyo
the instability threshold, which will be presented in subs
quent sections. The nonlinear stability we present will
based on the derivation of amplitude equations for patte
close to the instability, and numerical analysis of the mo
in other regimes.

VII. WEAKLY NONLINEAR ANALYSIS
AND PATTERN SELECTION

In the weakly nonlinear regime beyond a pattern formi
instability, the dynamics may be reduced to the evolution
an order parameterlike variable that corresponds to the
stable modes.16 We perform this reduction here, in th
framework of the adiabatic elimination of the stable modes15

One is the total mean defect density,N, which is the eigen-
mode corresponding to the eigenvaluev(4)52(11q2) of
the linear evolutiom matrix. The second one is the transve
displacement of the midplane,z, that may also be adiabati
cally eliminated since the characterisitc time scale of its e
lution, b, is negligibly small. These two variables may th
be expressed, in Fourier transform, as a series expansio
powers ofn. This expansion, deduced from the dynamic
system~6.16!–~6.18!, gives, up to the first relevant contribu
tions,

NqW5
1

11q2FhS 12
1

q2DnqW1E dkW S x1dh
q221

q2~11q2! D
3

qW •kW

k2 nqW 2kWnkW1•••G , ~7.1!
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zqW52
1

q4FnqW2uE dkWE dkW8S i , jEi j nqW 2kW2kW8nkWnk8W1••• G .
~7.2!

Using these expressions in the evolution equation fornqW ,
one finally gets

]TnqW5v~q!nqW1S d1hx
q221

q2~11q2! D Ec
dkW

qW •kW

k2 nq2W kWnkW

2E
c
dkWE

c
dkW8G~qW ,kW ,kW8!nqW 2kW2kW8nkWnk8W1•••,

~7.3!

wherev(q)5e(121/q2)2(11q2), and

G~qW ,kW ,kW8!5uS i , jEi j ~qW ,kW ,kW8!

1xS x1
dh~q221!

q2~11q2! D •

~qW •kW !„~qW 2kW !•kW8…

k2k82
„11~q2k!2

…

.

~7.4!

Ei j (qW ,kW ,kW8) are deduced from the nonlinear terms of E
~6.18! and write

Exx~qW ,kW ,kW8!5
~q2k2k8!x

2~kxkx81nkyky8!

~q2k2k8!4k4k84 ,

Eyy~qW ,kW ,kW8!5
~q2k2k8!y

2~kyky81nkxkx8!

~q2k2k8!4k4k84

Exy~qW ,kW ,kW8!

5~12n!
~q2k2k8!x~q2k2k8!y~kxky81kykx8!

~q2k2k8!4k4k84 .

These integrals are performed on the cylindrical shell of
stable wave vectors.14 By performing an expansion aroun
the maximum growth rate wave vectors, we finally obtain,
to corrections of the order of ē 5(e2ec /ec) and
(q22q0

2/q0
2), which are negligible in the vicinity of the in

stability,

t0]TnqW5@ ē 2L~q22qc
2!2#nqW1vE

c
dkW~1W q•1W k!nqW 2kWnkW

2E
c
dkWE

c
dkW8g~$1W q%!nqW 2kW2kW8nkWnk8W1•••,

~7.5!

wheret0521A2, L5t0 /q0
2, v5t0(d1xh/ec), and
.

-

p

g5
u

q0
8 S i , jEi j ~$1W q%!1t0xS x1

dh

ec
D •~1W q•1W k!

3„~1W q21W k!•1W k8…
1

112q0
2
„12~1W q•1W k!…

Hence,nqW plays the role of an order-parameter-like va
able. Since we consider the weakly nonlinear regime in
vicinity of the instability, we may limit the expansion to it
cubic term, which is the first relevant contribution for th
saturation of the instability. Note that the resulting dynam
present a quadratic contribution, which usually induces s
critical hexagonal patterns, and cubic contributions whi
due to their dependence on the gradients of the ord
parameter-like variable, should favor bimodal patterns.
may thus expect that pattern selection and stability will res
in a competition between these two types of planforms.14 In
the case of small gradients in temperature and defect den
profiles around the midplane of the layer~i.e., h5d50) the
quadratic term vanishes, and no hexagonal pattern shoul
expected.

Let us now discuss more precisely pattern selection
stability through analysis of the corresponding amplitu
equations. which may be easily obtained from equation~7.5!.
The simplest pattern one may think of corresponds to strip
which are defined, in real space, byn5Aeiq0x1 Āe2 iq0x ~the
choice of the wave-vector orientation is arbitrary, as a res
of the isotropy of the model, and the following results do n
depend on it!. The asymptotic evolution of their amplitude
is then given, at the lower order inē , by

t0]TA5 ē A1z0
2]x

2A2gAuAu2, ~7.6!

wherez0
254qc

2L, andg5uec /q0
81(2/114q0

2 ).
This equation admits the following family of steady-sta

solutions:

A05A ē 2z0
2k2ei ~kx1F!, ~7.7!

