
Modeling the Early Stages of Thin Film 
Formation by Energetic Atom Deposition 

C.A. STONE and N.M. GHONIEM 

The early stages of thin film formation are described by a simple hybrid model that couples a 
set of discrete kinetic rate equations to a Fokker-Planck (FP)-type continuum. Unique features 
of the atomic processes in energetic particle deposition are outlined and discussed. A thermal 
atom deposition process is benchmarked with Zinsmeister's analytical theory [~7] to demonstrate 
the simplicity and accuracy of the model. This simplicity allows extensions to the treatment of 
energetic particle effects and the growth of multilayers of atoms. It is shown that the model 
explains the major features of the early stages of atomic clustering. 

I. INTRODUCTION 

T H E  advent of energetic atom deposition technologies 
has resulted in new production techniques for synthesiz- 
ing thin films and coatings. Energetic neutral atoms and 
charged particles impinge on a surface with energies far 
in excess of the thermal energy of an average lattice atom. 
The simultaneous action of a number of unique atomic 
processes (sputtering, implantation, nucleation, heating, 
and migration) produces films which possess promising 
properties. As such, thin film formation by energetic 
particles is fundamentally different from atomic depo- 
sition processes involving thermal particles (e.g., evap- 
oration and condensation). 

A number of energetic atom deposition processes are 
currently being used for surface modification and thin 
film production purposes. These processes use a high 
vacuum system to condense superthermal free particles 
on a host material. Ion-beam deposition systems deposit 
ionized material directly onto a surface. Similar to ion- 
beam deposition is ionized cluster-beam deposition, in 
which a cluster of atoms is ionized and accelerated to- 
ward a substrate. Upon impact on the substrate, the clus5 
ter dissolves into individual atoms. In ion-beam sputtering 
deposition (IBSD), an ion beam is used to sputter a solid 
target; these sputtered target atoms then modify the sur- 
face to be processed. Reactive ion-beam sputtering de- 
position is similar in principle to IBSD, but reactive 
molecules are introduced during the deposition process, 
either in the ion beam or in the gaseous phase. Dual- 
beam sputtering deposition is also similar to IBSD; how- 
ever, an additional ion beam is used to directly bombard 
the growing film. An excellent review of these ion-beam 
processes and their applications can be found in 
Reference 1. 

Other energetic atom deposition methods which use 
plasmas include radio frequency (RF) bias sputtering, 
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magnetron sputtering, triode sputtering, ion plating, ac- 
tivated reactive evaporation, and plasma-enhanced 
chemical vapor deposition. [2j These plasma processing 
technologies have significantly enhanced the semicon- 
ductor fabrication industry. [3] Additionally, investiga- 
tions of the surface modification of materials by plasma 
bombardment have been performed in order to develop 
plasma-interactive components for fusion reactor 
systems. [4.5.6] 

The high energies of the bombarding particles actually 
damage a surface by creating near-surface defects and 
partially destroying a growing film. However, numerous 
benefits of energetic atom deposition processes manifest 
themselves in the final surface characteristics of the thin 
films produced. The surface mobility of energetic atoms 
is higher than corresponding thermal deposition tech- 
niques; thus, epitaxial films can be produced at lower 
substrate temperatures. Superior coating adhesion is also 
achieved because of ion-beam mixing at the f'flrn-substrate 
interface. From an industrial point of view, [7] such pro- 
cesses alter the mechanical, chemical, electrical, optical, 
and tribological properties of a surface. The surfaces cre- 
ated can have high wear and corrosion resistance, re- 
duced friction, improved fatigue performance, good 
adhesive properties, hard diamond-like coatings, and de- 
sirable electrical and optical features. 

A review of previous atomistic studies, which have 
tried to assess the nucleation and growth of thin films 
prepared by thermal deposition methods, is given in 
Reference 8. Theoretical models of thermal deposition 
have shown consistency with experimental observations 
of nucleation and growth. Various assumptions must in- 
variably be made to simplify the computational task and, 
thus, models of varying degrees of complexity have been 
proposed. In complicated experimental procedures, thin 
film synthesis has often been considered a black art ;  [9] 

nonetheless, the theoretical attempts at modeling thermal 
particle deposition have helped in clarifying the rela- 
tionships between atomistic processes and the macro- 
scopic properties of thin films. 

For energetic atom deposition processes, one needs to 
assess the impact of 1 to 100 eV particles and charged 
species on a growing film, as well as the impact of en- 
ergetic clusters. Ion scattering measurement experiments 
have been developed for the production of well- 
characterized noble gas and metal ion beams over the 
energy range of -<20 eV to 10 keV, t~~ which should 
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provide insight into particle-surface interactions over en- 
ergy ranges of interest in energetic atom deposition pro- 
cesses. However, the authors have no knowledge of any 
comprehensive kinetic theoretical studies on the influ- 
ence of energetic atom deposition processes on thin film 
formation. 

