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Time evolution of non-equilibrium systems, where the probability density is described by a continuum 
Fokker-Planck (F-P) equation, is a central area of interest in stochastic processes. In this paper, a 
numerical solution of a two-dimensional (2-D) F-P equation describing the growth of helium-vacancy 
clusters (HeVCs) in metals under irradiation is given. First, nucleation rates and regions of stability of 
HeVCs in the appropriate phase space for fission and fusion devices are established. This is accomplished 
by solving a detailed set of cluster kinetic rate equations. A nodal line analysis is used to map spontaneous 
and stochastic nucleation regimes in the helium-vacancy (h-v) phase space. Growth trajectories of HeVCs 
are then used to evaluate the average HeVC size and helium content during the growth phase of HeVCs in 
typical growth instability regions. 

The growth phase of HeVCs is modeled by a continuum 2-D, time-dependent F-P equation. Growth 
trajectories are used to define a finite solution space in the h-v phase space. A highly efficient dynamic re- 
meshing scheme is developed to solve the F-P equation. As a demonstration, typical HFlR irradiation 
conditions are chosen. Good agreement between the computed size distributions and those measured 
experimentally are obtained. 

1 INTRODUCTION 

The production of helium in structural components exposed to neutron irradiation 
results in degradation of mechanical properties. Materials employed in fusion 
devices are subject to three helium generation processes: (1) the (n, a )  nuclear 
reaction in bulk materials, (2) exposure to high fluxes of a-particles resulting in 
near-surface deposition of helium atoms, and (3) the decay of tritium to jHe in 
tritium-contaminated materials. Some macroscopic changes can be readily 
monitored and measured (i.e., volumetric swelling, intergranular embrittlement, 
and surface blistering). The cause of these changes can be attributed to the 
formation and growth of helium-filled cavities (bubbles). To model the formation 
and evolution of these cavities during irradiation, fundamental kinetic processes 
must be understood. Upon introduction into the bulk material, helium atoms 
undergo three distinct phases: transport, nucleation, and growth. 

1.1 Transport 
When a helium atom is first placed into the lattice it will occupy an interstitial site. 
Being virtually insoluble, it causes a high strain field in its vicinity. This leads to 
rapid diffusion through the lattice until it interacts with defects such as vacancies 
(vacant lattice sites), self-interstitial atoms (SIAs), dislocation lines, or grain 
boundaries. During this transport phase, helium atoms undergo random walk until 
they are “trapped” by defects. Neutron irradiation results in the formation of 
helium atoms, vacancies, and SIAs. Vacancies offer interstitial helium atoms a high 
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332 S. SHARAFAT AND N. M. GHONIEM 

number of trapping sites. The interactions between the three fundamental defects 
(vacancies, self-interstitials, and helium atoms) lead to the formation of small 
clusters of one to three helium atoms and one to three vacancies, with sizes in the 
0.2 to 0.4 nm range. 

1.2 Nucleation 
The clusters formed during the transport phase are in a highly non-equilibrium 
state and are thus very unstable. For example, an SIA can readily replace a trapped 
helium atom from a vacant site. (The formation energy for a vacancy-SIA pair is 
around 4.5 eV while the h-v binding energy has been estimated to be about 3.6 eV 
in nickel.) For helium-filled cavities to grow, stable HeVCs must first nucleate. 
Estimates for stable HeVCs indicate that between 3 and 10 defects must be 
involved for the formation of critical HeVCs.' Sizes for critical clusters are in the 
0.2 to 1 nm range. 

1.3 Growth 
Beyond the nucleation phase, HeVCs are very stable up to temperatures reaching 
the metal melting point2 Thus the next phase of cavity evolution constitutes the 
growth phase. Growth can be accommodated by accumulating more helium atoms, 
absorption of vacancies, or by migration and coalescence with other HeVCs. The 
insolubility of helium atoms in the matrix2 causes the helium atoms to be trapped 
inside small clusters ( r <  10 A)  which reach pressures exceeding fluid-solid phase 
transition densities (130 Kbar in A1 and 500 Kbar in Ni).j For these high densities, 
sophisticated equations of state (EOS) of helium ( analytical4 and numericalS) must 
be used since Van der Waal's gas law is invalid in this regime. Thus, even during the 
growth phase, the HeVCs are in a non-equilibrium state which precludes the use of 
classical nucleation theory and growth models. 

All three phases of HeVC formation depend on temperature, displacement 
damage rate, and helium-atom generation levels. At higher temperatures, the 
mobility of migrating species and the dissociation rate of HeVCs increase. This 
results in higher nucleation energy barriers which must be overcome for stable 
cluster formation to occur. Displacement damage induces vacancy supersaturation 
(ratio of vacancy concentration to thermal equilibrium vacancy concentration). The 
supersaturation ratio depends on the overall sink strength of the bulk material and 
the displacement damage rate in displacements per atom per second (dpa/s). The 
amount of helium produced [expressed as helium-to-dpa ratio (He/dpa)] plays a 
significant role in the kinetic processes leading to h-v clustering. These clustering 
kinetic effects have been studied and reported earlier in detailh. Some of the 
relevant findings will be summarized in Section 2. 

The objective of this work is to develop a self-consistent solution for the 
nucleation and evolution phases of h-v clustering. Since the formation of stable 
HeVCs at high temperatures ( > 450°C) and at high He/dpa ratios ( > 50) was 
found to be spontaneous,' we have chosen these conditions as a first attempt to 
model the growth of HeVCs. Spontaneous nucleation refers to the condition of 
negligible, nucleation energy barriers. 

To our knowledge, this work is the first reported attempt to numerically model 
the evolution of HeVCs by solving a transient 2-D F-P equation which describes 
both the helium content and the size of growing helium-filled cavities during 
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HELIUM-VACANCY CLUSTERING DURING IRRADIATION 333 

irradiation. In Section 2, we summarize our earlier work on the transport and 
stability of HeCVs. In Section 3, phase-space analysis of nucleation and evolution is 
given. The proposed clustering model, derived from arguments based on non- 
equilibrium statistical mechanics, is developed in Section 4. This is followed by a 
novel numerical solution to the resulting transient, 2-D F-P equation in Section 5 .  
Applications of the model to neutron-irradiated steels are given in Section 6; 
Conclusions follow in Section 7. 