F being an arbitrary phase variable. These solutions
stable versus long-wave-length perturbations in the ran

0<k<A ē /3z0
2 ~zig-zag and Eckhaus stability limits16!. Fur-

thermore, the stripes with maximum growth rate are the cr
cal ones (k50).

Due to the structure of the evolution equation~7.5!, one
has to test the stability of the critical stripe solutions~7.7!
versus modulations with wave vectors making an arbitr
anglef with its own wave-vector direction~say, e.g.,x), and
of amplitudeAf . For fÞ2p/3, there is no contribution in
their dynamics that comes from the quadratric term of E
~7.5!, and their linear growth rate, in the presence of t
stripes~7.7!, is then

t0]TAf5 ē „12g~f!…Af1z0
2~1W f•¹W !2Af , ~7.8!

where
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g~f!5

4 cos2~f!

~112q0
2!224q0

4cos2~f!
1

uec

q0
8 @2n12~12n!#cos2~f!]

2

114q0
2 1

uec

q0
8

. ~7.9!
ri
su
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-
th
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The first part of this term dominates when the nonlinea
ties arising from the bending equation are negligible ver
the nonlinearities of the defect dynamics~this corresponds to
u!1 or film thicknessh>5 mm in typical experimental
conditions!, while the second part, which is of the Procto
Sivashinsky type of coupling,17,18 dominates when nonlin
earities of defect dynamics become negligable, which is
case for thinner films, such thatu!1 ~or h<5 mm in typi-
cal experimental conditions!. The maximum growth rate fo
these modulations corresponds to the minimum ofg(f),
and, for Poisson ratios in the physically acceptable ra
(0<n<1/2), g(f) is minimum forf5p/2, where it is al-
ways less than one. The result of this analysis is that str
are always unstable, in isotropic systems, versus rectang
bimodal patterns.

The amplitude equations of such patterns, defined
n5A expiq0x1B expiq0y1c.c. are

t0]TA5 ē A1z0
2]x

2A2gAS uAu21gS p

2 D uBu2D ,

t0]TB5 ē B1z0
2]x

2B2gBS uBu21gS p

2 D uAu2D ,

~7.10!

and the uniform steady-state solution corresponds to

uAu25uBu25
ē

g

2q0
81ecu~114q0

2!

2q0
81ecu~112n!~114q0

2!
. ~7.11!

Hence supercritical square structures should be expe
in this case, although subcritical hexagonal patterns could
principle, also develop in the system. Effectively, whenv
Þ0, the structure that is expected to develop subcritically
the dynamics~7.5! corresponds to hexagonal planforms bu
on modulations with wave vectors making 2p/3 angles be-
tween them. In this case the order-parameter-like varia
may be written as

n5A1eiqW 1rW1A2eiqW 2rW1A3eiqW 3rW1c.c.

with qW 11qW 21qW 350, uqW i u5q0, and the corresponding ampl
tude equations are17

t0]TA15F ē 1
z0

2

4q0
2 ~qW 1¹W !2GA12

v
2

Ā2Ā32gA1S uA1u2

1gS 2p

3 D ~ uA2u21uA3u2! D ,
-
s

e

e

es
lar

s

ed
in

n

le

t0]TA25F ē 1
z0

2

4q0
2 ~qW 2¹W !2GA22

v
2

Ā1Ā3

2gA2S uA2u21gS 2p

3 D ~ uA1u21uA3u2! D ,

t0]TA35F ē 1
z0

2

4q0
2 ~qW 3¹W !2GA32

v
2

Ā1Ā2

2gA3S uA3u21gS 2p

3 D ~ uA1u21uA2u2! D .

~7.12!

Uniform solutions of amplitude

uA1u5uA2u5uA3u5
1

4gS 112gS 2p

3 D D
3Fv1Av2116g ē S 112gS 2p

3 D D G ~7.13!

exist for these equations and are stable for17

FIG. 5. Squarelike patterns obtained in the numerical analysi
the dynamical model~2.1!–~2.3! for thin-film behavior of the irra-

diated layer (u→`, e56.5, or ē .0.1).
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2
v2

16gS 112gS 2p

3 D D < ē <
3v2

16gS 12gS 2p

3 D D 2

~7.14!

if g(2p/3).1. If g(2p/3)<1, they are stable in all the
range2v2/16g„112g(2p/3)…< ē .

