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Fast-sum method for the elastic field of three-dimensional dislocation ensembles
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Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095-1597

~Received 20 January 1999!

The elastic field of complex shape ensembles of dislocation loops is developed as an essential ingredient in
the dislocation dynamics method for computer simulation of mesoscopic plastic deformation. Dislocation
ensembles are sorted into individual loops, which are then divided into segments represented as parametrized
space curves. Numerical solutions are presented as fast numerical sums for relevant elastic field variables~i.e.,
displacement, strain, stress, force, self-energy, and interaction energy!. Gaussian numerical quadratures are
utilized to solve for field equations of linear elasticity in an infinite isotropic elastic medium. The accuracy of
the method is verified by comparison of numerical results to analytical solutions for typical prismatic and slip
dislocation loops. The method is shown to be highly accurate, computationally efficient, and numerically
convergent as the number of segments and quadrature points are increased on each loop. Several examples of
method applications to calculations of the elastic field of simple and complex loop geometries are given in
infinite crystals. The effect of crystal surfaces on the redistribution of the elastic field is demonstrated by
superposition of a finite-elementimage forcefield on the computed results.@S0163-1829~99!02625-9#
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I. INTRODUCTION

Because the internal geometry of deforming crystals
very complex, a physically based description of plastic
formation can be very challenging. The topological comple
ity is manifest in the existence of dislocation structur
within otherwise perfect atomic arrangements. Dislocat
loops delineate regions where large atomic displacements
encountered. As a result, long-range elastic fields are se
in response to such large, localized atomic displacements
the external load is maintained, the material deforms pla
cally by generating more dislocations. Thus, macroscopic
observed plastic deformation is a consequence of disloca
generation and motion. A closer examination of atomic p
sitions associated with dislocations shows that large
placements are confined only to a small region around
dislocation line~i.e., the dislocation core!. The majority of
the displacement field can be conveniently described as e
tic deformation. Even though one utilizes the concept of d
location distributions to account for large displaceme
close to dislocation lines, a physically based plasticity the
can paradoxically be based on the theory of elasticity.

The properties and interactions of simplified dislocati
geometries have been the subject of intensive investigat
for the past few decades.1,2. The strength, mechanical, an
some physical properties have been rationalized as a co
quence of the dislocation behavior in materials. Methods
the evaluation of the elastic field of dislocations in materi
are largely based on analytical solutions for special geo
etries of single dislocation lines, circular dislocation loop
or finite straight segments1,2. Interaction forces and energie
between dislocations are also available in closed analy
forms for simplified dislocation line geometries, which i
volve series summations over Bessel functions3 or elliptic
integrals4,–7.

Recently, a surge in interest in understanding the phys
nature of plastic deformation has developed. This interes
motivated by extensive experimental evidence which sho
PRB 600163-1829/99/60~1!/128~13!/$15.00
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that the distribution of plastic strain in materials is fund
mentally heterogeneous.8–10 Because of the complexity o
dislocation arrangements in materials during plastic de
mation, an approach which is based on direct numer
simulations for the motion and interactions between dislo
tions is now being vigorously pursued. One of the earli
attempts to study the interaction between dislocations
hardening obstacles by computer simulations is due
Forman.11 In this method, a single dislocation loop was lim
ited to move on glide planes between successive equilibr
configurations. However, the idea of computer simulation
the interaction between dislocation ensembles is a re
one. During the past decade, the approach of cellular
tomata was proposed by Lepinoux and Kubin12 and that of
dislocation dynamics by Ghoniem and Amodeo.13,14 These
early efforts were concerned with simplifying the proble
by considering only ensembles of infinitely long, straight d
locations. The method was further expanded by a numbe
researchers,15–24, showing the possibility of simulating rea
sonable, albeit simplified dislocation microstructure. To u
derstand more realistic features of the microstructure in c
talline solids, Kubin, Canova, DeVincre, and co-workers25–32

have pioneered the development of three-dimensional~3D!
lattice dislocation dynamics. In this work, dislocation lin
are discretized into linear straight segments which can
cupy specified crystalline lattice sites. Dislocation line se
ments are limited to either screw or edge character for th
Burgers vector. Recent advances made by Zbib, Hirth,
Rhee33–35, and the work of Schwarz and co-workers36–38

have contributed significantly to our understanding of co
plex dislocation reactions in crystalline 3D geometrie
Straight line segments of arbitrary Burgers vector are con
ered in these developments.

The study of dislocation configurations at short range c
be quite complex, because of large deformations and rec
figuration of dislocation lines during their interaction. Thu
adaptive gridding methods and more refined treatments
self-forces have been found to be necessary.36–38 In some
128 ©1999 The American Physical Society
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PRB 60 129FAST-SUM METHOD FOR THE ELASTIC FIELD OF . . .
special cases, however, simpler topological configurati
are encountered. For example, long straight dislocation
ments are experimentally observed in materials with h
Peierel’s potential barriers~e.g., covalent materials! or when
large mobility differences between screw and edge com
nents exist~e.g., some bcc crystals at low temperature!. Un-
der conditions conducive to glide of small prismatic loops
glide cylinders or the uniform expansion of nearly circu
loops, changes in the loopshapeare nearly minimal during
its motion. Also, helical loops of nearly constant radius a
sometimes observed in quenched or irradiated materials
der the influence of point defect fluxes. It is clear that, d
pending on the particular application and physical situat
one would be interested in a flexible method which can c
ture the essential physics at a reasonable computational
A consequence of the long-range nature of the disloca
elastic field is that the computational effort per time step
proportional to the square of the number of interacting s
ments. It is therefore advantageous to reduce the numbe
interacting segments within a given computer simulation
to develop more efficient approaches to computations of
long-range field.14,24,34