2 TRANSPORT MODEL AND THE STABILITY OF 
HELIUM-VACANCY CLUSTERS 

Under irradiation conditions, three features complicate the understanding of 
helium transport: ( 1) the competition between self-interstitials and helium atoms to 
react with vacancies; (2)  helium atoms tend to agglomerate with radiation-induced 
and thermal vacancies; (3) displacement collision cascades can supply enough 
energy to remove helium "bound" to vacancies or HeVCs. To model helium 
transport in the bulk material during irradiation, in addition to the above processes, 
various possible helium diffusion mechanisms must also be taken into account. 
Thus the diffusion of helium through bulk material during irradiation is influenced 
by the following processes: 

1) Trapping and de-trapping of helium in single vacancies, di-vacancies, and 
higher order clusters; 

2) Helium trapping at dislocations and grain boundaries; 
3) Replacement of helium bound to single vacancies by self-interstitials; 
4) Helium clustering into h-v complexes; 
5 )  Displacement of trapped helium atoms by irradiation; 
6) Migration of helium as an interstitial atom or in a highly mobile di-vacancy. 
Ignoring the majority of the above possibilities, simplified models for helium 

diffusion in irradiated materials have previously been developed."I2 In this study, 
all of the reactions outlined above are included. This is accomplished by using 
chemical rate theory to describe clustering events between randomly migrating 
species. This method has been used previously to calculate nucleation rates of 
fission gas bubbles in nuclear fuels.I3 More recently Russell and Hall14 used 
chemical reaction rate theory to analyze point-defect clustering in the presence of 
mobile helium atoms. We developed a modelh which accounts for the mutual 
interactions of clustering and migration processes of helium atoms under 
irradiation. This is the main difference between our approach and previous 
attempts."-'? 

With the basic assumption that helium point-defect interactions are homogenous 
in time and space, a detailed set of rate equations was solved both analytically and 
numerically." Analytical expressions for the effective diffusion coefficient of helium 
were derived. Diffusion regimes in the parameter space of displacement damage 
rate, temperature, helium generation rate, and sink strength were defined. For 
metals such as steels and nickel, the effective helium diffusion coefficient is dictated 
by three different physical processes: radiation displacement at low temperatures 
( T< 400 K), self-interstitial replacement at intermediate temperatures 
(400 < T< 800 K), and thermal de-trapping at high temperatures (T> 800 K). Our 
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334 S. SHARAFAT AND N. M. GHONIEM 

helium transport model developed earlier6, ’ is used here for the phase-space 
analysis of nucleation and evolution as outlined below. 

3 PHASE-SPACE ANALYSIS OF NUCLEATION AND EVOLUTION 

In general, atomic clustering processes have to overcome a nucleation energy 
barrier. If the nucleation barrier is small or negligible, the formation of stable 
cluster nuclei proceeds spontaneously. In cases of high nucleation energy barriers, 
the formation of critical or stable clusters is only dictated by a stochastic process in 
which the stable configuration is achieved through infrequent chance encounters of 
necessary constituents. The nucleation of cavities in irradiated solids involves the 
exchange of at least two species (the vacancy and the SIA) between the cluster and 
the lattice. In the presence of helium, three species must be considered in these 
nucleation and growth processes. Helium has a strong catalyzing effect on the 
nucleation of cavities. Helium atoms enter the cavity and help support the surface 
energy forces through internal pressure. 

To include the effects of mobile helium atoms and a continuous source of helium, 
vacancy, and SIA, a unified treatment of the nucleation process was developed by 
Russelli5 using the nodal line analysis. The nodal line analysis of HeCVs begins by 
considering cavities as characterized in a 2-D phase space (Figure l), where a 
cluster is characterized by the number of vacancies and the number of helium 
atoms it contains. In Figure 1, stands for capture and a for loss reaction 
frequencies of vacancies (v), SIAs (i), helium atoms (h), and Khr represents the 
helium replacement reaction rate caused by dynamic momentum transfer from 
primary knock-on atoms (PKAs). 

VACANCIES PER CAVITY 

FIGURE 1 
defect capture (@*,, p,, p,,) or loss ( awr a,$, K,,’). 

Phase space for cavity nucleation showing movements of a cavity following possible point- 

The behavior of a cluster containing a number of vacancies and helium atoms in 
this phase space can be characterized by phase-space velocities which equal the 
sums of jump frequencies times the respective unit jump vector (neglecting higher 
mobile defects such as di-vacancies): 
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HELIUM-VACANCY CLUSTERING DURING IRRADIATION 335 

where, R,' is the single-vacancy capture rate, R,' the helium-atom capture rate, RIP 
the vacancy emission rate, R,' the SIA capture rate, R,' the helium-atom emission 
rate, R,@ the gas replacement rate caused by interaction with an SIA, and R,' is the 
helium re-solution rate caused by PKAs. In the present work, these reaction rates 
are calculated using (1) atomistic binding energy results''; ( 2 )  binding energies 
based on high-density EOS for helium5; and (3)  quasi-steady-state values for the 
vacancy, helium atoms, and SIA concentrations in the bulk material. Details of 
these calculations can be found in Ref. 7. 

Setting dvldt and dhldt equal to zero and plotting the loci of these points in the 
h-v phase space, helium and vacancy nodal lines are established. A possible 
configuration of nodal lines is schematically shown in Figure 2. 

r 

v) 
2 
P a 
r" 
8 
P 

NO. OF VACANCIES 

FIGURE 2 
h-v phase space. 

Schematic of possible nodal lines showing regions of growth and shrinkage of HeVCs in an 

It can be observed from the figure that: 
In region I, HeCVs grow by vacancy addition but shrink by loss of helium 

In region 11, HeCVs shrink by loss of both vacancies and helium atoms. 
0 In region 111, HeVCs grow by helium addition but shrink by loss of vacancies. 
0 In region IV, HeCVs grow by addition of both vacancies and helium atoms. 

atoms. 

The two points marked 1 and 2 on the phase diagram are determined by 
simultaneously setting 2 j=  h = 0. In region IV, HeVCs will grow unstably to larger 
sizes, as long as the helium and vacancy supply continues. 