Hence, in general, the selected patterns correspond to
percritical squares~see Fig. 5! or subcritical hexagonal plan
forms. Since usual linear stability analysis shows t
squares are unstable versus hexagons for

0< ē <
v2

2gS gS 2p

3 D1gS p

6 D D 5eh , ~7.15!

they may be simultaneously stable forē .eh and the corre-
sponding bifurcation diagram is displayed in Fig. 6. Patte
with slightly noncritical wave-vectors may also be stab
provided they satisfy phase stability requirements.16,19

When temperature and defect densities are nearly unif
across the film thickness, instability may still occur, but,
this case, there is no quadratic contribution to the nonlin
dynamics of the order-parameter-like variable. Square p
forms should thus be observed. However, when the film
thick, g(f).(2 cos2f/11a sin2f), with a5(4q0

4/114q0
2)

(a.2.3 ate5ec), according to Eq.~6.26!, and square plan
forms are unstable versus modulations with an angle in
range defined by cos2f5(11a)/(21a). As a result, square
planforms are unstable versus modulations withf5p/4,
leading to multimodal patterns with wave vectors separa
by angles ofp/4, p/2 and 3p/4. The growth rate of these
patterns@12(1/11a)# is, however, much smaller than th
growth rate of hexagonal patterns@12(1/213a)#, which are
thus expected to be selected in these conditions~see Fig. 7!.

For increasingē , the range of unstable angles becom
wider, and supercritical hexagonal planforms may in tu
become unstable versus patterns built onn.3 pairs of
modes, and that are of the quasicrystalline type~see Figs. 8
and 9!. Note that these quasiperiodic patterns appear her
a natural consequence of the form of the nonlinear coupli

FIG. 6. Bifurcation diagram for uniform solutions of the orde
parameter-like dynamics for the ‘‘thin film’’ behavior of the irrad
ated layer (u→`); plain and dotted lines correspond to stable a
unstable states, respectively.
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as suggested in Ref. 21, and do not require particular co
binations of external forcings as in other systems.22,23

An important consequence of this analysis is that, in t
absence of anisotropy, one-dimensional gratings are alw
unstable in this dynamics. In systems where the interact
between the laser field and the film surface depends on
crystal symmetries, such gratings could appear, triggered
anisotropic couplings.

It is somewhat surprising to note that instability does n
depend on the exact shape of vacancy or temperature pro
across the film. Weakly adherent thin films appear to be u
stable for any heating mechanism that generates suffic
concentration of vacancies. Nevertheless, the geometry
the selected patterns depends on such profiles. Furtherm
in transversally uniform systems, nonlinearities are stabil
ing while transverse nonuniformities generate destabilizi
nonlinearities that accelerate pattern formation, and can ov
come even strong substrate adhesion forces.

VIII. NUMERICAL ANALYSIS

The model~6.16, 6.17, 6.18! has been studied numerically
for the case whenh5d50, which rules out subcritical bi-
furcations, and thus mimics the behavior of uniform syste
with negligible transverse temperature gradients. We used
explicit Euler method in Fourier space, with an iterativ
resolution of the nonlinear deformation equation for th
bending coordinate. The system corresponds to 1283128 or
2563256 grids with periodic boundary conditions. The in

FIG. 7. Supercritical hexagonal patterns obtained in the num
cal analysis of the dynamical model~2.1!–~2.3! for plate behavior

of the irradiated layer (u→0, e56, or ē .0.03).
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tial values of the variables were fixed atN5n5z50 with
1% noise on then variable. In the thin film regime (u@1),
square patterns were found, in agreement with analytical
sults ~see Fig. 2!. In the ‘‘thick’’ regime (u!1), we found
the foreseen hexagonal and quasiperiodic patterns. By
creasing the bifurcation parameter, we effectively obtain
stable patterns withn53, 4, 5, 6, and 8 pairs of wave vec
tors. There is thus a basic agreement between the resul
the amplitude equation description and the numerical ana
sis of the complete dynamical system, although quasip
odic patterns were obtained for relatively high values of t
bifurcation parameter. Examples of such patterns are p
sented in Figs. 7–9. In all these figures, the upper left fig
represents the spatial pattern in real space, while the up
right figure corresponds to the same pattern in Fourier spa
The lower left and lower right figures, respectively, show t
intensity of the Fourier spectrum of the pattern versus wa
vector orientation and length. The Fourier spectrum is co
puted from the numerical solutions of the dynamical mod
Besides the good definition of pattern symmetry, one sho
note the sharp wave-number selection.

IX. DISCUSSION AND CONCLUSIONS

In the first part of this paper, we present a dynamic
model for the evolution of perturbations in the vacancy d
fect density and the associated deformation field in thin film
subjected to intense laser irradiation. The present work
tends an earlier model by Emel’yanov, and includes a nu

FIG. 8. Patterns with fivefold symmetry obtained in the nume
cal analysis of the dynamical model for~2.1!–~2.3! for (u!1,

e534, or ē .4.7).
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ber of new features, as outlined below.

