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Abstract. A fundamental solution of plane elasticity in a finite domain is developed in this paper. A closed-form Green’s
function for the elastic field of an edge dislocation of arbitrary Burger’s vector at an arbitrary point in an orthotropic
finite elastic domain, that is free of traction, is presented. The method is based on the classical theory of potential fields,
with an additional distribution of surface dislocations to satisfy the free traction boundary condition. A solution is first
developed for a dislocation in a semi-infinite half-plane. The resulting field is composed of two parts: a singular
contribution from the original dislocation, and a regular component associated with the surface distribution. The
Schwarz-Christoffel transformation is then utilized to map the field quantities to a finite, polygonal domain. A closed
form solution containing Jacobi elliptic functions is developed for rectangular domains, and applications of the method
to problems of fracture and plasticity are emphasized.

1. Introduction

The concept of a dislocation was first introduced by Weingarten [1], Timpe [2] and Volterra
[3] as a mathematical device to deal with the possibility of solutions which satisfy the governing
equations of the theory of elasticity, but possess the property of a multi-valued displacement
field. For many years after its introduction, the mathematical device was termed a Volterra
dislocation [4]. On the other hand, the existence of crystal dislocations was found to be
necessary for explaining the fact that most ductile materials yield and fail at stress levels that
are at least three orders of magnitude smaller than the theoretical values predicted by atomic
potential considerations alone [5—8]. The advent of analytical techniques in materials science
proved, beyond doubt, the important role which crystal dislocations play in deformation,
micromechanics of fracture, and other materials properties. The materials science applications
of the theory of dislocations are extensively reviewed by Hirth and Lothe [9] and Nabarro [10].
A detailed work on the use of dislocation theory in modelling materials phenomena such as
twining, grain boundaries [11, 12], interfacial energy and surface tension [13, 14] was conducted
by Marcinkowski and Jagannadham. More recently, Amodeo and Ghoniem [15, 16] developed
a dynamical method for the study of the micromechanics of plasticity in ductile materials. They
termed their method Dislocation Dynamics, in which they solved for the simultaneous equations
of motion of distributions of dislocations under a variety of applied stress conditions. In their
work, however, they used elasticity solutions for dislocations in an infinite isotropic medium.
Applications of dislocation theory to fracture mechanics, deals with dislocations in a
continuum. The continuum theory of dislocations is reviewed by Hirth and Lothe [9], Nabarro
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[10], ‘Mura [17, 18], and Lardner [19]. In fracture applications closed form solutions can be
obtai&ed by modeling cracks by continuous (or discrete) distributions of dislocations. However,
the proper dislocation elastic fields (Green’s function) in the crack domain must be available.
Examples on application of dislocation theory to fracture mechanics are reported by A.N. Stroh
[20], 1. Qu and Q. Li [21], J.R. Willis [22], Delale and Erdogan [23], Lardner [24], Atkinson
[25], and Vitek [26]. A review of dislocation models in fracture is given by Lardner [19], Vitek
and Chell [27], Jagannadham and Marcinkowski [28] and Bilby and Eshelby [29], where
dislocation Green’s functions developed for infinite domains were used. In [28] extensive use of
dislocation theory in modeling elastic and elastic—plastic fracture problems has been made.

In some cases dislocation fields are obtained for finite (circular, infinite strip of finite width)
domains using the image dislocation method [9, 10]. Marcinkowski et al. [30] argued that the
image dislocation method is inadequate to obtain dislocational fields in finite domains since
the resulting elastic fields do not vanish outside the domain of solution. They also introduced the
method of surface dislocations to obtain dislocation fields in semi-infinite domains. The idea of
the surface dislocation technique is based on the use of a correcting field, which yields the field in
a finite domain if added to the infinite domain solution, with the boundary conditions satisfied.
Marcinkowski et al. [30, 31] used distributions of dislocations along a semi-infinite domain
boundary to generate the additional correcting field. They developed analytical expressions for
edge dislocations in isotropic half-planes. Their method proved to be exact and realistic in the
sense that the dislocation fields identically vanish outside and on the domain boundaries. For
rectangular domains, they used numerical methods to obtain the solution [32]. These approaches
are based upon the classical theory of potential fields, and rely on solving an integral equation
for the surface dislocation distribution. Other authors obtained the dislocation fields in
half-space using the analytic continuation technique [33, 34]. In this method, additional
correcting fields are determined so as to satisfy the free traction boundary condition on the
domain boundary. However, Miller [33] and J.C. Lee [34] used two different methods to find
the correcting fields, which yielded different expressions.

In applying dislocation theory to fracture mechanics or other materials science phenomena,
the importance of development of an accurate solution to the governing equations of elasticity for
a dislocation cannot be underestimated. It is from this perspective that we develop our present
dislocation Green’s function in a finite orthotropic domain. The problem formulation makes use
of the classical theory of potential fields, with the surface dislocation technique to obtain the
solution in a half-plane. The Schwarz-Christoffel transformation [35-37] is then utilized to obtain
the solution in a finite (rectangular) domain. As will be shown here, only the elastic field of a
dislocation in an infinite domain is a necessary ingredient in our present formulation.