D
ow

nl
oa

de
d 

by
 [A

ris
to

tle
 U

ni
ve

rs
ity

 o
f] 

at
 1

3:
42

 2
6 

N
ov

em
be

r 2
01

2 



336 S. SHARAFAT AND N. M. GHONIEM 

Using the nodal line analysis method, two nucleation modes are determined. The 
first mode causes a spontaneous helium precipitation into cavities (see Figure 3). 
Very small nucleation barriers exist in this case and nucleation proceeds 
homogeneously in the matrix. This occurs under the following irradiation 
conditions: high helium-generation rates, low temperatures, and low sink densities. 
The high helium-generation rate tips the competition for vacancies between SIAs 
and helium atoms in favor of helium atoms. This reduces vacancy annihilation rates 
due to SIAs, and thus the chance for survival of fundamental HeVCs is enhanced. 

In the second mode, which is termed stochastic nucleation, cavity formation 
proceeds with substantial nucleation barriers (i.e., regions I, 11, or 111 in Figure 3), 
which must be overcome by stochastic size fluctuations of subcritical HeVC 
embryos in order to reach stable configurations. This case is best achieved at high 
temperatures, low dislocation sink densities, and low helium-generation rates. The 
combination of high temperature and high sink density results in short defect 
mean-life times. These. coupled with low helium-generation rates, increase the 
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FIGURE 3 Stability analysis for HeVCs showing nucleation ( 7 =  SOWC, displacement damage 
rate = I 0  -(' dpa/s, dislocation density = p,,= 10"' cm '): (a) Spontaneous (He/dpa = 57); (b)  Stochastic 
(He/dpa = 0.1 ). 
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HELIUM-VACANCY CLUSTERING DURING IRRADIATION 337 

chances of SIAs to compete successfully against helium atoms for vacancies. These 
effects (nucleation barriers) suppress the generation of stable HeCV embryos. 
Therefore, to overcome the nucleation barrier, stable HeVCs must be formed by a 
stochastic process. 

A parametric study of various irradiation conditions and material properties at 
different temperatures was perf~rmed.~ For typical fusion and ion implantation 
environments it was shown that nucleation of stable HeVCs will be spontaneous. In 
this work we deal only with the spontaneous nucleation and growth of HeCVs. 

4 CLUSTERING MODEL AND THE FOKKER-PLANCK EQUATION 

Ghoniem et aL"' formulated a detailed rate theory for the transport and early 
clustering of h-v complexes. It has been shown that transport and clustering cannot 
be easily separated, at least not during the transient phase of nucleation. However, 
under conditions of high He/dpa ratios, a cluster containing only three helium 
atoms may be an adequate critical size. An important consequence of this mode of 
nucleation is that nucleation proceeds on a relatively fast time scale compared to 
growth or evolution time scales. When nucleation is completely stochastic, as in the 
case of very low concentration of gas atoms, temporal separation between 
nucleation and growth is not possible. In this section, we follow the general outline 
of the theory developed by Ghoniem et ~ 2 . 6 ,  Furthermore, we use the fact that the 
nucleation time scale is several orders of magnitude smaller than the evolution time 
scale at high He/dpa ratios. 

The nucleation rate of critical size HeCVs is given by 

- R,, Ci C, - 3 bGC*. (3)  

Here R,4,,j represents the reaction rate between A and R type clusters. The 
subscript/superscript notation is as follows: g= gas; v =  vacancy, i =  interstitial, and 
* =all h-v cavities containing three or more gas atoms. The displacement rate is 
denoted by G (s-I), and the probability of gas re-solution into the matrix by b (per 
gas atom). The reaction rates are for single-step atomic transitions and represent 
mean values of successful atomic transition probabilities. The concentration of 
critical size nuclei (C*) is naturally dependent upon the concentrations of various 
HeVCs, as well as on the concentration of single-helium interstitials and SIAs. This 
information is obtained from the complete model developed by us earlier.'. and 
therefore will not be repeated here. The point of departure here is that the total 
cavity density is determined, as a function of time from Eq. ( 3 ) ,  and is then used in 
the F-P calculations as will be discussed below. 

We first define the following: Y= number of vacancies in a cluster, h = number of 
helium atoms in a cluster, and P( u, h, t)dvdh = probability of a cluster at time f in 
the interval (21, v +  dv)  and (h,  h+ dh). The concentration of clusters containing 
vacancies and h helium atoms at time t is approximately given by 
C( u, h, t )= C*(r)P(v, h, t). The time evolution of the probability function in terms 
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338 S. SHARAFAT AND N. M. GHONIEM 

of all possible transitions in the h-v phase space is given by the master equation 
(ME):‘ ’ 

Here Avo  is a fluctuation in the vacancy content caused by a stochastic process 8, 
and Aho is a similar fluctuation in the helium content: transition probabilities for 
the various processes are wand their statistical properties can be obtained from the 
detailed physics of the process. The ME form given by Eq. ( 4 )  is based upon the 
Smolochoiski-Chapman-Kolmogorov (SCK) equation,” and the atomic transitions 
in Eq. ( 4 )  represent Gaussian-Markovian processes. Following Nicolis and 
Prigogine,” we multiply Eq. ( 4 )  by an arbitrary smooth function Q(w, h),  which 
goes with sufficient rapidity to zero as (v, h )  + a. Integrating the resulting equation 
over the h-v space and expanding Q(v, h )  around Q(v-  AVO, h -  Aho) and 
switching to new integration variable v‘ = v - A v, and h‘ = h - Ah8,  we obtain, up 
to second order, the Kramers-Moyal expansion to the h-v clustering equation [Eq. 
(411: 

aQ w[(v, h ) - ( v + A v , ,  h)]Av,-  
dV 

+ w[( V, h)  * (v, h + A he)]A he- 

a2Q + ~ [ ( v ,  h ) - ( v ,  h+dh,)]Ah;- 
ah2 

+ 2 w[( v, h) -. (v + Avo ,  h + Ahe)] 

x AveAhe- P d v  dh. 
dv ah 

The subscript 8 is used to indicate the type of the independent stochastic process. 
We can consider three types of transitions: ( 1 )  those caused by a single vacancy or a 
single-helium atom, (2) multiple vacancy transitions resulting from diffusion out of 
a nearby cascade, and ( 3 )  multiple h-v transitions caused by direct collisions 
between cascade recoils and the contents of a cavity. For the first mechanism we 
use the subscript 8= s, for the second 8= cd, and for the third 8= cc. In developing 
Eq. (5) we neglect terms containing O(AvO3,  Ah,”). For a Gaussian-Markovian 
stochastic process, moments beyond the second for the transition probabilities 
w( v, h) vanish. 
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HELIUM-VACANCY CLUSTERlNG DURING IRRADIATION 339 

The moments given by Eqs. (6)-( 10) can be evaluated if we assume that the process 
is ergodic, and hence the ensemble averages are equal to temporal averages over a 
suitable correlation time. Later in this section, we will discuss how the moments can 
be evaluated for single-step atomic transition processes. 