The purpose of this paper is to develop a comprehen- 
sive theoretical model which describes energetic atom 
deposition processes. Fundamental atomic processes will 
be identified and described by a set of equations which 
can be solved to yield information about the resultant 
thin film formation and structure. Such a study should 
enable the design of deposition processes to produce de- 
sired surface characteristics. Also, fundamental atomis- 
tic processes can be identified and related to the 
macroscopic surface properties. 

II. A M O D E L  F O R  THIN F I L M  F O R M A T I O N  

The first step in modeling thin film formation by en- 
ergetic atom deposition involves identifying the various 
physical processes which occur when energetic particles 
impinge on a substrate host. A set of equations can then 
be developed to describe these processes. In this paper, 
an atomistic approach is used to model the deposition 
event, atomic clustering, and thin film formation. To 
simplify the formulation, we subdivide the problem into 
five stages: kinetics of the early stages of atomic clus- 
tering, energetic atom processes, cluster nucleation and 
growth, cluster coalescence, and multilayer thin film 
formation. Each stage is briefly described in this section. 

A. Kinetics of the Early Stages of Atomic Clustering 

Before describing the early deposition phenomena, a 
few notational variables will be introduced. As particles 
are deposited on a substrate to form a thin film, clusters 
of particles will appear on the substrate, eventually cov- 
eting the surface and forming a coating. The variable of 
interest in this study is the cluster density distribution 
function, C(x, L, t), which is the number of clusters per 
unit substrate area found on the substrate at time t; x is 
the number of atoms in the cluster, and L is the particular 
thin film layer on which the cluster is located. The first 
monolayer of film is defined as L = 1; for modeling 
near-surface substrate layers, L <-- 0. The top surface of 
a growing film structure is denoted by Lma x. The vari- 
ables x and y will be used to denote the number of atoms 
in various clusters on the substrate, while z will desig- 
nate atoms being deposited from a deposition source. 

Five processes are identified in the early stages of 
atomic clustering: energetic atom deposition, direct im- 
pingement, cluster evaporation, cluster aggregation, and 
dissociation. The deposition rate per unit substrate area 
is given by q[z, E(z)]. For single-atom deposition pro- 
cesses, z = 1, and q[1,E(1)] represents the single-atom 
deposition rate, where each particle strikes the substrate 
with energy E(1). In the case of an ionized cluster-beam 
deposition process, the depositing species will strike the 
substrate as clusters of z-atom particles, where each 
cluster of z atoms has an energy E(z). If a deposited clus- 
ter completely dissolves after striking the substrate, 

each particle will transfer an average energy of (E) = 
E(z)/z. 

Direct impingement occurs when a depositing particle 
lands directly on an atomic cluster already present on the 
substrate. Direct impingement effects are usually not im- 
portant until the later stages of atomic clustering, when 
a substantial portion of the substrate surface is covered 
with growing clusters. Nonetheless, the rate per unit 
substrate area at which an x-atom cluster grows by direct 
impingement is given by q[z, E(z)]~r~(x)C(x, L, t), where 
o-~(x) is the probability (in units of area) that a z-particle 
cluster from the deposition process will directly impinge 
on an x-atom cluster. The value of o-z(x) depends on both 
the size and geometry of the clusters present on the 
substrate. 

It should be obvious that the net effect of the depo- 
sition process is to place atoms on the substrate. Once 
on the substrate, these atoms can migrate and participate 
in a variety of events. If an atom has enough thermal 
energy, it may evaporate off the substrate. Single atoms 
are more likely to evaporate than actual clusters. For 
consistency, the evaporation rate for an x-atom surface 
cluster (L = Lmax) will be defined as C(x, Lma~,t)/ 
%v~p(X, Lmax), where %v~p(x, Lm,x) is a characteristic time 
that an x-atom cluster remains on the surface before 
evaporating. The value of  %v~p(x, Lmax) depends on the 
substrate temperature and on the binding energies of 
cluster atoms. 

During the early stages of atomic clustering, two clus- 
ters migrating across the substrate surface may aggregate 
into a larger cluster. The rate at which x- and y-atom 
clusters aggregate together [forming an (x + y)-atom 
cluster] is given by Wy(X)C(x, L, t)C(y, L, t), and aggre- 
gation is assumed to occur in the same atomic layer. The 
aggregation rate constant, Wy(X), is the rate (area/time) 
at which x- and y-atom clusters aggregate and depends 
on the cluster sizes as well as the substrate temperature 
and lattice constant. 