2. Green’s function for the elastic field of a dislocation in an infinite domain

For an elastic anisotropic continuum with material constants s,,, (m, n = 1,2, 6) Hooke’s law is
written as

Ex = §110% + 5126)1 + sl6o-xya
8y = S120x + 8220, + 5260xy, v

28xy = 8160x + S360y + S660xy-
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The stresses and complex displacement % are written in terms of the complex potentials, ¢, (z;)
and ¢,(z,) as follows [33, 34]

0. = 2Re[A1§1(z1) + 235(22)],

oy = 2Re[¢1(21) + P5(z2)], (2)
—2Re[4191(z1) + 7295(22)],

P(A1)91(z1) + p(A2)¢2(22) + p(A1)P1(21) + p(A2)P2(22)s

Oxy

U

It

in which Re = real of and the overbar represents complex conjugation. The primed variables are
derivatives with respect to z, or z,. The constants 2, and 1, and their complex conjugates are
the roots of the following characteristic equation [38]

51114 — 2S16l3 + (2S12 + S66)Az - 25262 + 535 = 0 (3)
and z; and z, are complex variables defined as

zy=x+ 4y =(y12 + 9,2)/2, ()
Z =%+ Ay = (722 + 6,2)/2,
where z = x +iy,y; =1 —il;and 6; = 1 + il;,j = 1,2. The functions ¢;(z,) and ¢,(z,) are the
complex potentials of the dislocation and are analytic within the body except at z,. The
polynomial p(l) is given by [38]

i
P(A) = (512 — S164 + 5114%) + I(Szz — 8364 + 5124%). ®

The complex potentials at a point z (or alternatively z, ,) due to a single dislocation at
Zp = Xo + iyp in an infinite anisotropic plane are given by [33, 34]

$15(21) = Ay log(z; — z10), (6)
$25(z2) = A3 log(z; — 230),
where z,4 and z,, are related to z, by the set of equations (4). The subscript s is added to indicate
that the infinite domain potentials are singular at the location of the dislocation z,. The complex
constants A4, , are determined by the conditions that the deformation due to a single dislocation is

not single-valued (dislocational), and the traction integral along any arbitrary contour surrounding
the dislocation vanishes (self-equilibrium). The dislocation condition can be expressed as

b = 2mi[ p(A1)A; — p(A1)A; + p(A2)A4; — p(22)A,], @)

where b = |b|e" is the Burger’s vector of the dislocation. The self-equilibrium condition yields
the following equation

81A; — §1 Ay + 6,4, — 7,4, = 0. ®)
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Derivations of the last two equations are found in Appendix A. By taking the complex conjugate
of (7) and (8), two additional equations are obtained. The four equations can be solved for 4,,
Ay, A, and A4,. Appendix B contains a solution for 4; and A, for the case of an orthotropic
domain, where s;¢ = 556 = 0, which is written as

Al = C11 Im(b) + iclz Re(b), (9)
AZ = Caq Im(b) + icZZ Re(b),

where ¢;; are real constants which depend on the material constants s,,,. Re(b) and Im(b) are the
real and imaginary parts of the Burger’s vector, respectively.

Consider an edge dislocation of arbitrary Burger’s vector, b = |b| ¢/, which is located at z, in the
finite domain D* bounded by the coutour L, as shown in Fig. 1. The Green’s function in an
unboupded medium automatically satisfies the governing field equations. Any linear combination of
the infinite domain Green’s functions, which also satisfies specified boundary conditions for a finite
domain, must be the Green’s function in that finite domain. The solution, therefore, will be
constructed as a linear combination of the singular, infinite domain solution, and an additional
distribution of surface dislocations, such that the boundary is free of forces (i.e. zero surface
tractions).

Let| F(¢) be a distribution function of surface dislocations, which is complex, and written
as

3. Di%wation in a finite domain: General formulation

F(t) = f1(®) + if2(), (10)

where|t is a complex variable describing the domain boundary L, and f (¢} and f,(t) are real
functions of the complex variable t. Physically, F(t) ds is defined as the Burger’s vector of the
surface dislocation in the interval ds, where s = s(¢) is the scalar distance along the domain
boundary. The traction caused by the original dislocation and the surface distribution,
evaluated at any arbitrary point along the boundary, must be equal to any prescribed boundary

tractions. For the case of a free surface, this condition is written as
Xa(®) + iYa(r) + § [Xs(to,t) + iY,(to,8)]dso =0, - (11)
L

where| 5o = s(to) and X, + iY, is the residual complex traction at ¢t on L due to the original
dislocation at z, inside D*. X(to,t) + iY,(to,t) is the complex traction at ¢t on L due to a
surface dislocation of Burger’s vector F(to) at t, on L. If the surface experiences any local-
ized or distributed forces, T(¢), the right hand side of (11) is no longer zero, but rather
= T(t). Here, we consider only free surfaces. Equations (2), (6) and (9) will be used to
determine X, + iY,; at any point ¢ on L. The same equations will be used to determine
X(to, t) + iY,(to, t) at t on L, with one difference, that is; Re(b) and Im(b) in (9) will be replaced
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by f1(to) apd f2(to). This means that the complex quantities 4; and A, are no longer
constants when dealing with surface dislocations. Let these quantities be denoted by B; and
B,, and be written as

Bi(t) = c11f2(0) + ic12f1(8), (12)
B, (8) = c21.f2(t) + ic22f1(0).