In this work, we aim at enhancing the current compu
tional efforts on 3D dislocation dynamics~DD! ~e.g., Ref.
25–38!. We present here a numerical method for the de
mination of a key ingredient in DD computer simulation
that is, the elastic field of topologically complex dislocatio
ensembles. The main impetus for the present work is
need to describe the complex 3D topology of dislocat
loops in the most flexible way. A wide spectrum of disloc
tion line deformations, ranging from highly curved to rig
body translations, arise within the same computational sim
lation. Existing methods are based on differential equati
of motion for straight segments, where the elastic field va
ables affecting segment motion are computed at its cen
When each segment moves under the influence of the s
field, theconnectivityof the segments must be reestablish
resulting in a number of possible complications. The incre
in the self-energy of the dislocation line has to be accoun
for.27 Additionally, when we consider forces on straight se
ments, we must necessarily deal with singular values of th
forces at connectivity nodes34. Thus, problems of conver
gence as the segment length is decreased would natu
arise, because of the inherent numerical errors of comp
tions. Computations of the self-force on a straight dislocat
segment are also difficult, because of the need to desc
local curvature, even though the segment is straight to be
with.36 A modification of the Brown procedure39 has been
suggested to deal with this difficulty. Thus, the motivati
behind the current work can be stated as follows:

~1! To reduce the computational burden by providing
high degree of flexibility in the selection ofboth length and
shapeof a dislocation segment.

~2! To avoid numerical problems arising from singula
ties at intersecting straight segments.

~3! To calculate the self-force on dislocation segme
with a high degree of accuracy.

~4! To provide a flexible tool which sheds more light o
the physics of close-range interactions involving in-pla
high-curvature variations.

~5! To effectively deal with the physics of climb an
s
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cross-slip, which require out-of-plane dislocation line curv
ture.

Although the theoretical foundations of dislocation theo
are well-established~e.g., Refs. 1,2, and 40–42!, efficient
computational methods are still in a state of developm
~e.g., Refs. 30,34 and 43!. Other than a few cases of perfe
symmetry and special conditions,3,4,6 the elastic field of 3D
dislocations of arbitrary geometry is not analytically ava
able. The field of dislocation ensembles is likewise analy
cally unattainable. We plan, therefore, to present the m
elements of 3D dislocation theory such that the restrictio
and limitations of the present computational method
clarified. The main steps in deriving equations for all fie
variables will thus be given, while the interested reader c
find more helpful details in Refs. 7, 42, and 44. In Sec. II,
present the differential geometry of space dislocation loo
followed by a self-sufficient outline of the calculation proc
dure for the elastic field in Sec. III. Several test cases
verification of the proposed method are then given in S
IV. We compare calculation results for the stress field a
energies of dislocation loops with those of known analyti
and numerical solutions. Finally, conclusions from the wo
are discussed in Sec. V.

II. DIFFERENTIAL GEOMETRY OF DISLOCATION
LOOPS

The core of an arbitrary-shape, 3D dislocation loop can
reduced to a continuous line. Assume that the disloca
line is segmented into (Ns) arbitrary curved segments, la
beled (1< i<Ns)., as shown in Fig. 1. For each segment, w
definer̂ (u)5P(u) as the position vector for any point on th
segment,T(u)5Tt as the tangent vector to the dislocatio
line, andN(u)5Nn as the normal vector at any point~see
Fig. 2!. The space curve is then completely described by
parameteru, if one defines certain relationships which dete
mine r̂ (u). Note that the position of any other point in th
medium ~Q! is denoted by its vectorr , and that the vector
connecting the source pointP to the field point isR; thus
R5r2 r̂ . In the following developments, we restrict the p
rameter 0<u<1, although we map it later on the interva
21<û<1 and û52u21 in the numerical quadratur
implementation of the method.

To specify a parametric form forr̂ (u), we will now

FIG. 1. A space dislocation loop discretized into a finite numb
of curved segments,Ns.
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130 PRB 60NASR M. GHONIEM AND L. Z. SUN
choose a set of generalized coordinatesqi
( j ) for each segmen

( j ), which can be quite general. If one defines a set of b
functionsNi(u), whereu is a parameter, and allows for in
dex sums to extend also over the basis set (i 51,2, . . . ,I ),
the equation of the segment can be written as

r̂ ( j )~u!5qi
( j )Ni~u!. ~2.1!

Or in compact component (k) form, this can be put as

x̂k
( j )~u!5qik

( j )Ni~u!. ~2.2!

Thus, the components of the displacement vector are g
by

d x̂k
( j )~u!5dqik

( j )Ni~u!. ~2.3!

At this point, we must specify the form of parametr
description for the dislocation line. Although this step
open to pure computational convenience, we present
those parametric forms which we use later in this work. Pa
metric dislocation representations discussed below are
sufficient to describe the majority of experimentally o
served dislocation line geometry.

A. Circular, elliptic, and helical loops

Small prismatic loops of circular~or nearly elliptic!
shapes are observed in many materials under deforma
irradiation and quenching conditions.45 Helical loops of un-
usual regularity have also been experimentally observed
der large vacancy supersaturation.45 Therfore, it seems natu
ral to use a simple representation for such loops, where
shape functions are given by

N15cos~2pu!, N25sin~2pu!, N35u. ~2.4!