Because of dissociation processes, large clusters may 
break up into smaller ones. The rate at which an x-atom 
cluster dissociates from a y-atom cluster (for x < y) is 
given by Oty(x)C(y,L, t), where %(x) is the dissociation 
frequency of an x-atom cluster from a y-atom cluster. 
The term %(x) becomes an increasingly complex func- 
tion, if one tries to account for all of  the possible dis- 
sociation paths that a large y-atom cluster can undergo; 
however, the energetics of dissociation allow for 
simplifications. 

B. Energetic Atom Processes 

When an energetic atom strikes a surface, a variety of 
synergistic effects can occur. Surface defects are pro- 
duced, atomic mixing occurs, and energy is dissipated 
in the form of local surface heating. With this in mind, 
four energetic atom deposition effects are identified which 
will play a major role in the creation and destruction of 
a growing thin film. These effects include particle re- 
flection, surface sputtering, implantation, and cluster 
resolution. 

Not all of the energetic particles that strike a substrate 
actually stick. The particle reflection coefficient for the 
depositing species will be defined as R I [E(z), O(L)], where 
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O(L) is the angle of incidence of the depositing species 
with respect to layer L. The fraction of incident particles 
which actually make it to the substrate is then {1 - 
Ry[E(z), O(L)]); consequently, the effective deposition 
rate on the substrate is {1 - Rf[E(z), O(L)]}q[z,E(z)]. 

Particles that do not reflect off the substrate may ther- 
mally settle on the substrate surface. Depending on the 
particle energy, however, sputtering or implantation may 
result. Sputtering erodes the top surface layers, whereas 
the implantation mechanism drives the impinging spe- 
cies into the near-surface layers. To assess the effects of 
sputtering, the sputtering yield, S[E(z), O(L)], will be 
defined as the number of atoms in layer L that are sput- 
tered out of the film (or the substrate, if L -< 0) per 
incident of deposited species of energy E(z). Implanta- 
tion can similarly be characterized by defining an im- 
plantation parameter l[E(z), L], which designates which 
fraction of the deposited species of energy E(z) implants 
itself in layer L. 

Probably the most difficult effect to assess readily is 
the cluster resolution rate. Although similar to direct im- 
pingement, which involves the incorporation of the de- 
positing species on a growing cluster, the cluster resolution 
process occurs when the depositing species has enough 
energy to break up a growing cluster if it impinges di- 
rectly on it. At the present time, it is not known exactly 
how much energy is required to break up a growing clus- 
ter or how the cluster will physically split. Obviously, 
the larger the cluster, the more energy is required to 
completely dissolve it into individual atoms. Nonethe- 
less, the probability of a 10-atom cluster breaking up 
into ten individual atoms or two 5-atom clusters is un- 
known. Molecular dynamics simulations may shed some 
light on this process. In this work, the cluster resolution 
parameter, Rs[x,L,E(z)], will be defined as the proba- 
bility of an x-atom cluster located in layer L to break up 
into individual atoms when struck by the depositing spe- 
cies of energy E(z). 

C. Nucleation and Growth 

The net result of the deposition process and the atom- 
istic effects described in Sections II-A and B is to 
produce atoms on a substrate that can nucleate into a size 
distribution of small clusters. These clusters may grow 
as two- or three-dimensional entities, forming various 
geometrical patterns (e.g., islands, spheres, needles, 
cones, etc.). During the early stages of the deposition 
process, when less than 10 pct of the substrate surface 
is covered, direct impingement and cluster resolution ef- 
fects are negligible because of the small substrate cov- 
erage. Although these factors will become more prominent 
as the deposition process proceeds, of more concern is 
the influence of  cluster coalescence and mobility. 

D. Cluster Coalescence 

It has been known that cluster mobility decreases with 
increasing cluster size; hence, only small clusters are 
mobile. From this standpoint, small clusters will be the 
active species in the aggregation process, and the ag- 
gregation rate constant, Wy(X), will assume significant 
values only for small size clusters. Nonetheless, as more 
and more of the substrate is covered, clusters will not 

have to move over the substrate to aggregate into larger 
clusters. Instead, the substrate will be so crowded that 
the clusters will simply impinge on each other, coalesc- 
ing into larger size ones. 

When coalescence is included in the deposition 
process, the clustering problem clearly becomes more 
complicated. In this case, one must consider clusters of 
size x interacting with all other clusters of size y. Since 
coalescence does not play a significant role until the later 
stages of the film formation process, when x and y are 
large, one has a broad distribution of cluster sizes to con- 
sider. Here, one must conserve the total number of atoms 
present on the substrate at all times during coalescence 
events. This involves adding additional source terms to 
a conservation equation that we derive in Section HI (for 
details, see Appendix A). 