Equation (11) can now be rewritten in terms of f(f) and f,(t), and can be utilized to
determined these two functions. Once fi(t) + if2(¢) is determined, the total stress field can be
determined at any point in the domain D* by adding together the singular field and the
additional field due to surface dislocations.

When a rectangular domain is considered, as shown in Fig. 2, two mathematical difficulties
arise;

(1) the residbial singular traction, X, + iY,, will have different expressions as ¢ describes different
sides of the rectangle, and
(2) the contour L is not smooth.

Because of that, a suitable numerical method may be used to solve (11) and (12) for the
complex fuqction f1(t) + if5(t). Such an approach was used by Jagannadham and Marcin-
kowski [321, to predict the stress field for an edge dislocation in an isotropic rectangular
domain. ThTir solution yielded inaccurate results outside and close to the domain boundary,
and they were able to satisfy the boundary coonditions in an approximate point collocation
fashion. Thé reader is advised to compare the present results with those of [32]. From the
mathematical point of view, there is an inherent difficulty associated with the problem of
finding the 1e:lastic field of a dislocation in a polygonal domain. As can be noticed from the
forms of the|functions ¢,(z;) and ¢,(z5), the field is a cylindrical potential field, which is to be
fit onto a géometrically incompatible polygonal boundary. However, the approach taken here
is to obtain the solution in a semi-infinite domain and then use the Schwarz-Christoffel
transformatﬂon to map the solution onto a polygon. This approach is illustrated in the next

two section .

Y0
4 L o
- X

Fig. 1. Arbitrary dislocation in a finite domain. Fig. 2. Variation of the residual surface traction for a
dislocation in a rectangular domain.
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4. Dislocation solution in an orthotropic semi-infinite domain

4.1. Distribution function of surface dislocations

Consider a dislocation of an arbitrary Burger’s vector b = |b| e at the point z, = x, + iyo, as
shown in Fig. 3. The domain of solution D* is the upper half-plane, Im(z) > 0, so that the
contolur L is taken to be the x-axis from — oo to + oo. In this case the residual singular traction
X4(t) H iY4(2) is given by

Xd t) + le(t) = O-xy(ZO’ x) + iO'y(Z(), x), (13)
similarly,
Xs(tOs t) + iYs(t09 t) = ny(xo, X) + io-y(xoa x): (14)

s0 tth (11) is rewritten as

\
+

anyZo, x) + io,(zo, X) + f (04y(x0, X) + io,(xp, x)) dxy = 0. (15)

— o0

Using (2), for stresses in terms of the complex potentials, expressions for 0,,(20,x) and
6,(20,[x) are written as

X—Zj0 X—Zy]

A A
ay(zo,x)=2Re[ L. 2 }

X —Zj0 X — Zy9

Ouy(20,X) = —2 Re[
(16)

where| 4, , are given by (9). Similar expressions can be written for Oyy(%9,x) and a,(x,, x), by
replacing A, and A, and B, and B, given by (12). The result is stated as follows

O'xy(xoa x) = —2Re lilllBl(XO) + j’2B2(x0):|:’

X — Xg X — Xo
(17)

Uy(xo, X) =2 Re[Bl(xO) n Bz(xo):|.
X — Xo X — Xg

<

Fig. 3. Dislocation in a semi-infinite domain.
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If (12) is used in (17), the following simplified expressions for a,,(xo, x) and ,(x,, x) are obtained
for the case|of orthotropic domains

Gy(Xo, X)|= 2(Brciz + B2c22)f1(x0) _ aif1(xo)
xy\r0s = X — % _x—xo’
(18)
_ 2ecis + c21)f1(X0)  a2f2(X0)
O'y(Xo,X)\— X — X - X — Xo >

where o, an‘d o, in (16) and (18) are real quantities. f; and f, are the imaginary parts of the roots 4;
and A,. Note that A, and 1, are pure imaginary in the case of orthotropic materials (see Appendix B).