And their parametric derivatives, which we use later in d
termining the arc length, are simply given by

N1,u522pN2 , N1,u52pN1 , N3,u51. ~2.5!

Note that in this case the description is not in Cartesian
ordinates and that the generalized degrees of freedom
given by

q15a, q25b and q35c. ~2.6!

Loop motion is described in terms of the time variations
the generalized coordinatesa,b, andc.

FIG. 2. Basic elements of a space curve representing one d
cation segment.
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B. Linear parametric segments

The majority of 3D dislocation dynamics developmen
are based on analytic solutions to the elastic field of lin
segments.25–38

Sometimes it is just as convenient to use a purely num
cal method, without any loss of computational speed
accuracy.43 Under these conditions, theshape functions
Ni(u) and their derivativesNi ,u take the form

N1512u, N25u ~2.7!

and

N1,u521, N2,u51. ~2.8!

The available degrees of freedom for afree or unconnected
linear segment~j! are just the position vectors of the begi
ning(j ) and end (j 11) nodes. Thus,

q1k
( j )5Pk

( j ) , and q2k
( j )5Pk

( j 11) . ~2.9!

C. Cubic spline parametric segments

The self-force on a dislocation segment can be appro
mated as a simple function of its curvature.1,2,46To allow for
continuity of the self-force along the entire dislocation lo
and to capture nonlinear deformations of the dislocation l
itself during, a higher-order parametric representation is
sired. For cubic spline segments, we use the following se
shape functions, their parametric derivatives, and their a
ciated degrees of freedom, respectively:

N152u323u211, N2522u313u2,

N35u322u21u, and N45u32u2, ~2.10!

N1,u56u226u, N2,u526u216u2,

N3,u53u224u11, and N4,u53u222u, ~2.11!

q1k
( j )5Pk

( j ) , q2k
( j )5Pk

( j 11) , q3k
( j )5Tk

( j ) ,

and q4k
( j )5Tk

( j 11). ~2.12!

D. Quintic spline parametric segments

A greater degree of flexibility can be achieved if one co
siders even higher-order representations. The special ca
continuous quintic splines is rather interesting. The availa
degrees of freedom can be increased to include variation
the normal vector,N, as well as the positionP and tangentT
vectors. So in passing from linear to cubic and then to qu
tic representations, one has$P%,$P andT%, and$P,T andN%,
respectively. With that, line curvature can be smoothly co
trolled and out-of-plane dislocation motion can be simul
neously followed with glide events. The equations for sha
functions, their parametric derivatives, and available degr
of freedom for quintic splines are given by

N1526u5115u4210u311, N256u5215u4

110u3, N3523u518u426u31u, ~2.13!

lo-
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N4523u517u424u3, N55
1

2
~2u513u423u31u2!,

and

N65
1

2
~u522u41u3!, ~2.14!

N1,u530~2u412u32u2!, N2,u52N1,u ,

N3,u5215u4132u3218u211, ~2.15!

N4,u5215u4128u3212u2,

N5,u5
1

2
~25u4112u329u212u!,

and

N6,u5
1

2
~5u428u313u2!, ~2.16!

and

q1k
( j )5Pk

( j ) , q2k
( j )5Pk

( j 11) , q3k
( j )5Tk

( j ) ,

q4k
( j )5Tk

( j 11) ,q5k
( j )5Nk

( j ) ,

and

q6k
( j )5Nk

( j 11) . ~2.17!

The total number of available degrees of freedom fo
dislocation segment requires careful consideration. E
though more flexibility, and hence accuracy, is achieved
higher-order splines, it is still desirable to reduce the num
of degrees (NDF) of freedom from a computational stand
point. For afree, or discretesegment,NDF is thus equal to
the number of components in the Cartesian vectorqi

( j ) , i.e.,
NDF56, 12, and 18, for linear, cubic, and quintic spline
respectively. However,NDF can be greatly reduced on phys
cal and geometric grounds. Since all segments must be
nected on the loop, only one node is associated with e
segment instead of two. Loop boundary conditions can
used to define~or fix! specific degrees of freedom~DF! on
certain nodes. Thus, for acontinuousrepresentation,NDF is
reduced by a factor of 2. Moreover, if the motion is that
pure glide on the slip plane, appropriate coordinate trans
mations can be used to assignlocal DF in two dimensions.
Thus, planar loop motion can be described byNDF

local52,4,6
for the three parametric cases we consider here. Additio
physical and geometric constraints can still be imposed
reduceNDF even further.

Forces and energies of dislocation segments are given
unit length of the curved dislocation line. Also, line integra
of the elastic field variables are carried over differential li
elements. Thus, if we express the Cartesian differential in
parametric form

dlk
( j )5 x̂k,u

( j ) du5qsk
( j )Ns,udu, ~2.18!

the arc length differential for segmentj is then given by
a
n
y
r

,

n-
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e
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e

udl ( j )u5~dlk
( j )dlk

( j )!1/25~ x̂k,u
( j ) x̂k,u

( j ) !1/2du ~2.19!

5~qpk
( j )Np,uqsk

( j )Ns,u!1/2du. ~2.20!

III. ELASTIC FIELD VARIABLES AS FAST SUMS

As our main objective is to develop a computation
method for numerical simulation of complex dislocation i
teractions, we need first to outline relevant theoretical fo
dations. In this section, we present a reasonably s
consistent discussion of isotropic elastic theory which le
to the present fast-sum computational implementation.
number of equivalent formulations are available in t
literature.2–47 However, because the present developmen
mainly computational, we follow the tensor index formul
tion of deWit,7 Kröner,4 and Kroupa.6 For detailed deriva-
tions related to this section and its appendixes, the rea
may consult Ref. 44.