Equation ( 5 )  now becomes: 

JJQ $ dv d h =  JJ P (  a , , , -+  aQ a,,,- dQ 
a V  ah 

Following the methods of non-equilibrium statistical mechanics,'x we integrate Eq. 
(11) by parts in the right-hand side and use the fact that Q is an arbitrary function 
to obtain the following F-Pequation: 
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340 S. SHARAFAT AND N. M. GHONIEM 

Figure 1 shows possible single-atom transitions in the h-v phase space. In this 
schematic, the effects of cascades on the transition moments will be neglected. In 
this 2-D phase space, we define a drift vector, F(u, h), and a diffusion tensor, 
D(u, h), as follows: 

It is worthwhile to cast Eq. (12) in the familiar continuity form by using a simple 
definition of the probability density current as: 

J = FP- V( DP).  (13) 
The probability evolution equation [Eq. (12)] can now be compactly stated as: 

A numerical solution to Eq. (1 4) will be presented in the next section. 
Before we proceed, however, we describe a method for evaluating the 

components of the vector F and the tensor D when cascade effects are neglected, as 
shown in Figure 1. Here we use the notation K"!' for the rate constant of process xy. 
We consider here the following atomic transition processes: 

ic= self-interstitial capture, 
vc= vacancy capture, 
gc= helium atom capture, 
gr= helium atom replacement, 
ge= helium atomic thermal emission, 
ue= vacancy thermal emission. 
In the case of single-step atomic transitions treated here, the jumps (Au,  Ah)  are 

either k 1 as shown in Figure 1. Now applying Eqs. (6)-( lo),  we obtain: 

a, 1) = + k"), (15) 

a,,,= P - (P+ k?'), (16) 

k"< - (k" + I'C' 

1 
2! 

a,,,,,=-(P+P+Pj, 

a7,,,, = az ,,,, = P. (19) 

The values of the transition moments given by Eqs. (15)-( 19) are evaluated from 
the solution of a coupled set of rate equations developed by Ghoniem et al." ' The 
implications of fluctuations with ( A v ,  A h )  % f 1 caused by cascades will be 
discussed later when we present our numerical results. 
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HELIUM-VACANCY CLUSTERING DURING IRRADIATION 341 

5 NUMERICAL ANALYSIS OF THE FOKKER-PLANCK EQUATION 

Finite differencing the F-P equation, Eq. ( 14), transforms the partial differential 
equation into a set of ordinary differential equations (ODEs). One of the major 
characteristics of these ODEs is their stiffness which stems from the large 
differences in the reaction rate constants (transition probabilities) between clusters 
of different sizes. Small clusters transform rapidly into larger ones and, with this 
increase in size, transformations slow down. The stiffness of the system is 
particularly severe in this study because the current model encompasses HeVCs 
containing between 3 and lo7 defects. This stiffness is further compounded by 
vastly differing reaction rates for helium and vacancies. 

In this work, we use the latest version of the LSODE package,lY which was 
developed for initial value problems of stiff and non-stiff systems of first order 
ODEs. The user has the option to use either implicit Adams methods or a variety 
of explicit integration schemes. We found that the backward differentiation method 
with a mean-chord iteration and the numerical generation of the full Jacobian as 
the most suitable option for our system of equations. An important feature of this 
ODE solver is the ability to stop the numerical integration at any desired time and 
to re-start as a new initial-value problem with modified initial conditions. This 
enables the user to examine the progress of the solution. Furthermore, it re- 
initializes internal solver step sizes allowing the user to add or delete equations 
from the system of equations being solved. This feature of the LSODE package is 
particularly useful for developing a dynamic re-meshing algorithm as described 
later in this section. 

The current J in Eq. (14) consists of two components: 

J = e,J I' + e" J IJ, (20) 

where el,, are unit vectors in helium and vacancy direction in a h-v phase space, 
respectively; and Jh is given by 

a 
ah 

F"C(h, t)--[D"C(h, t )]  

and the vacancy current J L' 

a 
a V  

F'C(h, l)-- [D"C(h, t ) ]  

In short form notation, Eqs. (21) and (22) can be written as: 

r 

Considering a conservative phase element (Au,  Ah),  and integrating Eq. (14) at an 
(i, j )  meshpoint (see Figure 4), we obtain: 
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342 S. SHARAFAT AND N. M. GHONIEM 

I h. r+1/2 

FIGURE 4 Notations and coordinates of the i, j-th element in an h-v phase space. 

Using central differencing, we get for the vacancy directions the following mesh 
spacing: 

[A .ULll = [u,+ 112 - ul- ,,,I, 7 (26)  
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HELIUM-VACANCY CLUSTERING DURING IRRADIATION 343 

Combining Eqs. (26)-( 28) we get: 

Similarly in the helium direction, for the mesh size dimension we get: 

Using finite differences, Eq. (25) is now represented by a finite number of discrete 
equations of the form: 

where J L w ,  J i p p ,  J $ , ,  and J;ipp are given by Eqs. (23) and (24 )  finite differenced at 
[ i, j - ( 1 /2)] ,  [ i, j + ( 1 /2)] ,  [ i - ( 1 /2 ), j ] ,  and [ i + ( 1 /2, j ] ,  respectively. 

An advantage of Eq. (31) is the convenience with which the conservation 
principle can be implemented, provided a finite solution space is established. The 
following section outlines a trajectory method approach to construct a finite 
solution space for our system of ODES. 