The integral equation (15) can then be rewritten as

T a1f1(x0) + iasf2(Xo)
— X — Xo

0xy(20, X) + i0y(20, X) + J dx, =0, (19)

which is a singular integral equation with a Cauchy-type kernel. The integral part exists in the
sense of its principal value. The integral equation (19) can be directly solved for a,f;(x) +
ia, f>(x). Alternatively, the real and imaginary parts of the integral equation can be separated to
obtain two real integral equations for f;(x) and f,(x). Following Muskhelishvili’s methods for
the solution of singular integral equations [39,40], and excluding mathematical details, the
following two expressions are obtained for f,(x} and f,(x)

1) = —

—‘i[ /11141 lel + ]‘ZAZ _ IZZZ ]

X—2Z10 X—Zy9 X—Zz0 X—ZIy

(20)

fz(x)=—i—[ A A A4 ]

Tdr| X — Zq19 x—Zlo X — Zyo x—Z_ZO

where f(x) and f,(x) are real quantitics. The complex function F(x) = f;(x) + if 5(x) must
satisfy overall material compatibility condition, i.e. conservation of Burger’s vector [30], which
can be examined using the following integral

f F(x')dx' = by(x)
—1i _
b(x)= —b + (E) [A14;]og(x — z10) — A1 A1 log(x — Z1)
1

+ Ap Az log(x — z30) — 1, A, log(x — Z30)],
1 B )

+ ("—) [A;log(x — zy0) — Ay log(x — Zy0)
a,

+ A4, log(x — z50) — Az log(x — Z30)]- 1)

It can be shown that by(x) > — b as x —» + co.
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The results are specialized for an orthotropic domain for which s, = 5,6 = 0. To test the
theory presented here, the properties of the Nicalon/CVD-SiC (fiber/matrix), which is an
orthotropic material, are chosen. The elastic constants are evaluated using the rule of mixture
for the fiber and matrix properties given in [42, 43]. The plane stress compliance constants are
determined to be s;; =3.125 x 10712 5,, =3.503 x 1072, 5,, = —6.563 x 10~13, and
Se6 = 9.31 x 10712 Pa~ 1.

In presenting the results all distances are normalized to the magnitude of the Burger’s vector.
Figure 4 shows a typical surface distribution as a function of the distance along the free surface,
for a dislocation at zo = +i50 with a purely real Burger’s vector. It is obvious that F(x) — 0 as
x — 0. The effect of varying the distance y, from the free surface on | F(x)| is shown in Fig. 5.
The distribution becomes sharper as y, becomes smaller and localized at x = 0. It also broadens
as yo becomes large. In fact, this is a fundamental difference between the surface dislocation
technique and the image dislocation method for which the image dislocation represents an
extremely localized distribution at the point x = 0. In Fig. 6, the integral surface Burger’s vector
by(x), which is given by (21) is shown on an Argand diagram for different orientation of the
Burger’s vector of the lattice dislocation. x describes one curve as it varies from — oo to + co.
by(x) is given by the vector drawn from the point (0,0) to any point on a curve. The results

5.0
S
® 25
-1
2
S
=
[ 0.0 [
o=
2
3
2
5 -2.5 |
=
[a]
-5.0 .
-400 -200 0 200 400

Distance along surface

Fig. 4. The surface distribution (F(x) = f,(x) + if2(x)) as a function of distance along the surface. z, = +i50. The
Burger’s vector is real.

25.
o7s | ——9=0 O=m/2

20.

Imaginary (b_)

-0.5 | ‘

Magnitude of Distribution
Function x10°

0.75 | T

! " PR T L " L

-100 0 100 200 300 -1 -0.75 -0.5 -0.25 © 025 05 075 1

Distance along surface Real ( bs )

Fig. 5. Magnitude of F(x) as a function of distance along
the surface for different positions of the dislocation
(zo = +iyo). The Burger’s vector is real.

Fig. 6. Argand diagram for b, as given by (21) for three
different orientations of the Burger’s vector b. The curves
represent by(x), where x varies form —oo to +co. The
arrows represent the Burger’s vectors b of the lattice
dislocation. As x - + oob, — — b.
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clearly indicate that the condition of material compatibility is satisfied. That is to say b + [*2
F(x")dx' = 0 [30].

4.2. Field quantities in a semi-infinite domain

The complex potentials due to surface dislocations will be denoted by ¢+,(z;) and ¢,,(z,). These
potentials will be evaluated as integrals over the distribution function of surface dislocation on
x-axis, as follows

Oplz;) = J+ ? B;(x)log(z; — x) dx, (22)

where j =1, 2. Since the stresses are determined in terms of the derivatives of two complex
potentials, it is convenient to develop an expression for ¢}(z;), which is written as

O(z;) = f BN 23)

- &j

where, again, B; is determined in terms of f,(x) and f,(x) using (12). Omitting mathematical
details, expressions for ¢',(z,) and ¢%,(z,) are obtained as follows

