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Preface

After a long and cold winter in Germany during the first few months of 1984, I left for
England to spend three months working at the Theoretical Physics Division of Harwell, near
Oxford. Harwell research laboratories were run by the UK Atomic Energy Authority, and I
joined the research group of Ron Bullough as a part of my sabbatical leave from teaching at
UCLA. I collaborated with Juan Matthews on the development of a dislocation-based creep
model for structural steels. The model was based on rate equations for mobile and immobile
dislocations, and growth or shrinkage of dislocation cells inside grains. During the course of
this work, I was struck by the fact that dislocation creep is controlled by the average cell
size (which is also true for the strength of the material), and that the cell size is inversely
proportional to the applied stress with what is known as the Holt constant. Getting further
into this story, I examined many TEM micrographs and discovered for myself what many others
have already known: that the deformation microstructure is very inhomogeneous and that it is
self-organized into dislocation cells, walls, etc. This observation started a long and unfinished
journey in an attempt to answer the ”why” question. It was strange for me at that time to
realize that when an external stress is applied on a material, its dislocation microstructure
re-organizes itself into cells with unique average size. It seemed to me that a piece of structural
steel is alive in the sense that it changes its internal geometry to best respond to the applied
stress just like changes in the geometry of a tree in response to light or gravity. There is
something really mysterious about that. After several attempts in developing a statistical
description of dislocation densities, I gave up this approach because the statistical mechanics
of these objects was not well-understood. I started with Robert Amodeo, my former PhD
student, on an entirely different idea to solve this problem, by attempting to develop direct
numerical simulations of interacting dislocation ensembles. This led to the emergence of the
field of Dislocation Dynamics in our early attempts by late 1986 and early 1987. Since then,
tremendous progress has been achieved worldwide in the ability to understand the fundamental
nature of plastic deformation in materials. Computer simulations of dislocation dynamics have
contributed to a growing body of knowledge in plasticity and deformation at the nano- and
micro-scales. Nevertheless, we are still a good distance away from reaching two significant
goals: (1) a full understanding of self-organization phenomena in plasticity (e.g. the formation
of well-organized dislocation cells, subgrains, Persistent Slip Bands (PSBs), dislocation dipole
arrays, etc.), and (2) rigorous connections between microscopic and macroscopic theories of
plasticity. In this report, we compile details of efforts, mainly at UCLA during the past 15 years
or so, on the development of computational methods of dislocation dynamics. It is intended as
a ”practitioner’s manual” rather than a succinct book. Thus, this report contains many details
that miss the compact publication standards of scientific journals. It also contains details of
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the computer programming that are in use in our group at UCLA in this area.

This report is based on the work of many of my former students and post doctoral fellows:
Robert Amodeo, Anter Elazab, Lizhi Sun, Marco Baccaloni, Jianming Huang, Zhiqiang Wang,
Ming Wen, Qiyang Hu, Xueli Han, Silvester Noronha, and Suavik Banerjee. I acknowledge their
valuable contributions to the progress of research in this area over the years. The following is
a list of publications from which I drew the majority of the contents for this manual.
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Chapter 1

Introduction

A fundamental description of plastic deformation has been recently pursued in many parts of
the world as a result of dissatisfaction with the limitations of continuum plasticity theory. Al-
though continuum models of plastic deformation are extensively used in engineering practice,
their range of application is limited by the underlying database. The reliability of continuum
plasticity descriptions is dependent on the accuracy and range of available experimental data.
Under complex loading situations, however, the database is often hard to establish. Moreover,
the lack of a characteristic length scale in continuum plasticity makes it difficult to predict
the occurrence of critical localized deformation zones. Although homogenization methods have
played a significant role in determining the elastic properties of new materials from their con-
stituents (e.g. composite materials), the same methods have failed to describe plasticity. It is
widely appreciated that plastic strain is fundamentally heterogenous, displaying high strains
concentrated in small material volumes, with virtually un-deformed regions in-between. Exper-
imental observations consistently show that plastic deformation is heterogeneous at all length-
scales. Depending on the deformation mode, heterogeneous dislocation structures appear with
definitive wavelengths. A satisfactory description of realistic dislocation patterning and strain
localization has been rather elusive. Attempts aimed at this question have been based on sta-
tistical mechanics, reaction-diffusion dynamics, or the theory of phase transitions. Much of the
efforts have aimed at clarifying the fundamental origins of inhomogeneous plastic deformation.
On the other hand, engineering descriptions of plasticity have relied on experimentally verified
constitutive equations.