5.1 The Trajectoly Method for Determining Average Cavity Sizes 
Trinkaus*" used an analytical formulation to predict the average h-v ratio in the h-v 
phase space for constant single-helium atom and vacancy fluxes. This approach is 
used and expanded to include time-dependent helium and vacancy fluxes. 

We start with the growth equation of clusters via vacancy absorption, which is 
expressed as the difference between single vacancy and SIA impingement fluxes: 

-=- D,,C,,-D,C,-D,,C,:' exp - - - p  
dt R [ [:T(: )]-'})' 
where D, C,, , D,C,, and D, C' are single vacancy, interstitial, and thermal vacancy 
fluxes, respectively. R is the cluster radius, Q the atomic volume, and k is the 
Boltzmann's constant. The last term in Eq. ( 3 2 )  represents the vacancy emission 
rate which is a function of the pressure p, the surface tension of the cavity y, and 
the temperature T 

In the analytical work of Trinkaus,2') the assumption is made that helium atoms 
do not return to the matrix once captured. Thus the helium growth equation is the 
capture rate of helium atoms given by the helium growth equation 

dh 4 n R  
dt Q 
- DHcCHc. (33) 

Equation (33) depends on the helium flux DHeCHe, which itself depends on the 
cavity concentration C, . This poses a problem for analytical solutions. Therefore, 
the helium growth equation [Eq. (33)] was simplified by assuming that all helium 
produced is distributed equally among all the cavities: 
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344 S. SHARAFAT AND N. M. GHONIEM 

where pHe is the helium generation rate. Equation (34) also assumes no loss of 
helium to other sinks such as grain boundaries and precipitates. In the present work 
these assumptions are removed and furthermore we include a re-solution term in 
the helium growth equation: 

where b is the probability of re-solution per helium atom per unit time, and N is the 
number of helium atoms per HeVC. Because we are solving a detailed set of rate 
equations, the vacancy growth equation [Eq. (32 ) ]  is expressed in terms of v, the 
number of vacancies per HeVC: 

In this work, the gas pressure, p, is given by Van der Waal's EOS: 

'=(4 /3)xR3 - N B  ' 
N k  T 

(37) 

where B is Van der Waal's constant. For high gas pressures and small radii, a virial 
expansion is used for greater accuracy: 

where vQ is the volume occupied by v vacancies. 

integrating: 
The growth trajectory is determined using Eqs. ( 3 5 )  and (36)  by numerically 

where the function flv, h )  is the ratio of the right-hand sides of Eqs. (35) and (36). 
Thus the trajectory depends on the three basic defect fluxes (v, i, h)  and a helium 
re-solution parameter (b). 

Examples of the numerical solution of Eq. (39) are shown in Figure 5 for various 
irradiation facilities. HFIR and EBR-I1 have similar displacement damage rates of - lo-" dpa/s but differ in the helium generation rate. Accelerators generally 
deliver a displacement rate on the order of - dpa/s with high He/dpa ratios 
of - 100 appm/dpa. Figure 5 shows the effects of He/dpa ratios on the helium 
content of cavities. 

The effects of the ideal gas law and thermodynamic equilibrium on the 
trajectories are examined in Figure 6. Thermodynamic equilibrium assumes that 
the pressure is in equilibrium with the surface tension force of the cavity. We also 
compare the trajectory for EBR-II irradiation conditions using Van der Waal's EOS 
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1 l o2  lo4  lo6 
VACANCIES 

0 

l o 2 -  
$ 

1 
1 l o2  lo4  lo6 

VACANCIES 
FIGURE 5 Growth trajectories for accelerator (A),  HFIR (C), and EBR-I1 (D) irradiation conditions 
at 500°C (B = equilibrium bubbles). 

/ ”  , I /  
1 lo2 lo4  

VACANCIES 
FIGURE 6 
(B) and the ideal gas law (C) to describe the pressure inside HeVCs (A=equilibrium bubbles). 

Growth trajectories for EBR-I1 irradiation conditions at 500°C using Van der Waal’s EOS 

and the ideal gas law. As the size of HeVcs increases, the ideal gas law trajectory 
approaches that of the Van der Waal EOS trajectory. 

The effects of the re-solution parameter are shown in Figure 7. Even though the 
effect of re-solution is negligible on small HeVCs containing less than loJ 
vacancies, it becomes an important parameter in determining the helium content of 
larger cavities. 
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VACANCIES 

FIGURE 7 
condition\ using Van der Waal's EOS and the ideal gas law to describe the pressure inside HeVCs. 

Effect of re-solution parameter (b)  on the growth trajectories for EBR-I1 irradiation 

5.2 Solution Space for the Fokker-Planck Equation 
The growth trajectory of HeVCs in the h-v phase space gives the average size of 
HeVCs. To develop a numerical solution of the F-P equation we need to determine 
a finite solution space around the trajectory. The approach is to conserve the zero- 
th moment of the probability distribution function by invoking zero-current 
boundary conditions on a prescribed contour in the h-v phase space. This contour 
should conserve, at all times, the zero-th moment of the distribution function. It is 
therefore necessary to define the zero-current contour around the trajectory. The 
extent of the chosen solution space should be determined by higher moments of the 
distribution function. A reasonable choice is based on the second moment, which is 
described below. 

Starting with growth equations B and h [Eqs. (35) and (36)], we can quantify a 
diffusional spread in the vacancy and helium directions as follows: 

(At$'= 40"2, 

(Ah)'=4Dhz,  

where D 'I and D are determined from the corresponding growth equations: 

2nR 1 
Dh==(DHeCHc)+-  Nb. 

Q 2 
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HELIUM-VACANCY CLUSTERING DURING IRRADIATION 347 

A numerical approach must be used to calculate the time r, corresponding to every 
h-v combination on the trajectory. This can be evaluated from: 

where the integration is a line integral along the trajectory from either u* or h *to V 
or H. 

As a conservative estimate for the diffusional spread in the h-v size space, we 
used a multiple of the estimates given by Eq. (40) and (41). A factor between 5 and 
10 is found to be reasonable. Figure 8 shows the results of sample calculations, 
where the contours are obtained with five times the average spreads given by Eqs. 
(40) and (41). Note that the diffusional spreads of helium and vacancies trace 
different loci. This is because of the differences in diffusion rates. As a rule, we 
chose the larger of the two spreads. In case of HFIR irradiation conditions, the 
boundaries are determined by the helium diffusional spreads (see Figure 8). 
Therefore the loci determined by the diffusional spreads around the trajectory 
constitute the boundaries of the solution space across which no cavity evolution 
current flows. Thus we have constructed a finite, closed boundary system, provided 
we establish a maximum possible HeVC size. 