2ie,,\[ T A A, | [=2,\[ 4 4,
</>a,(z1)=< ‘2> —— | — —+—"—| (z1€D"),
a J121—Z10 21— Z20] az | 21 — 210 21 — Z30]
2ic,\[ 4.4 A, | (-2 A 4, ]
— lC12> 141 + 242 +< C11>( 1 + 2 . (z€D"),
a1 /|21 —Zio Z1~ Z20] as | Z1 — Z10 21 — Z30 |
(24)
2ic,,\[ T, A LA, ] —2c,\[ 4 A4, ]
¢’z,(Zz)=< 22) e e +< “) — +—2—| (z,€D"),
ay J|1 22— 210 22— Zz20| a | 22 — 210 22 — Z20 |
2ic A Ay | [ —2\] A Ay ]
=( 22)( 121, M2 +< 21) 1 2 . (2, D).
ay /1 %22 — 210 21— Z20] a, | Z2 — Z10  Z2 — Z20 ]
(25)

The two derivatives ¢}(z;),j = 1, 2 are regular everywhere in the entire z, and z, (or z) planes,
including boundary points because the poles lic outside the respective domains. The total field is
now constructed as the superposition of the singular and regular fields, as follows

$i(z;) = ¢isz) + Bi(z5), (26)

where ¢);(z;) are given by (6). The stress tensor components in the half-plane are given by (2),
where derivatives of the complex potential functions are given by (26). With some laborious
algebra, the derivatives of the total potentials given by (26) can be shown to be identically zero
at any point in the lower half-plane (Im(z) < 0). The stress tensor components, o,, o, and o,,,
will therefore vanish outside the domain boundary.
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Figures 7, 8 and 9 show equi-stress contours for different stress components for a dislocation
in a semi-infinite domain. x and y refer to the real and imaginary axes of the complex z-plane,
respectively. The stresses and distances are normalized to the shear modulus G, = 1/s¢6, Of the
material, and the magnitude of the Burger’s vector, respectively. Only zero stress contours of the
stress components g, and o,, intersect with the boundary (real-axis), which means that the stress
field satisfies the free traction boundary condition. These results illustrate the usefulness of the
powerful complex potential field theory, when contrasted with the method of image dislocations
[9], amalytic continuation techniques [33, 34] and spectral expansion methods [41]. In the
immediate neighborhood of the dislocation, the singular stress component (infinite domain field)
dominates, which is clearly shown by the behavior of the contour lines close to the point z,.

5. Green’s function for the elastic field of a dislocation in a rectangular orthotropic domain
In this section the Schwarz-Christoffel transformation, which maps the upper half-plane onto a

polygon, will be applied to the semi-infinite domain solution to obtain the solution in a
rectangular domain. We will consider the case where the boundaries of the rectangular domain

100.0

100.0

F }Lg. 7. o, for a dislocation (b = €™%, z4 = +50i) in a semi-infinite domain. The free surface is the real axis.

100.0
100.0
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1
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o
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bl ~0.0020 4 ©
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o
- 3
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° 1 © T T T
-100.0 0.0 50.0 100.0 ~100.0 -50.0 0.0 50.0 100.0
\ X ) X _
Fig. 8. o,, for a dislocation (b =¢",z,= +50i) in a Fig. 9. o, for a dislocation (b = ¢™*,z;, = +50i) in a
semi-infinite domain. Only zero stress contours intersect semi-infinite domain. Only zero stress contours intersect

with the free surface (real axis). with the free surface (real axis).
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are free of tractions. If a set of surface tractions are subsequently applied, a convenient method
can be used, and the total solution is obtained by superposition.

5.1. The Schwarz-Christoffel transformation

The general form of the Schwarz-Christoffel transformation is written as [35-37]

w=f(z) = C, zﬁ(z—aj)“f_le+C2. 27

0 j=1

This transformation maps the upper half of the z-plane onto a polygon on n vertices in the
w-plane. C, , are complex constants which adjust the size, orientation and location of the
polygon. The points a; on the x - axis (z-plane) transform to the vertices of the polygon, and o;n
are the interior angles of the polygon. With this transformation, solutions in polygonal domains
(e.g. hexagons, pentagons, etc) can be obtained from the semi-infinite domain solution.

In the special case of a rectangle, a; = 3, and n = 4. Equation (27) can be written as [36]

w =1 =

Lo
0 /(1 — &)1 — k&)
=F(z,k); O0<k<l1 (28)

where F(z, k) is the elliptic integral of the first kind [44, 55]. The integral (28) maps the upper
half of the z-plane onto a rectangle in the w-plane for any k, Fig. 10. The vertices of the rectangle
in the w-plane are + K(k)and + iK(k'); k* + k'> = 1, where K(k) is a complete elliptic integral of
the first kind, which is written as

K(k) =

(29)

i
o /(1 — &)1 — k&)

and K(k') is the complementary complete elliptic integral of the first kind defined by (29) for k'. The
vertices of the rectangle are mapped to the points +1 and =+ 1/k, on the x-axis in the z-plane.