A. Displacement field

The dislocation is formed by cutting over an arbitra
surfaceS, followed by rigid translation of the negative sid
of (S2), while holding the positive side (S1) fixed, as illus-
trated in Fig. 3. Define the dislocation line vectort as the
tangent to the dislocation line. The Burgers vectorb is pre-
scribed as the displacement jump condition across the
face (S). The elastic field is based on the Burgers equation48

which defines the distribution of elastic displaceme
around dislocation loops. The strain tensor can be obtai
from deformation gradients, while the stress tensor is rea
accessible through linear constitutive relations. Once
stress and strain tensors are found, the elastic self-energy
interaction energy can be obtained. Referring to Fig. 3,
define the dislocation loop by cutting over the surfaceS and
translating the negative side by the vectorb, while holding
the positive side fixed. Along anylinking curveg, the closed
line integral of the displacement vector isb. Thus,

FIG. 3. Creation of a dislocation by a cut on the surface (S).
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b5 R
g
du or bi5 R

g
ui , jdxj . ~3.1!

For a given force distributionf m( r̂ ) in the medium, the dis-
placement vector is given by

uk~r !5E
all space

Ukm~r2 r̂ ! f m~ r̂ !d3r̂ , ~3.2!

whereUkm(r2 r̂ ) are the isotropic elastic Green’s function
given by

Ukm~R!5
1

8pm FdkmR,pp2
l1m

l12m
R,kmG ,

whereR5iRi , m andl are Lame´ constants. For the volum

V̂, bounded by the surfaceŜ, and upon utilization of the
divergence theorem for any rank tensorT:* V̂T,idV
5* ŜTdSi , we obtain

um~r !5E
V̂
Uim~r2 r̂ ! f i~ r̂ !dV̂2E

Ŝ
ui~ r̂ !Ci jkl Ukm,l~r2 r̂ !dŜj

1E
Ŝ
Uim~r2 r̂ !s i j ~ r̂ !dŜj . ~3.3!

The second and third terms in Eq.~3.3! account for displace-

ment and traction boundary conditions on the surfaceŜ, re-
spectively. Assuming that body forces are absent in the
dium, as well as any zero traction and rigid displacementbi

across the surfaceŜ, we obtain

um~r !52biE
Ŝ
Ci jkl Ukm,l~r2 r̂ !dSj . ~3.4!

For an elastic isotropic medium, the fourth-rank elas
constant tensor is given in terms of Lame´’s constantsm and
l, and thusCi jkl 5ld i j dkl1m(d ikd j l 1d i l d jk). Substituting
in Eq. ~3.4! and rearranging terms, the displacement vecto
given by

um~r !5
1

8pEŜ
bmR,pp jdŜj

1
1

8pEŜ
~blR,ppldŜm2bjR,ppmdŜj !

1
1

4p

l1m

l12mEŜ
~bjR,ppmdŜj2bkR,km jdŜj !.

~3.5!

Equation~3.5! can be converted to a line integral, if on
recalls Stokes’ theorem, extended to any rank tensorT, ex-
pressed as:*Se i jkTabc•••,idSk5rCTabc•••dl j . Noting the re-
lationship between the Kronecker and permutation tens
i.e., e i jkeklm5d i l d jm2d imd j l , allows us to write
Stokes’ theorem as *S(d i l d jm2d imd j l )Tabc•••, jdSi
5rCe lm jTabc•••dl j . Using the substitution property of th
Kronecker delta, Stokes’ theorem can also be expresse
the coordinates with a caret in the following form:
e-

c

is

s,

in

E
Ŝ
~Tabc•••,mdŜl2Tabc•••,ldŜm!5 R

C
eklmTabc•••dlk .

~3.6!

The first integral in Eq.~3.5! is the fraction of the solid angle
V subtended by the loop times the Burgers vector~see Ap-
pendix A!, while utilization of Eq.~3.6! can reduce the sec
ond and third terms to their line integral form. Therefore
convenient form for the displacement vector component
given by

ui52
biV

4p
1

1

8p R
C
Fe iklblR,pp1

1

12n
ekmnbnR,miGdlk .

~3.7!

Equation~3.7! determines the displacement field of a sing
dislocation loop. For a loop ensemble, one can use the p
erty of linear superposition. Thus, the line integral in E
~3.7! can be converted into a fast numerical sum over
following set: quadrature points (1<a<Qmax) associated
with weighting factors (wa), loop segments (1<b<Ns),
and number of ensemble loops (1<g<Nloop). Therefore, a
computational form for the displacement vector is

ui5
1

4p (
g51

Nloop H 2biV1
1

2 (
b51

Ns

(
a51

Qmax

wa

3S e iklblR,pp1
ekmnbnR,mi j

12n D x̂k,uJ . ~3.8!

In Appendix A, we list successive derivatives for th
modulus of the radius vectorR, surface and line integra
forms of the solid angleV, and its derivatives. Detailed der
vation steps in the equation sequence can be reviewed in
44.