E. Multilayer Thin Film Formation 

The nucleation and coalescence phenomena eventually 
result in the formation of a thin film on the substrate. 
As the deposition process proceeds, however, multiple 
layers of clusters will form simultaneously. Multilayer 
thin film formation proceeds because of the two- and 
three-dimensional nature of the growing clusters, stack- 
ing effects as direct impingement occurs, sputtering, res- 
olution phenomena, etc. In other words, one complete 
monolayer will not form before another monolayer grows 
on top. Different layers of the fdm will grow concurrently. 

The cluster density distribution function, C(x, L, t), has 
previously only been related to a particular thin film layer, 
L. As thin film formation occurs, the various film layers 
will influence one another through interlayer aggrega- 
tion, coalescence, implantation effects, sputtering, etc. 
Consequently, we must keep an inventory of such inter- 
layer effects. In so doing, we should be able to accu- 
rately reconstruct C(x,L, t) and determine the resulting 
thin film structure and morphology. 

III .  A P P L I C A T I O N  O F  T H E  M O D E L  
TO T H E R M A L  A T O M  DEPOSITION 

The atomic clustering model outlined in Section II in- 
cludes many processes that occur during thin film for- 
marion by energetic atom deposition. In several theoretical 
studies of thin films, a kinetic formulation of hierarchi- 
cal discrete rate equations has been used to describe clus- 
ter sizes.U ~-~sj These rate equations are coupled, nonlinear, 
and extremely complex. Thus, they are difficult to solve 
unless some simplifying physical assumptions are intro- 
duced. From a computational standpoint, one must deal 
with a large system of equations to obtain specific clus- 
tering details (e.g., if the largest cluster contains 
100 atoms, then 100 simultaneous equations must be 
solved for each layer of the film considered). 

In our approach, we retain the relevant clustering 
physics by solving a system of discrete kinetic rate equa- 
tions that are coupled to a continuum FP-type equation. 
In this manner, the number of equations which must be 
solved is not dictated by the largest cluster size in our 
system. 

The ideas presented here for the comprehensive ki- 
netic model must be checked by systematic and detailed 
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computations to determine the influence of  each process 
on the characteristics of the evolving thin film. This task 
can be best accomplished by model correlations with ex- 
perimental data. As a first step toward this goal, in this 
section, we present a simplified version of the model that 
is applicable for the early stages of thin film formation 
from thermally deposited atoms. This will allow a val- 
idation of our model against existing theories which have 
already been correlated to experimental data. It will also 
be demonstrated that a relatively less intensive compu- 
tational model, using only a small number of equations, 
can yield information on all relevant aspects of atomic 
clustering. 

Various simplifications immediately arise when one 
considers on ly  thermal particle deposition, since all of 
the energetic atom processes are neglected. Such parti- 
cles may also be considered monoenergetic. In order to 
benchmark our results with Zinsmeister's theory, [171 the 
following additional assumptions must be invoked: 

(1) Thermal single atoms are deposited at a rate of q 
atoms/cm2/s. 
(2) Cluster growth and decay result only from mobile 
single atoms. 
(3) Only single atoms can evaporate off  the substrate. 
(4) Aggregation and dissociation rate constants are size 
independent. 
(5) The model represents the early stages of deposition 
(i.e., substrate coverage -<10 pct) for the first atomic 
monolayer. 

Assumption 1 implies that q[z, E(z)] = q. Assumption 2 
implies that Wy(X) = Wl(X ) and ay(X) = al(x).  Assump- 
tion 3 implies that Tevw(X,L) = Tev~p(1, 1) ----- T, vapl (the 
average time a single atom stays on the substrate before 
evaporating). Assumption 4 implies that Wl(X) = w and 
al(X) = a. And, finally, assumption 5 implies that 
C(x, L, t) = C(x, 1, t) = C(x, t) (the density of x-atom 
clusters on the substrate). Before attempting to solve for 
the comprehensive model, it is important first to estab- 
lish the features of the model by comparing it with 
Zinsmeister's simplified theory of atomic clustering. []7,181 

Applying these assumptions to our model allows us to 
write a series of discrete kinetic rate equations for clus- 
ters containing up to Xmax atoms: 

OC( I , t) [x~,~ ] 
a E C(y,/)(~y2 -+- 1) 

Ot = q +  y~>2 

I~,Xmax 1 C(1, t) 
wC(1,  t) ~._, C(x, t) 