Let the actual rectangular domain which contains the dislocation be defined in the w*-plane,
where w* = u* + iv*, as shown in Fig. 10. Let the vertices of the rectangle be given by + H; and
T H; +iH,, which correspond to the four vertices in the w-plane. Consequently, it is necessary
to establish a relationship between the w*-plane and the w-plane before actually using (28) to
perform the mapping. In fact the mapping process will be multi-step, from w*-plane to the
w-plane, and then to the z-plane. Let the w* and the w (where w = u + iv) be related as follows

u* H,

K(k) ™~

H
v* = sz,)u, (30)
W=yt =Ly 42y

W)
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«

z-plane

D+ z=x+y y

[] 1 + 1 Py
T -1k -1 0 +1 +1/k b
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+
D Y
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T v‘
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Domain y .
u

'H] 0 +H 1

Fig. 10. Schematic of the different complex planes and their interrelationships.

If we arbitrarily choose H;/K(k) = H,/K(k') = ¢, i.e. w* = cw, then the transformation be-
tween the w* and w-planes is linear, where the constant ¢ will be determined once the para-
meter k is determined. The latter is found by solving the following transcendental
equation

H, Kk
H, _KK) (31)
H, K(k)
where k? + k' = 1.
5.2. Field quantities in a rectangular domain
The fundamental stress combinations, ®, and ®,, in the z-plane are written as [38, 39]
0, =0, + 0y, (32)

®, =0, — 0, + 2io,,.
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Under conformal transformation from the z-plane to the w-plane, the fundamental stress
combinations transform according to the following relations

0, =0, (33)
@, = d, e,

It is clear that @, is an invariant of the transformation, while ®, has the transformation
Jacobian given by

(42 (4
= (a)) (&)

The stress components in the w-plane are determined in terms of @,, and ®,, as follows

0 _
Oy = _2! - %((Dw + (I)w),
e, _
Oy = 7 + i((pw + q)w)a (35)

Oy = —i_i(q)w - éw)

Since the transformation between the w and w* plane is linear, the constant c is real, the
corresponding Jacobian is unity and, in turn, the field quantities are identical in these two
planes. The derivative dz/dw is found from (28) as

dz 2 p)
= VA = 22)1 - K?z). (36)

The transformation works as follows: to determine the stress field at a point w*, w is found
using (30) as w = w*/c then the inverse of the relation (28) is used to find z. Once z is determined,
(32) through (35) are used to completely determine the stress field in the w-plane (ie. in the
w*-plane). The inverse of the relation (28) is known as the Jacobi elliptic sine function, which is
written as follows

z = sn{w, k). 37
The form of the elliptic sine function, and the associated numerical accuracy of the computation
are given in Appendix C. Note that the dislocation solution in the w-plane is recovered from the

solution in the z-plane. Let the displacement vector in the z- and w-planes be denoted by %, and
%, respectively. The displacement vector transforms as

U, = U, e, (38)
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The Burger’s vectors must have the same relation. Let the Burger’s vector in the z- and w-planes
be denoted by b, (at the point z,) and b, (at the point w,), respectively. Therefore, the Burger’s
vector in the z-plane is given by.

b,=b,e", (39)

where b,, is the prescribed one, and  is given by (34) evaluated at z,.

6. Discussion and conclusions

Representative results for the stress field in a rectangular orthotropic domain are shown in Figs.
11 through 16. u* and v* refer to the real and imaginary axes of the complex w*-plane, which is
the actual domain of the dislocation. The stresses are normalized to the shear modulus Gis.In
calculating the stress field a value of k2 = 0.5 is chosen, for which K(k) = K(k') = 1.85407467. It

0.00

o

Fig. 11. o, for a dislocation (b = ¢™, w = +30i)in a
rectangular domain. ¢,» identically vanishes on the upper
and lower sides of the rectangle.

Fig. 13. 6, for a dislocation (b = €™, w% = +30i) in a
rectangular domain. 6,4, identically vanishes on all sides
of the rectangle.

-60.0 —3’0.0 0.0 36.0 60.0
Fig. 12. o, for a dislocation (b = ™5, w¥ = +30i) in a

rectangular domain. o, identically vanishes on the upper
and lower sides of the rectangle.
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SIO.O 4‘5.0 60

v

15.0
1

e
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—=—\

-60.0 -30.0 0.0 30.0 60.0

/_—.\\\\

Fig. 14. 6, for a dislocation (b = e™2, w¥ = +30i) in a
rectangular domain. ¢, identically vanishes on the right
and left sides of the rectangle.
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Fig. 15. o, for a dislocation (b = ™2, w¥ = 30 +30i) in Fig. 16. ¢, for a dislocation (b = e™2, w} = 40+ 30i) in
a rectangular domain. o,. identically vanishes on the a rectangular domain, showing the singular behavior of
right and left sides of the rectangle. the stress field at w§.

is important to note that the shear and normal stresses identically vanish on the domain bound-
ary. Also, the stress field shows the proper singularity at the location of the dislocation (Fig. 16).