B. Strain and stress fields

Once the displacement field is determined, the strain
stress fields can be readily obtained. If we denote the de
mation gradient tensor byui , j , the strain tensorei j in infini-
tesimal elasticity is its symmetric decomposition:ui , j
5 1

2 (ui , j1uj ,i)1 1
2 (ui , j2uj ,i)5ei j 1v i j , where v i j is the

rotation tensor. Taking the derivatives of Eq.~3.7! yields the
deformation gradient tensor

ui , j52
bjV ,i

4p

1
1

8p R
C
Fe jklblR,ppi1

1

12n
ekmnbnR,mi jGdlk ,

~3.9!

from which the following strain tensor is obtained:
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ei j 52
biV , j1bjV ,i

8p

1
1

8p R
C
F1

2
~e jklblR,i1e iklblR, j ! ,pp

1
ekmnbnR,mi j

12n Gdlk . ~3.10!

The derivatives of the solid angleV are given by Eq.~A2! in
Appendix A, which can now be used to derive the stra
tensor components as line integrals:

ei j 5
1

8p R
C
F2

1

2
~e jklbiR,l1e iklbjR,l

2e iklblR, j2e jklblR,i ! ,pp1
ekmnbnR,mi j

12n Gdlk.

~3.11!

Similar to Eq.~3.8!, the fast-sum equivalent of Eq~3.11!
is now given by

ei j 5
1

8p (
g51

Nloop

(
b51

Ns

(
a51

Qmax

waS 2
1

2
~e jklbiR,l1e iklbjR,l

2e iklblR, j2e jklblR,i ! ,pp1
ekmnbnR,mi j

12n D x̂k,u .

~3.12!

To deduce the stress tensor, we use the isotropic stress-s
relations of linear elasticity. First, the dilatation is obtain
by letting i 5 j 5r in Eq. ~3.11! above:

err 52
1

8p

122n

12n R
C
ekmnbnR,mrrdlk .

Using the stress-strain relationss i j 52mei j 1lerr d i j , we
can readily obtain the stress tensor

s i j 5
mbn

4p R
C
F1

2
R,mpp~e jmndl i1e imndl j !1

1

12n
ekmn~R,i jm

2d i j R,ppm!dlkG . ~3.13!

The computationalfast sum for the stress tensor is give
below in compact form, while explicit representations a
listed in Appendix B:

s i j 5
m

4p (
g51

Nloop

(
b51

Ns

(
a51

Qmax

bnwaF1

2
R,mpp~e jmnx̂i ,u1e imnx̂j ,u!

1
1

12n
ekmn~R,i jm2d i j R,ppm!x̂k,uG . ~3.14!

C. Interaction energy and self-energy

The mutual interaction between two dislocation loops c
be obtained by a volume integration of the energy den
ain

n
y

resulting from the stress field of one loop, acting on t
strain field of the other, as given below:

EI5E
V
s i j

(1)ei j
(2)dV, ~3.15!

wheres i j
(1) is the elastic stress field from the first dislocatio

loop andei j
(2) is the elastic strain tensor originating from th

second one. After a lengthy derivation, deWit7 provided a
simple double line integral formulation for the interactio
energy as

EI52
mbi

(1)bj
(2)

8p R
C(1)

R
C(2)

FR,kkS dl j
(2)dli

(1)

1
2n

12n
dli

(2)dl j
(1)D1

2

12n
~R,i j 2d i j R,l l !dlk

(2)dlk
(1)G .
~3.16!

In Eq. ~3.16!, the line integral is carried over the two spa
curvesC(1) and C(2). Thus, the corresponding fast sum f
the interaction energy reads

EI52
mbi

(1)bj
(2)

8p (
b(1)51

Ns
(1)

(
b(2)51

Ns
(2)

(
a(1)51

Qmax
(1)

(
a(2)51

Qmax
(2)

wa(1)wa(2)

3FR,kkS x̂ j ,u
(2)x̂i ,u

(1)1
2n

12n
x̂i ,u

(2)x̂ j ,u
(1)D

1
2

12n
~R,i j 2d i j R,l l !x̂k,u

(2)x̂k,u
(1)G . ~3.17!

The self-energy of a single dislocation loop can be cal
lated as half the interaction energy between two ident
dislocation loops separated by a distancer 0. The contribu-
tion to the self-energy from the dislocation core can be e
mated from atomistic calculations, and is usually on the
der of 5–10% of the self-energy.6 However, the core
contribution can be incorporated by adjusting the value ofr 0.
In a fairly rough evaluation, we may take the core ener
into account by settingr 05b/2. ~cf. Ref. 7!.

IV. RESULTS AND METHOD VALIDATION

In this section, we discuss several test cases which b
illustrate the utility of the fast-sum method and validate
accuracy. We will first present results of computations
the elastic field of isolated circular shear and prismatic d
location loops. Since some analytical solutions are availa
for these cases, we will compare the results of the fast-s
method to analytical results. The issues of numerical conv
gence and accuracy are also discussed. In the latter pa
this section, we present results of calculations of the ela
field of typical complex-shape loops, representing famil
Frank-Read dislocation sources in crystalline materials.

A. Stress field of simple loops

1. Circular slip loop

We consider here the stress distribution in the vicinity
a shear~slip! loop in a bcc crystal. The circular loop has
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radius of 200ubu. The loop is oriented for primary slip@i.e.,

(110)/1
2 $111%]. In the figures shown in this section, all dis

tances are given in units ofubu, while stress values are rela
tive to m. In the local coordinates of the (110) plane, Figu
4 shows an isosurface for the normal stress around the
location loop. It is clear that the stress surface has an or
tational dependence on the^111&-slip direction. On the glide
plane itself, the normal stress vanishes, while the stress
face is symmetric with respect to the loop center. The sh
stress componentss12 ands23 are displayed in Figs. 5 and 6
While s12 shows a characteristic ‘‘lope’’ structure of th
isosurface,s23 displays a crescent shape. The maximu
width of the crescent is for pure edge, while the stress v
ishes for the screw component of the loop.