Tevap I t.. x_> 1 

OC(x' t) - ( 1 -  ~-~) w c ( 1 ,  t)C(x - 1, t) 

+ aC(x  + 1, t) - wC(1,  t)C(x, t) 

- aC(x,  t) for 2 -< x -< Xmax 

[11 

[21 

where 6oh -: 1, if a = b, and 6ab : 0, if a ~ b. The 
successive terms on the right-hand side of Eq. [1] rep- 
resent the deposition rate of single atoms on the sub- 
strate, the production of single atoms due to the 
dissociation of larger clusters, the evaporation of single 

atoms off the substrate, and the aggregation of single 
atoms with larger clusters. Equation [2] states that the 
density of all other size clusters increases by the aggre- 
gation of a single atom with an (x - 1)-atom cluster and 
the dissociation of an (x + 1)-atom cluster and decreases 
when a single atom aggregates with an x-atom cluster or 
an x-atom cluster dissociates. 

To avoid writing Xm~ discrete equations, a continuum 
equation is derived for 3 ----- x -< Xm~x. TO obtain such a 
continuum equation, we expand the cluster densities 
C(x - 1, t), C(x, t), and C(x + 1, t) in Eq. [2] in a second- 
order Taylor series about x. This procedure yields the 
following continuum equation for 3 -< x - Xm~x: 

dC(x, t) OJ(x, t) 
[3] 

Ot Ox 

where the nucleation current J(x, t) is defined as 

0 
J(x, t) = F(t)C(x,  t) - -  [D(t)C(x, t)] [4] 

Ox 

and the drift and dispersion coefficients, F(t) and D(t), 
a s  

F(t) = wC(1, t) - a [5] 

1 
D(t)  = ~ [wC(1, t) + a] [6] 

Equation [3] is of the FP-type, consisting of systematic 
drift and random dispersion terms. Studies of  swelling 
and irradiation creep [19] have used this same technique 
to model the nucleation of voids and dislocation loops 
in irradiated microstructures. 

It should be noted that the continuum equation (Eq. [3]) 
and the general discrete kinetic equation (Eq. [2]) are 
both valid for 3 -< x -< Xmax. In order to couple the dis- 
crete equations to the continuum, a transition cluster size, 
Xc, will be defined as the smallest cluster size described 
by the continuum equation. Thus, atomic clustering is 
described by a set of discrete kinetic equations for 1 -< 
x --< (Xc - 1) and by a continuum equation for Xc -< x 
-< Xm~x. We now proceed by taking the zero, first, and 
second moments of  Eq. [3] to obtain our complete sys- 
tem of simplified clustering equations, described below: 

OC(1, t) C(1, t) 
- -  - q wC2(1, t) + aC(2, t) 

Ot Tevavl 

X c - 1 

0C(2, t) 1 
- -  - wCe(1, t)  - 2D(t)C(2, t) + aC(3 , t )  

Ot 2 

OC(x, t) 
- -  - wC(1,  t)C(x - 1, t) - 2D(t)C(x, t) 

Ot 

+ a C ( x + l , t )  for 3 -< x-< ( X c -  1) 

[7] 

[8] 

[9] 

0 C t o t  
- -  = J(Xc, t) [10] 

0t 
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O(x) [(Xc - (x))J(Xc, t) + D(t)C(Xc, t)] 
- -  - + F ( t )  [ 1 1 ]  
Ot Ctot 

OM: [(Xc - (x)) 2 - M2]J(Xc, t) 

Ot Cto t 

+ 2D(t)[ (X~- (x))C(X~'t) ] + 1 [12] 
Ctot 

where Ctot is the total continuum cluster density, (x) is 
the average size of the continuum clusters, and M E is the 
second central moment (i.e., the variance) of the con- 
tinuum cluster distribution function. The continuum cluster 
density at X~ must be obtained by reconstructing the dis- 
tribution function from its moments. A convenient pro- 
cedure is to assume that the continuum cluster distribution 
function is Gaussian, allowing us to approximate C(X~, t) 
a s  

[ J 
C(Xc, t) - ~ exp [13] 

and the nucleation current going into the continuum, 
J(X~, t), as 

J(X~,  t) = w e ( l ,  t ) C ( X c  - 1, t) - a c ( x ~ ,  t) [14] 

Equations [7] through [ 12] represent a hybrid method 
of solving the clustering equations, since a set of discrete 
kinetic equations is self-consistently coupled to a con- 
tinuum. These equations are nondimensionalized (see 
Appendix B) and then numerically integrated for the rel- 
evant clustering parameters. 