____ I--- 

100 

VACANCIES (x 10-3) 
FIGURE 8 
EOS showing estimated diffusional spreads in the helium (HS) and vacancy (VS) directions. 

Growth trajectories (T)  for HFIR irradiation conditions at 500°C using Van der Wad's 

5.3 Boundaly Conditions 
A set of detailed rate equations is solved for small clusters resulting in a self- 
interstitial flux, a helium-atom flux, a single-vacancy flux, and a critical HeVC 
nucleation current. Once quasi-steady-state flux rates are reached, mobile defect 
fluxes and the concentration of critical HeVCs are taken as input parameters to the 
F-P equations. This separation of nucleation and growth is reasonable, since 
nucleation time scales are much shorter than growth time scales in this particular 
situation. 
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348 S. SHARAFAT AND N. M. GHONIEM 

Temporal separation between nucleation and growth, together with application 
of Gauss’s divergence theorem on Eq. (14), results in IpJ - d l = 0  around the 
solution space boundary. If at the upper boundary the current leaving the solution 
space (I,,,,) is zero, the total number of HeVCs is conserved at all times. This 
conservation principle thus constitutes a check on the numerical solution to the F-P 
equation. As a case study, we consider the HFIR irradiation conditions and 
stainless-steel material parameters. Figure 9 shows the behavior of the HeVC size 
distribution at different irradiation times without helium in order to ascertain the 
numerical accuracy of the method. At the onset of the evolution ( t ,  = 0.1 s), the 
distribution is shown to be dominated by small clusters. At t2= 8.6 X lo3  s, we 
notice a decrease in the concentration of critical HeVCs and a broadening of the 
distribution. Because the nucleation current (4,) is set equal to. zero, there is no 
supply of critical HeVCs. As irradiation continues, the distribution function 
broadens and the peak amplitude decreases. 

0 100 200 300 400 500 

VACANCIES PER CAVITY 
FIGURE 9 The evolution of small HeVCs using the F-P equation and the zero-current boundary 
condition for typical HFIK irradiation conditions. 

This behavior is expected from a F-P equation in which the drift term F forces 
the peak to move while the diffusion term D causes a broadening around the peak. 
Because we have set .To,, equal to zero, there are no destruction mechanisms for the 
largest HeVCs. The calculations indicate that the number density of large clusters 
increases steadily at the expense of smaller ones. Thus, once the peak has reached 
the maximum size considered, it stays at that position and its value steadily 
increases until about lo5 s of irradiation time. Beyond this time, the distribution 
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HELIUM-VACANCY CLUSTERING DURING IRRADIATION 349 

remains unchanged for any practical irradiation time considered. The conservation 
of the zero-th moment of the HeVC distribution was checked using a simple 
trapezoidal integration rule. The largest error found was on the order of the 
machine round-off error ( - 10 - l 4  % for the CRAY- 1 supercomputer). 

The zero-current boundary condition was extended to the helium dimension of 
the solution space and thus an accurate balance of the total number of vacancies 
and helium atoms introduced into the system during growth was achieved. 

5.4 Dynamic Re-Meshing of the Solution Space 
The major way to save computer time is to minimize the number of ODES without 
sacrificing numerical accuracy. In this section a dynamic re-meshing method which 
effectively keeps the number of equations to a minimum is outlined. 

At the onset of evolution, changes in the distribution function are very rapid. The 
distribution broadens while the peak moves rapidly to larger sizes. As the 
distribution moves, its rate of change slows down. Therefore, it is crucial to follow 
both fast and slow modes in the distribution function. This can be achieved by 
choosing a fine mesh size for small clusters and increasingly larger mesh sizes for 
larger ones. The computational algorithm is structured such that, once the peak of 
the HeVC size distribution function moves to larger sizes, equations describing 
small sizes are removed from the system and other equations are added to cover 
the evolution of large HeVCs. 

Equations are thus dynamically added to the distribution wavefront as it moves 
towards larger cluster sizes. Concurrently with the addition of equations to the 
wavefront, the mesh sizes of the new equations are made larger in both dimensions 
(the vacancy and the helium atom content). The dynamic solution space changes 
are made possible only because the trajectory method enables us to approximate 
the average HeVC sizes. Knowledge of the average cluster sizes allows positioning 
of the distribution peak far from the boundaries of the solution space. 

The following is a summary of the dynamic re-meshing algorithm: 
1) We first start with a system of equally spaced mesh points spanning a small 

range from several to 100 vacancies per HeVC. The boundary currents .I," and J,,, 
are set equal to zero. 

2)  At chosen output intervals, the average HeVC size is computed using the 
trajectory method. 

3 )  If the peak position of the distribution becomes too close to the average HeVC 
size, then a few equations ( 5  to 10) are added to the wavefront of the system with 
larger mesh spacings in both the helium content and vacancy dimensions. 

4) At each output interval, a check is run on the small-size part of the 
distribution (wave trailing). The number of equations contributing less than a 
fraction of a percent (-0.05%) to the zero-th moment are removed from the 
system. According to the removal or addition of equations, the boundary 
conditions are also moved along with the system. 
Using this technique, a typical run that follows the evolution of helium-filled 
cavities from a few constituents to over lo7 uses no more than about 120 equations 
at any time to cover the total range. The program efficiency is reflected in the small 
amount of computational time required for typical runs (between 3 and 7 minutes 
CRAY- 1 time). 
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350 S. SHARAFAT AND N. M. GHONIEM 

6 MODEL APPLICATIONS TO IRRADIATED STAINLESS STEEL 

Maziasz" investigated the sensitivity of microstructural evolution to increased 
helium content during neutron irradiation. In particular, he used EBR-11- and 
HFIR-irradiated samples to study cavity evolution. In his experiments, Maziasz 
found that the low fluence swelling peaks at 425" to 45OoC, as cavities grow among 
a constant background of finely dispersed cavities present between - 9  t o  - 
14 dpa. This results in a bi-modal cavity distribution characteristic only to this 
temperature range. 