~1! The field equations for the temperature, defect dens
and deformation fields are derived in sufficient detail, and
a self-consistent manner. This allows for an examination
the basic assumptions behind the approximations used to
velop these governing equations, as well as the range of
plicability of the present stability analysis.

~2! The conditions for the necessity of coupling term
between the three components of strain energy~i.e., associ-
ated with defects, bending, and stretching! are clarified.

~3! In this new formulation, the dynamical evolution o
the transverse displacement of the film’s midplane is expl
itly coupled with perturbations in the vacancy concentrati
at the top and bottom surfaces of the film.

~4! Linear stability analysis of the developed model ind
cates that the threshold for the mechanical instability of la
irradiated thin films is controled by the bifurcation paramet
e, which can be written as

e5e1•e2•e3 , ~9.1!

where

e15
C̄uv

rc2 ~9.2!

and C̄ is a suitable mean vacancy concentration,

- FIG. 9. Patterns with eightfold symmetry obtained in the n
merical analysis of the dynamical model~2.1!–~2.3! for (u!1,

e538, or ē .5.4).
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e25
uv

k T̄
, ~9.3!

and T̄ is a suitable mean temperature,

e35
D it

h2
5S l

hD 2

, ~9.4!

wherel is the mean-free path of a vacancy in the thin film
The physical meaning of the components of the bifur

tion parameter are as follows.e1 is a measure of the ratio o
the energy stored in the lattice defects to the kinetic ene
associated with sound propagation in the film. The param
e2 is a measure of the energy decrease of an atom ne
vacancy to its thermal energy, ande3 is a measure of the
ratio of the vacancy mean-free path to the film thickness

~5! It is now clear that thin film instability is triggered
earlier if e1, e2, or e3 are increased. This can be achiev
experimentally by increasing the laser power~which controls
C̄ in e1), or by reducing the concentration of vacancy sin
thus increasingl in e3.

The linear stability analysis derived from the prese
model is only adequate for studies related to the onse
thin-film instability. However, the nature of selected patte
and their dependence on material and irradiation conditi
can only be determined by considering the influence of n
linear effects in the model, as presented in this paper.

Horizontally uniform vacancy distributions and film de
formations are easily shown to become unstable abov
threshold value of a bifurcation parameter that combines
fect density and temperature, or laser irradiation intens
The linear analysis determines a preferred wavelength for
deformation patterns that are expected to form beyond
instability.

However, the study of their symmetries, selection, a
stability properties require a nonlinear analysis, as perform
in Sec. VII, where it appears clearly that pattern select
and stability strongly depend on both linear and nonlin
mechanisms. Special care has thus to be taken on perfor
nonlinear analysis beyond instability thresholds, especiall
the presence of finite-size effects.

In order to reach quantitative agreement with expe
ments, the model studied here needs to be refined by exp
ing properly the anisotropies of the system, either in its e
-
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tic part and in the diffusion field of vacancies, or by takin
into account the possibility of temperature-induced stres
In pulsed laser irradiation, pattern formation may also d
pend on the relative importance of the pulse duration and
the growth rate of the unstable modes. Furthermore, s
other types of patterns have been observed under irradia
with focused laser beams,6,9 it would also be interesting to
follow the transition between small finite-size6,9,13~e.g., star-
like or roselike patterns! and extended patterns~bands,
squares, hexagons, or quasiperiodic! on either increasing the
laser irradiation intensity or on decreasing the film thickne
Of course these results require further verification with e
perimental observations, and systematically designed exp
mental programs are desirable to this purpose. The nonlin
analysis initiated here is expected to stimulate further
search work leading to a better understanding of the form
tion of deformation patterns on films and surfaces under la
irradiation.

In closing, we list here a number of significant concl
sions from the present work.

~1! The selected wavelength of laser-induced pattern
primarily controlled by the vacancy mean-free path, and is
general agreement with experimental observations.

~2! The wavelength can be decreased by starting wit
defected film of smaller thickness.

~3! One-dimensional gratings are unstable in a isotro
system. Consistency with experimental observations req
anisotropies in the diffusion and elastic fields.

~4! On increasing the bifurcation parameter, square p
terns and hexagonal ones are simultaneously stable.

~5! Quasiperiodic patterns are definitively observed to
cur in a regime which corresponds to a ‘‘thick’’ film, with
small transverse temperature gradients. Since this has no
been experimentally observed, it would be extremely int
esting to produce such ‘‘quasicrystalline’’ structures by te
ing this regime.
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