The convergence and computational speeds of the
sum method are demonstrated in Ref. 43. The dependen
the numerical results on the number of segments, segm
spline type, and quadrature indicates that the method is
merically convergent, as the number of segments an

FIG. 4. Normal stress isosurfaces11 in the local loop coordi-
nates, where the one-axis is the@010# direction and the three-axis i
the @110#direction.

FIG. 5. Shear stress isosurfaces12 in the local loop coordinates
where the one-axis is the@010# direction and the three-axis is th
@110# direction.
is-
n-

ur-
ar

n-

st-
of
nt
u-
or

quadrature integration points is increased.43 The issue of the
numerical accuracy of the method is addressed next, by c
parison to one of the few available analytical solutions in
literature.

2. Circular prismatic loop

Kroupa5,6 derived analytical solution for the stress field
a prismatic circular dislocation loop in an infinite isotrop
medium. His explicit out-of-plane normal stress in the lo
plane~i.e., z50)szz reads

szz

mb/2pR~12n!
5

2

12~x/R!2
ES x

RD S 0<
x

R
,1D ,

~4.1!

szz

mb/2pR~12n!
52

R

x FKS R

x D2
1

12~R/x!2
ES R

x D G
S x

R
.1D , ~4.2!

whereK andE are the complete elliptic integrals of the fir
and second kinds, respectively,x is the distance from loop
center, andR is the loop radius.

In order to evaluate the accuracy of the present fast-s
method, a comparison between Kroupa’s analytical solut
for the normal stress componentszz of a circular prismatic
loop and our numerical calculations is shown in Fig. 7. It c
be seen that the error in the value of the normal stress
pends on the number of segments and on the distance
tween the field point and the dislocation core. The norm
stress shows the characteristic asymmetric singularity at
dislocation line, where the stress field decays to zero at la
distances from the core, while it remains finite at the lo
center. A more quantitative measure of the error is shown
Fig. 8, where the percent error between the numerical
analytical solutions is shown as a function of distance alo
the x axis on the loop plane. It is seen that the numeri
accuracy is below 4% for only four cubic spline segmen

FIG. 6. Shear stress isosurfaces23 in the local loop coordinates
where the one-axis is the@010# direction and the three-axis is th
@110# direction.
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except very close to the dislocation core. The number
quadrature integration points is kept at 16 for all cases s
ied in the figure. The highest error~below 9%! is manifest at
distances less than 1.5ubu from the dislocation core, when th
number of segments is less than 8. However, the maxim
error is less than 0.3% at such close distances, when
number of segments is increased to 16. It is important to n
that such high accuracy is needed in calculations of the s
force via the Brown formula39 or its variants.46,37 When the
stress field is averaged at distances of6e from the disloca-
tion core, the singularity is removed and a convergent, fin
self-force is obtained. Thus, the accuracy of field evaluat
is apparent.

B. Interaction energy and self-energy

To demonstrate the capability of our fast-sum calculat
of the interaction energy (EI), we specify the two disloca

FIG. 7. A comparison between numerical~current method! and
exact analytical~Kroupa! solutions for the normal stress compone
szz of a circular prismatic loop.

FIG. 8. Dependence of the error between numerical and ana
cal ~Kroupa! normal stress results on the distance from loop cen
for various number of segments.
f
d-

m
he
te
lf-

e
n

n

tions to be pure prismatic coaxial circular loops of equ
radius and of the same Burgers vector. In such a case
exact analytical result is available from Ref. 7 as

EI

2pRmb2 5
k

2p~12n!
@K~k!2E~k!#, ~4.3!

in which k51/@11(d/2R)2#1/2 andd is the normal distance
between the two parallel loop planes. Figure 9 shows
results of our calculations, as compared with exact analyt
results. The interaction energy is shown as a function
distance between the two loop planes. While the numbe
quadrature integration points in these calculations is kep
128, the interaction energy is convergent as the numbe
segments is increased. This is particularly important at cl
distances, as can be seen from the figure.

Furthermore, Hirth and Lothe2 provided an explicit ex-
pression for the self-energy of a circular slip loop as

Es

2pRmb2 5
22n

8p~12n! F2 lnS tan
r

4RD22 cos
r

2RG ,
~4.4!

wherer is the dislocation core size and is taken as 1/2ubu, as
suggested by deWit.7 Figure 10 shows the dependence of t
self-energy on the loop radius, computed numerically, a
compared to the analytical solutions.2 The percent error be
tween the numerical and analytical results is shown in
11. It is interesting to note that, even for four cubic spli
segments, the error is rather small~a few percent!, when the
loop radius is in the tens to hundreds ofubu. However, it is
clearly demonstrated that more spline segments are ne
sary for larger size loops, and that the error can generally
brought down below 1%.