The solution presented here is general in the sense that it accounts for the domain orthotropy
and geometry effects, which is an essential factor in boundary value problems of elasticity, as
well as the arbitrariness in specifing the Burger’s vector (magnitude and direction). The solution
can be easily extended to domains of general anisotropy. With this solution, a large number of
materials macro/micromechanics problems can be accurately treated in the sense that more
realistic dislocational fields in domains of finite sizes (present work) can replace the infinite
domain field. Among these problems are the following:

1. Elastic and elastic-plastic fracture mechanics problems, where cracks of any size, shape and
under generalized loading are modeled using distributions of dislocations, in finite size
structural elements. Reference [27] contains a list of the most important applications of
dislocation theory in fracture. The reader is also advised to check the book written by
Lardner [19] as well as Bilby and Eshelby’s article [29].

2. Dislocation-crack interaction problems, such as the spread of plastic yield from crack tips
[46], cleavage, dislocation emission and crack shielding under generalized loading condi-
tions [47].

3. Problems of micromechanics of plasticity and viscoplasticity (dislocation creep), which
involve detailed descriptions of dislocation motion as well as dislocation-dislocation interac
tions in real crystals or in specimens of finite sizes [15, 16, 48].

A major outcome of the present work is that it demonstrates the weakness of the infinite
domain dislocation solution in a large number of problems in which the range of interest for the
dislocational field is comparable to the domain size. This is illustrated in Fig. 11, where the
stress component o« changes between tensile and compressive on one side of the v*-axis, which
is not a feature of the infinite domain solution. Also, a rotation of the Burger’s vector can
dramatically change the features of the stress field for the same geometry. This is shown by
comparing Figs. 11 and 12. Another important effect is the behavior of the stress field close to
the domain corners and edges (Figs. 13 to 15).

It must be noted that the general method developed in this paper is also applicable for
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obtaining the Green’s function for screw dislocations, and for dislocations of mixed-mode
character in finite domains.

A. Dislocational and self-equilibrium conditions
A.l. Dislocational condition

By definition, the Burger’s vector is given by the cyclic function of the displacement vector [38]
and is written as

b,=[%.].= f d%,(z1, 23, 21, 22), (40)
L

where d%, is the exact differential of the complex displacement %,, and L is any contour in the
z-plane which encircles the dislocation. Recalling (2) for the displacement in terms of the
complex potentials ¢, and ¢, is the infinite domain, (40) can be rewritten as

b, = p(A1)[ P15z )] + PAVP1s(E1 )] + P(A2) [ 25(22)]1 + P(A2 ) 26(Z2 )]s 41

where

(ol = § (420 a,

J

_ _ dajs(z_j) =
[(ﬁis(zj)]L - §L( dz. )dz,,

]

“2)

in which j =1, 2. Recalling (6) for the singular potential functions, ¢(z;) and ¢;(Z;), the
derivatives in (42) can be written as follows

/ A;
.sz. = ’
bide) = =~
(43)

Fiz) = —

Zj - ZjO

Substituting back in (42) and carrying out the contour integral, the following expressions for the
cyclic functions of ¢;(z;) and @;(Z;) can be obtained

[Dss(z;)]L = 2miA;, 44)
[b5(Z)]L = —2mid;,

which yield the following expression for the Burger’s vector
b, = 2mi[ A1 p(A1) — A1,(11) + A2p(A2) — A2p(4,)], (45)

which is (7) of Section 2.
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A.2. Self-equilibrium condition

It is shown from the basic principles of elasticity theory that the stress resultant X + iY around
a contour is written as [39]

X +iY= jf (0x + o) dy — (io, + 0,,)dx, (46)
L

where X +iY =0 in case of a dislocation. Since the stress tensor components are written
in terms of the complex variables z;, rather than x and y, it is more convenient to carry
out the integral of (46) in the z;-planes. For that purpose, Eqns. (4) are recalled for the rela-
tion between z; and x and y. The differential form of those relations yields dy =
(dy/dz;)dz; = dz;/4; and dy = (dy/dz;)dz; = dz;/A;. Similarly, dx =dz; =dz;. If Eqns. (2)
are then used for stress components, the four integrals in (46) can be evaluated as
follows

jf Oy dy = 27'”‘(]41/11 - Ilzl + ).2142 - IZZZ):»
L

i}v Oy dy =2n(4, — Z1 +4; - ZZ),
L
(47)
— ‘{ Oxy dy = 27[1'(/111‘11 - Il/Tl + ).zAz - IzA_z),
L

—if oydy =2nx(4; — A, + A, — 4,).
L

Substituting the above expressions in (46) and recalling that y;=1—il; and 6; =1 + il;, the
following equation is obtained

01A; — 7141 + 6,45 — 7,4, =0, (48)

where a factor of 4 is cancelled. The last equation is just (8) of Section 2.