IV. SOLUTIONS AND C O M P A R I S O N  
W I T H  P R E V I O U S  W O R K  

The complete system of dimensionless simplified 
clustering equations (see Appendix B for details) was 
solved for a thermal atom deposition case previously 
studied by Zinsmeister. tlTj In particular, we investigated 
his results for q = 1012 atoms/cm2/s,  %yap1 = 1 0 - 7  S, 
W = 2 • 10 -3cm2/s,  and a = 0. For our study, this 
means fl = 0.02 and 7 = 0. Before the deposition pro- 
cess begins, there are no clusters present on the sub- 
strate. Consequently, and for computational convenience, 
we initially set all cluster densities equal to 0, Ctot = e, 
(x) = Xc, and ME = e, where e = 1 • 10 -2~ The number 
of atoms in the smallest cluster described by our contin- 
uum equation, Xc, was selected to be 5 (other choices of 
Xr were found not to alter the results). Thus, we only 
have seven equations which must be solved to describe 
atomic clustering on the first monolayer: four discrete 
kinetic rate equations, one for Ctot, one for <x), and one 
for ME. These seven equations will describe any size 
cluster in our system. 

The dimensionless cluster density distribution func- 
tion, Cx, is shown in Figure 1 as a function of cluster 
size at two different times (~- = 102 and ~- = 103). As 
the clustering process proceeds in time, single atoms ag- 
gregate with each other and with larger clusters, pro- 
moting a decrease in the single-atom population and an 
increase in the number of  larger clusters (Figure 1). No- 
tice that the density of two-atom clusters on the substrate 
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Fig. 1 -  Evolution of  cluster distribution function at an early time 
('r = 102) and at a later time ( r  = 103). The solution of  the discrete 
equations is represented by discrete symbols ,  while the solution of  the 
cont inuum equation is shown by lines. 

25 

is fairly constant, while the numbers of three- and four- 
atom clusters rise, over the time period from 7 = 1 0  2 to 
~" = 10 3. From the continuum curves, one sees that the 
total density, average size, and second moment of the 
continuum clusters all increase over time because of 
the predominance of growth mechanisms. 

In Figure 1, the transition from the discrete cluster 
density at x = 4 to the continuum cluster density at x = 
Xc = 5 is marked by an apparent discontinuity in the 
distribution function. This mismatch is attributed to the 
fact that the continuum cluster distribution is assumed to 
be Gaussian, forcing the tail of the distribution at x = 
Xc to an unreasonably low value. Work is now in prog- 
ress to reconstruct the distribution function, including 
higher-order moments, which will hopefully result in a 
smooth transition between the discrete and continuum 
parts of the total distribution. 

To gain more insight into the clustering kinetics, 
Figure 2 displays the discrete cluster densities as a func- 
tion of time. Since only single atoms are being depos- 
ited, single atoms are the first entities to appear on the 
substrate. Each discrete cluster density is characterized 
by three stages: an initial growth stage, an equilibrium 

1.00 

if) 

0.10 
O 

-~ 0.01 

/ 
i0-~ 10 2 10 8 101o 

Dimensionless Time, T 

Fig. 2 - - T e m p o r a l  behavior  of  single atoms ((~l) and various other 
small-size atomic clusters. 
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plateau, and then a steady decline. Cluster growth is due 
to deposition or aggregation processes, while the cluster 
densities decrease as clusters aggregate to or are con- 
sumed by larger species. Each plateau represents 
an equilibrium between these competing growth and 
consumption events. Our computations show that an 
incubation period is required before two-, three-, and 
four-atom clusters are observed; this is because the pro- 
duction of these clusters depends on single atoms ag- 
gregating with other single atoms, and with two- and 
three-atom clusters, respectively. Larger clusters were 
not allowed to dissociate in this study ( i .e . ,  t~ = 0). 

Figure 3 shows how the continuum cluster density var- 
ies over time. Since X~ = 5, all continuum curves begin 
with five atoms in the smallest continuum cluster. Notice 
that the total density of continuum clusters, the average 
continuum cluster size, and the second moment  ( i .e . ,  the 
area, mean, and width of the distribution) all increase as 
time progresses from ~" = 103 to 105. This behavior is 
because clusters are continuously being nucleated and no 
cluster decay mechanisms are allowed ( i .e . ,  a = 0). 

One interesting observation about the continuum clus- 
ter distribution is shown in Figure 4. Here, the ratio of  
the standard deviation to the average cluster size, 
V~2 / (~ ) ,  is plotted as a function of the dimensionless 
time, T. For ~" -> 105, this ratio tends to level out at a 
constant value of  around 0.5. This implies that the dis- 
tribution function at these later ~" values assumes an equi- 
librium self-similar shape. 