Since HFIR irradiation conditions at 450°C have been identified to result in 
spontaneous nucleation of HeVCs in stainless steels (see Section 3 ) ,  the present 
model is applied to this case. 

Before cavities can reach the growth stage, we have to establish the quasi-steady- 
state concentration of critical HeVCs. As outlined in Section 2, this is 
accomplished by solving a set of detailed rate equations describing the kinetics of 
interaction between helium and displacement damage. Typical displacement 
damage rates for HFIR irradiation conditions are 1.1 1 X dpa/s, and the 
helium generation rate is 6.35 X lo-"  atom/s. The re-solution parameter b has 
been set equal to 1, and the dislocation bias factor to Z , =  1.08. The remainder of 
material parameters are the standard values for Type-31 6 stainless steel given in 
Table I. 

TABLE I 
Standard material parameters for type-3 16 stainless steel 

Notation Parameter Value Units Ref. 

Lattice parameter 
Dislocation density 
SIA migration energy 
Single-He interstitial migration energy 
Single vacancy migration energy 
SIA formation energy 
Vacancy formation energy 
Surface energy 
Interstitial vibration frequency 
He vibration frequency 
Vacancy vibration frequency 
Van der Waal's constant 
Re-solution parameter 
Interstitial bias factor 
Atomic volume 

3.63 
3 x 10" 

0.2 
0.1 
1.4 

4.08 
1.6 

6.24 x l 0 l 4  
5 x 10l1 
5 x  lo ' ?  
5x10"  

1.7sx 1 0 - 2 '  
I 

1.08 
1.1958X l o - "  

A 
cm/cm' 

eV 
eV 
eV 
eV 
eV 

eV/cm2 
S I  

5 '  
4 1  
ern ' 
- 

cm' 

- 

22 

:2 2 
23 
22 
23 
24 
25 
24 
_. )5 

- 

Figure 10 shows the concentration of single vacancies (C"), SIAs (C,), single- 
helium atoms (CHJ as well as critical HeVCs. Although the time structure of C, 
and C, is little affected by the presence of helium, the absolute magnitude of the 
vacancy concentration in this case is less than in a corresponding study2'. zx  without 
the interaction of helium gas. During the early stages of irradiation, helium is 
generated as interstitial helium atoms, but is soon trapped when vacancies become 
available. This mechanism keeps the concentration of untrapped helium atoms low. 
This trapping eventually leads to the formation of cavities from substitutional 
helium. The cavity concentration has been reported to be approximately 2 X lo-'  
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A 1E-6 I 1-1 I I I I I E 
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-w 1 E - 8 -  VACANCIES -Y CRITICAL HeVC 

1 E - 1 0 -  0 
U - 1E-12 '  
Z 
0 5 1 E - 1 4 -  
cf 
k z 1 E - 1 6 /  w 
0 
Z 1 E - 1 8 -  INTERSTITIAL HELIUM 
0 
0 

-cI - 

SELF- I NTERSTlTlALS 

1E-20 ~ i I 

1 E-6 1 E-4 1 E-2 1 1 0 0  1 E 4  
IRRADIATION TIME (s) 

FIGURE 10 
time for HFIR conditions at 450°C. 

Irradiation-produced defects and critical HeVC concentration as a function of irradiation 

atom/atom for HFIR irradiation experiments performed at 467°C.'" Our set of rate 
equations predicts a critical HeVC concentration of approximately 8 x lo- '  atom/ 
atom (see Figure 10). 

Having established the quasi-steady-state concentrations of mobile defects and 
of critical HeVCs, the trajectory analysis is used to determine the most probable h- 
v combination of the evolving cavities. Parameters of Table I and the results of the 
detailed rate equations analysis (Figure 10) are used. The results of the trajectory 
analysis seem to compare well with the experimental findings of Maziasz" (Figure 
1 1). The trajectory analysis also establishes the range of the solution space. Cavities 
containing up to 10' vacancies and los helium atoms (see Figure 12) were 
considered in our work. Since the trajectory traces the path of the average h-v 
combination, we assumed that contributions to the distribution of HeVCs located 
far from the trajectory are negligible. The outer boundaries were determined using 
the diffusional spread as outlined in Section 2. Figure 12 shows the solution space 
around the trajectory containing more than 99% of the distribution function. 

At the onset of cavity growth, all cavities are approximately of the same size, 
containing three vacancies and three helium atoms. As irradiation proceeds, these 
critical HeVCs diffuse and drift in the h-v phase space. Figure 13 shows the 
evolution of the size distribution of HeVCs at various irradiation times. Note the 
broadening of the distribution function with time. Figure 14 shows the results of 
the HeVC size distribution as function of both helium and vacancy content at 
approximately 14 dpa of irradiation (corresponding to approximately 1.3 x lo7 s 
for HFIR conditions). While the distribution is narrow for small clusters, it 
broadens as the peak traces out a path close to the trajectory. Although all previous 
analytical attempts have only been able to predict the trajectory path of the 

D
ow

nl
oa

de
d 

by
 [A

ris
to

tle
 U

ni
ve

rs
ity

 o
f] 

at
 1

3:
42

 2
6 

N
ov

em
be

r 2
01

2 



352 S. SHARAFAT AND N. M. GHONIEM 

40.1 

30.1 
A 

E 
c 

20.1 W 

3 
5 
Q 

10.1 

0.1 
1000 1 E 4  1 E 5  1 E6 1 E7 1 E8 

IRRADIATION TIME ( s )  
FIGURE 1 1  
the trajectory method (data points [21]). 

Time evolution of cavity size irradiated under HFIR conditions at 450°C as estimated by 

1 I I I-------- I -l 

0 
b 1 . O E 5  
I 
\ cn 
I: 

Q 

I 

e 
5.OE4 

100.0 

U - UPPER DIFFUSIONAL SPREAD 

T - TRAJECTORY OF HeVCs 

L - LOWER DIFFUSIONAL SPREAD 

1 10 100 1000 1 E 4  1 E 5  1E6 1 E 7  
VACANC I ES/H eVC 

FIGURE 12 
estimated diffusional spreads. 