C. Complex loop geometries

1. Single Frank-Read source

In typical dislocation dynamics computer simulation
heavy initial dislocation microstructure is introduced, and

ti-
r,

FIG. 9. A comparison between numerical~current method! and
analytical ~deWit! results for the interaction energy between tw
prismatic loops.
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subsequent evolution is followed by solving appropria
equations of motion. Visualization of the stress field asso
ated with the evolving microstructure requires addition
techniques to mask specific features; otherwise the 3D c
puter image is hopelessly complicated to be useful. None
less, it is instructive to investigate the nature of the ela
field resulting from reasonably complex loop configuratio
In this section, we present results for two common dislo
tion problems: an isolated Frank-Read~FR! dislocation loop
and two interacting such sources in a molybdenum sin
crystal. An initial straight edge dislocation segment, lying
the (11̄1) plane, is subjected to an applied stress. The pin
ends of the segment are located atx56100ubu from the
plane center of the crystal. The expansion of the disloca
segment results in the dislocation loop, shown in Fig.
before annihilation of the two opposite screw compone
takes place. The pinned ends of the source are connect

FIG. 10. A comparison between numerical~current method! and
analytical~Hirth-Lothe! results for the self-energy of a slip loop.

FIG. 11. Dependence of the error between numerical and
lytical solutions in Fig 10 above on the loop radius and numbe
cubic spline segments.
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the crystal surface by two rigid threading dislocations. Figu
12 shows the normal stress isosurface of 186 MPa assoc
with the FR loop. The isosurface shows orientational dep
dence on the Burgers vector, as well as symmetry with
spect to the~111! plane. Note the ‘‘dimples’’ in the stres
surface which result from the deviation of the FR loop fro
perfect circular symmetry, as investigated in the earlier s
tion.

So far, we have assumed that the crystal is elastic
isotropic and of infinite dimensions. The solution meth
relies on the existence of analytic forms for the elas
Green’s functions, and those are not available for finite m
dia. Recently, Cleveringa, Van der Giessen, a
Needleman49 have proposed a superposition method to s
isfy the boundary conditions of crystals under external c
straints. First, the surface traction resulting from the inter
tion of the dislocation loop with the crystal surface
computed. Once this is achieved, a finite-element met
~FEM! is used to calculate the stress field resulting from
same traction, with a reversed sign~so-called image traction!
in addition to other externally applied forces. The case o
free crystal is somewhat special, because only image trac
boundary conditions can be imposed at the surface. T
since a full dislocation loop is mechanically balanced, on
rigid body displacements need to be carefully eliminated.
choose here to use the threading dislocation arms, wh
intersect the surface at two points, to eliminate rigid bo
rotation and translation. To show the effects of crys
boundaries, we follow the FEM approach, as suggested
Cleveringaet al.49 Figure 13 shows the results of FEM ca
culations for the normal stress component on the crystal
face, resulting from image traction. It is clear that the F
source is pulling on the upper surface and that additio
stress concentrations on thex-z surface are associated wit
the rigid arms of the threading dislocation. The image sh
stresss13 is also shown in Fig. 14, where the surface d
placements of the crystal are scaled to show the shape
free crystal which contains a FR source. Note the symme
with respect to the (111) plane of positive and negat

a-
f

FIG. 12. Normal stress isosurface~186 MPa! s11 for a single
Frank-Read source in molybdenum.
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shear, and the high shear stress around the end points o
threading dislocation.

2. Interacting FR dislocation loops

When FR sources are activated on the same or neigh
ing slip planes, very complex patterns can emerge.37 Interac-
tion of FR sources appears to be one of the main mechan
which control complex dislocation patterns. For this reas
we study the stress field of two such FR sources, which
both located on the (111̄) plane. The length of each initia
straight edge segment is taken as 150ubu. One pinned end of
the first FR source is located atx5225ubu and at x5
2225ubu for the second source. The other end is located

FIG. 13. Normal stress distribution resulting from the intera
tion of the single FR source with the surface of a molybden
single crystal.

FIG. 14. Shear stress distribution resulting from the interact
of a single FR source with the surface of a molybdenum sin
crystal.
the

r-

ms
,

re

y

rotating the initial segment~i.e., length5150ubu with an
angle ofu5220° andu5100° for the first and second FR
sources, respectively.

The normal stresss3352130 MPa is shown in Fig 15
while the stress isosurfaces11522000 MPa is shown in
Fig. 16. The stresss33 isosurface shows a split about th
~111! plane, but because of the initial lack of symmetry
the dislocation loop lines, the stress surface is likewise
symmetric. However, Fig. 16 shows an interesting mirrorli
symmetry of the stresss11 isosurface and the original geom
etry of the FR sources. This observation is only seen at h
levels of stress, where there is nearly no overlap between
stress fields of various segments of the dislocation mic
structure. In any event, going beyond the configurations p
sented here would introduce additional complexities, wh
are best utilized in computations of Peach-Kohler forces
dislocation segments.

-

n
e

FIG. 15. Normal stress isosurface (2130 MPa),s33, for two
interacting Frank-Read sources in molybdenum.

FIG. 16. Normal stress isosurface (22000 MPa)s11 for two
interacting Frank-Read sources in molybdenum.
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V. CONCLUSIONS

The fast-sum method, which is based on a combination
dislocation loop geometry parametrization and numer
quadrature integrations along parametrized curves, is sh
to be computationally feasible and highly accurate. All c
culations involve simple algebraic operations, which can
systematically carried out by straightforward computer p
gramming. Although we usedFORTRAN-90 to implement the
results of calculations, even spreadsheets on personal
puters can be effectively utilized. The method is as effici
as analytical solutions. The index structure associated w
tensor notation simplifies computer programming of t
equation. However, because analytical solutions are av
able only for a limited number of special cases, the pres
approach can be used for calculations involving comp
loop geometries. The present method is primarily intend
for applications in dislocation dynamics computer simu
tions, where the need for accuracy is critical in close-ran
dislocation encounters. Moreover, one may consider
present method as an extension of the FEM technique
continuum mechanics. A variety of parametrized eleme
can thus be chosen~in much the same way as in the FE
approach! to handle special dislocation deformation pro
lems. The method may also be exploited in crack proble
where dislocation distributions can be used to represent c
plex crack surfaces.