In order to benchmark our calculations, we compare 
our results to Zinsmeister 's study. [17] In his analysis, 
Zinsmeister solved a series of  discrete kinetic rate equa- 
tions, whereas we model atomic clustering with a hybrid 
method that couples a set of discrete kinetic equations 
to an FP-type continuum. Figure 5 displays comparisons 
of single-stom density calculations, whereas Figure 6 
compares aggregate cluster densities. The aggregate cluster 
density is defined as the total density of  all clusters on 
the substrate minus the single-atom population. As seen 
in these figures, Zinsmeister's theory displays results over 
three regions of  time. Our agreement with Zinsmeister 's 
work is remarkable, indicating the validity of our 
approach. 

As a measure of the numerical accuracy of our results, 
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Fig. 3--Evolution of cluster distribution function resulting from so- 
lution of the continuum FP equation at various times. 
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Fig. 4 - -T ime  dependence of the ratio of the standard deviation to 
the average size of the continuum cluster distribution function. 

dimensionless atom conservation parameters are plotted 
in Figure 7. An atom conservation parameter (ACP) 
simply indicates a balance between the net number of  
atoms deposited on the substrate and the net number of  
atoms condensed in all atomic clusters. The ACP de- 
pends on both time, t, and where the continuum is cho- 
sen to begin in cluster-size space, Xc. The integral ACP 
is defined as 

xc-1 

xC(x, t) + (x>(t)Ctot(t) 
x~ l  

q - - -  dt '  
~evap 1 J 

and the differential ACP as 

Differential ACP(X,., t) 

o [ X ~ ' x C ( x , t ) + ( x > ( t ) C t o , ( t ) ]  
Ot L x>--I 
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Fig. 5 - - A  comparison between our dimensionless single-atom den- 
sity ((~1) and Zinsmeister's three-region theory (indicated by Z,, Z,, 
and Zm). 
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Atom conservation is achieved when either of the ACPs 
equals 1.0. The dimensionless forms of Eqs. [15] and 
[16] are found in Appendix C. The results in Figure 7 
indicate that a maximum error of less than 1.5 pet is 
achieved over 12 orders of magnitude of evolution time. 
This is a resonable deviation in the ACP, considering 
the high degree of stiffness the system of clustering 
equations exhibits over this period of time. 

V. DISCUSSION 

The early stages of thin film formation have been de- 
scribed with a simple hybrid model that couples a set of  
discrete kinetic rate equations to an FP-type continuum. 
As a result, only a few equations are needed to model 
simple atomic clustering, the total number not being dic- 
tated by the largest cluster. For the thermal deposition 
process studied, the model agreement with Zinsmeister's 
three-region theory is remarkable under conditions where 
cluster dissociation is inhibited. This demonstrates that 
the kinetic coupling between the discrete equations and 
the continuum is successful. 

From a numerical standpoint, the atom conservation 
parameters indicate that our computations are less than 
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Fig. 7 -  Illustration of the numerical accuracy for atom conservation 
as a function of dimensionless time. The atom conservation param- 
eter, ACP = 1.0, gives perfect conservation. 

1.5 pct in error. However, since the solution of our 
equations requires specificity as to where the continuum 
begins in cluster-size space (i.e.,  the value of Xc), one 
may wonder how the calculations depend on Xc. For the 
thermal deposition process modeled in Section IV, ad- 
ditional computations with Xc = 5, 50, 100, and 500 
have shown that the clustering results do not depend on 
the value of Xc selected. Current studies indicate that X~ 
may influence the clustering phenomena, though, if dis- 
sociation is considered. Nonetheless, we feel confident 
in both the simplicity and accuracy of our model. 

A question often arises concerning the length of  time 
it takes to form a monolayer of film on a substrate. The 
time length depends on a variety of factors (e.g., de- 
position rate, substrate temperature, depositing species, 
etc.). Because we have lumped several deposition pa- 
rameters in the dimensionless variables /3 and "y in our 
nondimensional analysis (Appendix B), there is no spe- 
cific time that indicates when a monolayer is formed. 
Two deposition experiments which are totally different 
in terms of monolayer formation times could be de- 
scribed by the same set of dimensionless parameters. 
Hence, the monolayer formation time is not a fixed re- 
sult in our model. 