Growth trajectories of HeVCs for HFIR irradiation conditions using five times the 

HeVCs,' our model is the first one that establishes the transient size distribution 
function in the h-v phase space. 

Figure 15 shows the dependence of the cavity distribution function on cavity 
diameter and helium content for HFIR irradiation conditions. At the onset of 
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FIGURE 13 
conditions at 450°C. 

HeVC size distribution function at various irradiation times for typical HFIR irradiation 

growth ( - 0.1 dpa), there is a large concentration of small HeVCs ( - 2 nm/diam) 
containing between 100 and 200 helium atoms. As irradiation continues, the 
HeVCs grow in size to about 5 nm containing a few 100 to several 1000 helium 
atoms at 1.1 dpa. This evolution process is followed up to about 14 dpa (final 
experimental results). At that time, the average size is about 20nm and may 

" contain up to 3.5 x lo4 helium atoms. Unfortunately there is no experimental data 
for the helium content distribution of cavities as a function of irradiation time and 
cavity size. The data available are only with respect to the size distributions. 

To compare our model to experimental findings, the cavity concentrations are 
converted to distribution percentages. The results are shown in Fig. 16. The model 
predicts a narrower size distribution with the peak position roughly coinciding with 
experimental data?' The computed size distribution is shown to be narrower than 
experimentally observed. The spread of the distribution is solely dependent on 
emission/absorption probabilities, which govern the dispersion coefficient (D)  in 
the F-P equation. We have not accounted for cascade effects on D. It is therefore 
consistent to conclude that cascade effects are significant on the spread of the 
distribution function. 

7 SUMMARY AND CONCLUSIONS 

A model was developed to account for transport, nucleation, and detailed 
evolution of HeVCs during irradiation. As such, it is the first model developed to 
encompass all stages of helium-filled cavity growth from atomistic sizes (few defects 
per HeVC) to macroscopic dimensions (containing up to lo7 constituents per 
cavity). A detailed set of cluster-kinetic rate equations is set up to determine the 
nucleation rate of stable HeVCs during irradiation. One advantage of using the rate 
theory approach is that the effects of HeVC formation on the transport of helium 
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354 S. SHARAFAT AND N. M. GHONIEM 

c 3 

FIGURE 14 Cavity concentration at 14 dpa as a function of vacancy and He content for HFlR 
irradiation conditions at 450°C: (a)  Entire distribution function; (b)  Detail of the forward-moving 
distribution. 
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5 
function of diam; (b) Avg diam as a function of He content. 

Cavity distribution function, for HFIR irradiation conditions at 450"C, at: (a) Avg He 

atoms, vacancies, and SIAs during irradiation is included. The effect of the 
developing microstructure on the nucleation current of stable HeVCs is thus 
automatically incorporated. A parametric study of temperature effects identified 
various kinetic processes responsible for (effective) helium-atom transport during 
irradiation. The nodal line analysis was used to determine the most probable 
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FIGURE 1 6  
14.3 dpa for HFIR irradiation conditions at 450°C (experimental data 1211). 

Comparison of computed and experimentally measured cavity size distribution at 

combinations of helium atoms and vacancies in HeVCs as a function of time. In 
conjunction with the nodal line analysis, a virial expansion EOS was used to 
estimate binding energies of helium atoms and vacancies to h-v complexes as a 
function of cluster size and gas ~ o n t e n t . ~  Good agreement with atomistically 
calculated binding energies for small clusters was found. The effects of 
temperature, He/dpa ratio, re-solution of helium atoms, and material properties on 
the nucleation kinetics of HeVCs were investigated. Regions of spontaneous and 
stochastic nucleation conditions were established. 

Starting with a general cluster kinetic master equation and taking moments of 
transition probabilities, we derived a continuum, 2-D (helium and vacancy content), 
time-dependent F-P equation. The F-P equation can be used to describe the growth 
of stable HeVCs into helium-filled cavities. However, the equation is too complex 
for analytical solution techniques. Therefore, a numerical approach was developed. 

To solve the F-P equation in the h-v phase space, first a finite solution space was 
determined using a growth trajectory approach. Using the trajectory method, the 
average helium-filled cavity size and helium content can be estimated. Approximate 
diffusional spreads around the growth trajectory determine the boundaries of a 
minimum solution space for the F-P equation. A zero-current boundary condition 
across the boundaries of the solution space was set up. The advantage of this 
boundary condition is that the conservation principle can be invoked and 
erroneous numerical results are detected. 

Finite differencing of the F-P equation and discretization of the solution space 
was used to develop a system of ODEs which were solved using the LSODE 
package. To model the growth of HeVCs, the system of ODEs must cover the range 
from stable nuclei (few defects per cluster) to macroscopic clusters containing up to 
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lo7 defects. To ensure the efficiency of the algorithm, a dynamic re-meshing 
method was developed. This algorithm fulfills two functions: ( 1 ) As the distribution 
of HeVCs drifts in the h-v phase space towards larger cluster sizes, the solution 
space follows (dynamically) the distribution movement (only equations which 
represent sizes in the vicinity of the distribution peak are solved). (2) Growth of the 
HeVCs is accompanied by dispersion of the size distribution in the h-v phase space 
[as the distribution broadens the mesh spacing is automatically increased (re- 
meshing)]. Using the dynamic re-meshing algorithm, the maximum number of 
ODES being solved at any time was not more than 120 and typical computer runs 
used only 3 to 7 minutes of computation time on the CRAY-1. 

The model was applied to Type-3 16 stainless steel exposed to typical HFIR 
irradiation conditions at 450°C up to about 14 dpa. This example was chosen 
because of the available experimental data base and because the high He/dpa ratio 
promotes spontaneous nucleation of HeVCs. Reasonable agreement between 
experimental and numerical results were found. In particular, at 14 dpa the peak of 
the calculated helium-filled cavity bubble size distribution coincides with measured 
values. However, the numerical size distribution is somewhat narrower than the 
experimental one. This is because cascade stochastic processes have not yet been 
included in our model. Such processes would lead to a further broadening of the 
calculated size distribution. Because our model uses a 2-D F-P equation (size and 
helium content), the helium content distribution is also evaluated. However, 
experimental data on the history of the helium content distribution in HeVCs is not 
yet available. 
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