B. Solution for 1,, and A4, , in orthotropic media
B.1. Solution for A, ,

For orthotropic media s, = 5,6 = 0 and the characteristic equation (3) of Section 2 reduces to

S11},4 -+ (2312 + s66)'12 + S5, = 0, (49)
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which has imaginary roots. The roots of (49) occur in conjugate pairs and are given by A, and
X, = +if, and A, and 1, = +if, where B; and f, are given by

pi=|—r +\/r%—r2|,
Bi=|—ri+ri—ral

where r; and r, are given by

,1=M, r2=52—2. (51)
2514 S11

B.2. Solution for A, ,

(50)

The dislocation and self-equilibrium conditions yield the two equations (45) and (48) for
the two complex constants 4, and A,. By taking the complex conjugates of the two equa-
tions, two additional equations are obtained. The four equations can then be solved for
Ay, Ay, A; and A4,. Due to the self-equilibrium condition the following two equations can be
written

0141 — 714, + 0,4, — 7,4, =0,
(52)
01A; —y1 Ay + 0,45 — 9,4, =0.

As mentioned before, 1; = if; are imaginary quantities. Consequently, the parameters y; = 1 —
ilj=14 B;=7;and 6; =1+ ii; =1 — B; = §; are real quantities. Substituting these back in
(52), and separating the real and imaginary parts, the following two equations are obtained for
the real and imaginary parts of 4, and A4,

B1Re(41) + B2 Re(4,) = 0, (53)
Im(4,) + Im(4,) = 0.

The dislocational condition yields the following two equations
TG - b
p(A1)A1 — p(A)A, + p(A)A, — plA2)A, = 3

(54)
PADAL — p(A1)A; + p(A2)Ar — p(A)A, =

—2mi

It can be shown that p(4;), p(4;) and their respective conjugates, p(4;) and p(4,), are real
constants in the case of orthotropic media, where 4; are imaginary. However, these quantities
are found in terms of §; and f,. Using (54) and excluding algebraic details, the following two
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equations are obtained for the real and imaginary parts of 4, and A4,

Im(b
41 Re(Ay) + 2 Re(d;) = ),
2
(55)
Re(b
063 Im(Al) + 04 Im(Az) = — e( ),
2n
where a, , 3 4 are written in terms of g, , and s;; as follows
oy = E(Szz - 312/3%),
Oy = E(SZZ - 5125%),
(56)

a3 = 2(s12 — Suﬁ%),
g = 2(s12 — 512%)-

Equations (53) and (55) are four algebraic equations in four unknowns, Re(A,), Re(4,), Im(A4,),
and Im(4,), which are easy to solve. Expressions for A, and A, are written as follows

Ao~ B, Im(b) j Re(b)
L 2By — Baty) | 2mlas — aa)
(57)
B1 Im(b) . Re(b)
A, = + ,
T 2By — Pror) | 2nlas — )
which can be rewritten as
Al =C11 Im(b) + iClz Re(b) (58)

Az = Ca1 Im(b) + iC22 Re(b)

C. The elliptic function of Jacobi, sn(w, k)

Equation (37), which gives z in terms of w, is known as the elliptic sine function of Jacobi. For
the reader’s convenience, the properties of that function, which were used for computational
purposes in the present work, are extracted from [44] and [45] and summarized in this
appendix. Two other elliptic functions, cn(w, k) and dn(w, k), are related to sn(w, k) as follows

cn?(w, k) + sn?(w, k) = 1, (59)
dn®(w, k) + k2sn?(w, k) = 1,
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where k is a parameter. In the case of the purely imaginary argument, w = vi, the following
properties were used

.o . sn(v, k)

sn(vi, k) = i— w.K)
] 1

Cn(Ul, k) = W’ (60)
.y dnlv, k')

dn(vi, k) = (v, k')’

where k* + k'> = 1. The addition property of the function sn(u + v) is written as

sn(u)cn(v)dn(v) + cn(u)sn(v)dn(u)

sn(u + v) = 1 — k2sn?(wsn?(v) ’

(61)

where k is dropped from both sides for simplicity. In the case of a complex argument w = u + iv,
which is considered in the present work, v is replaced by iv in (61) and Equns. (60) are used, which
yields the following expression for sn(w, k) in terms of the elliptic functions of the real and
imaginary parts of w

sn(u, k)dn(v, k') + icn(u, k)cn(v, k' )sn(v, k' Ydn(u, k)
cn*(v, k') + k* sn*(u, k)sn*(v, k') ’

sn(w k) = (62)

in which the functions dn and cn are evaluated in terms of sn using (59). The function sn can be
evaluated in terms of circular or hyperbolic functions using the descending (decrease k) or ascend-
ing (increase k) Landen transformation, respectively [44]. The accuracy of the calculations depends
on the order of transformation used. However, both methods were tried for the present work and
yielded significant computational errors. A series expansion for the function sa(u, k) in terms of the

nome g = e~ "*/% and the argument v’ = nu/(2K) is used in the present work, which is written as
27'[ 0 qn +1/2
snfu, k) = — ——7sin(2n + 1) (63)
k K ngo 1 _ q2 +1

where K is the complete elliptic integral of the first kind defined by (29) and K’ = K(k'). The
series converges depending on the value of g which, in turn, depends on the ratio K'/K, i.e. on
the geometry of the rectangle. However, a range of n= 10— 15 was adequate for the
computational purposes in the present work.
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