Because of the simplicity and accuracy of our model, 
a comprehensive treatment of thin film formation by en- 
ergetic atoms is feasible. The first step will be to look 
at the later stages of thin film formation when cluster 
coalescence and direct impingement effects are signifi- 
cant. When energetic particles are deposited, the various 
synergistic effects of particle reflection, sputtering, im- 
plantation, and cluster resolution will have to be consid- 
ered. Also, a size-dependent aggregation factor, wl(x), 
and cluster dissociation rate, a~(x), will be used instead 
of constant w and a values. Finally, a means of using a 
continuum cluster density which is non-Gaussian is being 
developed. All of these features will be helpful in ana- 
lyzing multilayer films and in characterizing their 
structures. 

A P P E N D I X  A 

Equation [3] represents a conservation equation for the 
early stages of atomic clustering, when coalescence is 
negligible and cluster decay and growth occur by single- 
atom transitions. We rewrite Eq. [3] for single-atom 
transitions as 

OC(x, t) 
- -  + V .  J(x ,  t) = S(x, t) [A1]  

Ot 

where S(x, t) is a generalized net source of atomic clus- 
ters of size x. During the later stages of nucleation, when 
cluster coalescence becomes important, Eq. [A1] wiU take 
the form 

OC(x, t) 
- -  + V - J ( x , t )  

Ot 
x-2 

= f2 Wy(X - y)C(x - y, t)C(y,  t)dy 

f Xma x -- x 

- wy(x)C(x, t)C(y, t)dy 
J2 

[A2I 
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Moments of Eq. [A2] can be obtained to derive equa- 
tions which replace Eqs. [10] through [ 12] when cluster 
coalescence is considered. 

A P P E N D I X  B 

Equations [5] through [14] are nondimensionalized by 
defining a number of dimensionless variables and then 
rewriting these equations in terms of the dimensionless 
variables. This procedure is useful in obtaining infor- 
mation on many equivalent physical systems for a single 
solution of the dimensionless clustering equations. We 
define the nondimensional variables as follows: 

Dimensionless time, r: 

r = t/%wpl [B 1 ] 

Dimensionless cluster density, Cx: 

Cx = C(x, "f) = C(x, t)/q%vapl [B2] 

Dimensionless total density of continuum clusters, Ctot :  

Ctot = Ctot(T) = Ctot(l)/qTevapl [B3] 

Dimensionless average size of continuum clusters, (2): 

(.f) = (2)(r) = (X)(t) [B41 

Dimensionless second moment of continuum clusters,/~2: 

1f42 = if4z('f) = M2(t) [B51 

Dimensionless drift coefficient, F: 

/~ = F(q-) = F(t)'revap 1 [B6] 

Dimensionless dispersion coefficient,/9: 

/ )  = /~('/') = D(0Tevap 1 [B7] 

Dimensionless nucleation current going into the contin- 
uum, Jx~: 

3x~ = J(Xo ~') = J(X~, t ) /q  [B8I 

We also define the following dimensionless parameters: 

WqTevapl 

= ratio of aggregation rate to evaporation rate [B9] 

"~ ~--- O~Tevap 1 

= ratio of dissociation rate to evaporation rate [B 10] 

With these definitions, the following set of dimension- 
less clustering equations is readily obtained: 

0G 
0~- 

Of 1 L~l-Xc-1 ] 
= 1 -  6 " , -  f16"~ + ~ 2 -  P | ~ ' ,  dx - -  l#~ ' to t  

07" x~2 

Or 2 

[Bll] 

0C2 1 
- -  = - f l ( ~  - 2 / )C2 + 3<~3 [B12]  

-- f l f l C x _  1 - 2/)Cx + 3'C.+, for3 <-x<--(Xc - 1) 

[B131 

0C'to t 
- Jxc [B14] 

0T 

0 7" ~'tot 

o , ~  [(x~ - (:e)) ~ - M~13Xc 
07" Ctot 

+ 2 D [  (xc-(2))~x~= + 1] 

where we have 

+ P [B15] 

[B16] 

P =/3C1 - 3/ [B17] 

/ ) = 1  
2 (fl~l + 3') [B18] 

- -  C t~  exp[ (Xc __(__.~))2] 
Cxc ~ 2/~2 J [a19] 

Jxc = [~C1Cxc-1 -- "~Xc [ a 2 0 l  

A P P E N D I X  C 

Equations [15] and [16] were nondimensionalized and 
solved on a computer in order to obtain the atom con- 
servation parameters depicted in Figure 7. Using the 
dimensionless variables defined in Appendix B, the di- 
mensionless integral ACP is given by 

xc-1 

E x~x + (s~)Ct~ 
Dimensionless x_>l 

[Cl1 Integral ACP(Xc, T) 
--J0" (1 - C 1 ) d T '  

and the dimensionless differential ACP as 

-Xc- 1 1 

Dimensionless Or 
Differential ACP(Xc, ~-) 1 - ~1 

[C2] 
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