To handle the effects of free crystal surfaces on the re
tribution of the elastic field inside the crystal, and hence
computed Peach-Kohler forces, the superposition metho
Cleveringaet al. is extended to 3D applications. While on
2D problems have been solved so far by their method,
show that 3D problems can also be successfully imp
mented. However, the simple problem shown here requ
almost 30 000 degrees of freedom and the utilization of
~27-node! brick elements. Other methods@e.g., the boundary
integral method# may be more appropriate for 3D comput
simulations, since the stress field should be updated v
frequently during dislocation dynamics computer simu
tions.
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APPENDIX A: RADIUS VECTOR AND SOLID ANGLE

As shown in Fig. 17, the solid angle differentialdV is the
ratio of the projected area elementdS to the square ofR.
Thus,
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V5E dV5E
S

e•dS

R2
5E

S

XidSi

R3 52
1

2ES
RppidSi ,

~A1!

where e5R/R5set$ei% is a unit vector alongR5set$Xi%,
andR,ppi522Xi /R3. The solid angle can be computed as
line integral, by virtue of Stokes’ theorem. A vector potent
A(R) is introduced by deWit to satisfy the differential equ
tion epikAk,p(R)5XiR

23. The solution is given by42 Ak(R)
5e i jkXisj /@R(R1R–s)#, wheres is an arbitrary unit vector.
This results in a nonuniqueness of the displacement fi
although it can be arbitrarily symmetrized.41 The solid angle
is then given as a line integral:V(R)5rCAk(R…dlk . Taking
the derivatives ofV in Eq. ~A1! and applying Eq.~3.6!, we
obtain

V , j5
1

2ES
~R,pplldSj2R,ppl jdSl !5

1

2 R
C
e jklR,ppldlk .

~A2!

Successive derivatives of the vectorR are given by the
following set of equations:

R,i5
Xi

~XqXq!1/25
Xi

R
5ei , ~A3!

R,i j 5
d i j

~XqXq!1/22
XiXj

~XqXq!3/25
d i j

R
2

XiXj

R3 5~d i j 2eiej !/R,

~A4!

R,i jk52
d jkXi1d ikXj1d i j Xk

~XqXq!3/2 1
3XiXjXk

~XqXq!5/2 ~A5!

52
d jkXi1d ikXj1d i j Xk

R3 1
3XiXjXk

R5

5~3eiejek2@d i j ek1d jkei1dkiej # !/R2. ~A6!

The third-rank tensorR,i jk has only ten nonvanishing terms
and these are given below for convenience:

R,11153e1~e1
221!/R2, R,1125e2~3e1

221!/R2,

R,1135e3~3e1
221!/R2, ~A7!

FIG. 17. Representation of the solid angleV at a field point~Q!
away from the dislocation loop line containing the set of points (P).
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R,2215e1~3e2
221!/R2, R,22253e2~e2

221!/R2,

R,2235e3~3e2
221!/R2, ~A8!

R,3315e1~3e3
221!/R2, R,33253e2~3e3

221!/R2,
R,33353e3~e3
221!/R2, ~A9!

R,12353e1e2e3 /R2. ~A10!
r sum is
,
pically

ber must
APPENDIX B: STRESS TENSOR COMPONENTS

For one loop, explicit fast-sum forms of the three-dimensional stress tensor components are given below. The inne
extended over the number of quadrature points assigned in the interval21<û<1. Qmax is typically 8–16 for accurate results
although cases withQmax up to 300 have been tested. The outer sum is over the number of loop segments, which is ty
in the range 10–30. For an arbitrary number of loops of defined parametric geometry, a third sum over the loop num
additionally be included:

s115
m

8p (
g51

Nloop

(
b51

Ns

(
a51

Qmax

waH Fb2S 22R,1131
2n

12n
~R,2231R,333! D1b3S 2R,1122

2n

12n
~R,2221R,332! D G x̂1,u

1F2b1

2

12n
~R,2231R,333!1b3

2

12n
~R,2211R,331!G x̂2,u

1F1b1

2

12n
~R,2221R,332!2b2

2

12n
~R,2211R,331!G x̂3,uJ

a

, ~B1!

s125
m

8p (
g51

Nloop

(
b51

Ns

(
a51

Qmax

waH Fb1~R,1131R,2231R,333!2b2S 2

12n
R,123D1b3S 11n

12n
R,2212R,1112R,331D G x̂1,u

1Fb1S 2

12n
R,123D2b2~R,1131R,2231R,333!1b3S 2

11n

12n
R,1121R,2221R,332D G x̂2,u

1
2

12n
~2b1R,2211b2R,112!x̂3,uJ

a

, ~B2!

s135
m

8p (
g51

Nloop

(
b51

Ns

(
a51

Qmax

waH F2b1~R,1121R,2221R,332!1b2S R,1111R,2212
11n

12n
R,331D1b3S 2

12n
R,123D G x̂1,u

1
2

12n
~b1R,3312b3R,113!x̂2,u1F2b1S 2

12n
R,123D2b2S 2

11v
12n

R,1131R,2231R,333D
1b3~R,1121R,2221R,332!G x̂3,uJ
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, ~B3!
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12n
~R,1131R,333!2b3
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12n
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2n
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~R,1131R,333!12R,223D
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~R,1111R,331!G x̂3,uJ
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Nloop
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