At the macroscopic level, shear bands are known to localize plastic strain, leading to ma-
terial failure. At smaller length scales, dislocation distributions are mostly heterogeneous in
deformed materials, leading to the formation of a number of strain patterns. Generally, disloca-
tion patterns are thought to be associated with energy minimization of the deforming material,
and manifest themselves as regions of high dislocation density separated by zones of virtually
un-deformed material. Dislocation-rich regions are zones of facilitated deformation, while dis-
location poor regions are hard spots in the material, where plastic deformation does not occur.
Dislocation structures, such as Persistent slip Bands (PSB’s), planar arrays, dislocation cells,
and sub-grains, are experimentally observed in metals under both cyclic and steady deformation
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conditions. Persistent slip bands are formed under cyclic deformation conditions, and have been
mostly observed in copper and copper alloys. They appear as sets of parallel walls composed
of dislocation dipoles, separated by dislocation-free regions. The length dimension of the wall
is orthogonal to the direction of dislocation glide.

Dislocation planar arrays are formed under monotonic stress deformation conditions, and
are composed of parallel sets of dislocation dipoles. While PSB’s are found to be aligned in
planes with normal parallel to the direction of the critical resolved shear stress, planar arrays
are aligned in the perpendicular direction. Dislocation cell structures, on the other hand,
are honeycomb configurations in which the walls have high dislocation density, while the cell
interiors have low dislocation density. Cells can be formed under both monotonic and cyclic
deformation conditions. However, dislocation cells under cyclic deformation tend to appear
after many cycles. Direct experimental observations of these structures have been reported for
many materials.

Two of the most fascinating features of micro-scale plasticity are the spontaneous formation
of dislocation patterns, and the highly intermittent and spatially localized nature of plastic
flow. Dislocation patterns consist of alternating dislocation rich and dislocation poor regions
usually in the µm range (e.g. dislocation cells, sub-grains, bundles, veins, walls, and channels).
On the other hand, the local values of strain rates associated with intermittent dislocation
avalanches are estimated to be on the order of 1-10 million times greater than externally imposed
strain rates. Understanding the collective behavior of defects is important because it provides
a fundamental understanding of failure phenomena (e.g. fatigue and fracture). It will also
shed light on the physics of elf-organization and the behavior of critical-state systems (e.g.
avalanches, percolation, etc.)

Because the internal geometry of deforming crystals is very complex, a physically-based de-
scription of plastic deformation can be very challenging. The topological complexity is manifest
in the existence of dislocation structures within otherwise perfect atomic arrangements. Dislo-
cation loops delineate regions where large atomic displacements are encountered. As a result,
long-range elastic fields are set up in response to such large, localized atomic displacements.
As the external load is maintained, the material deforms plastically by generating more dis-
locations. Thus, macroscopically observed plastic deformation is a consequence of dislocation
generation and motion. A closer examination of atomic positions associated with dislocations
shows that large displacements are confined only to a small region around the dislocation line
(i.e. the dislocation core). The majority of the displacement field can be conveniently described
as elastic deformation. Even though one utilizes the concept of dislocation distributions to
account for large displacements close to dislocation lines, a physically-based plasticity theory
can paradoxically be based on the theory of elasticity!

Studies of the mechanical behavior of materials at a length scale larger than what can be
handled by direct atomistic simulations, and smaller than what allows macroscopic continuum
averaging represent particular difficulties. When the mechanical behavior is dominated by
microstructure heterogeneity, the mechanics problem can be greatly simplified if all atomic
degrees of freedom were adiabatically eliminated, and only those associated with defects are
retained. Because the motion of all atoms in the material is not relevant, and only atoms
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around defects determine the mechanical properties, one can just follow material regions around
defects. Since the density of defects is many orders of magnitude smaller than the atomic
density, two useful results emerge. First, defect interactions can be accurately described by
long-range elastic forces transmitted through the atomic lattice. Second, the number of degrees
of freedom required to describe their topological evolution is many orders of magnitude smaller
than those associated with atoms. These observations have been instrumental in the emergence
of meso-mechanics on the basis of defect interactions by Eshelby, Kröner, Kossevich, Mura and
others. Thanks to many computational advances during the past two decades, the field has
steadily moved from conceptual theory to practical applications. While early research in defect
mechanics focused on the nature of the elastic field arising from defects in materials, recent
computational modelling has shifted the emphasis on defect ensemble evolution.

Although the theoretical foundations of dislocation theory are well-established, efficient com-
putational methods are still in a state of development. Other than a few cases of perfect sym-
metry and special conditions, the elastic field of 3-D dislocations of arbitrary geometry is not
analytically available. The field of dislocation ensembles is likewise analytically unattainable.
A relatively recent approach to investigating the fundamental aspects of plastic deformation is
based on direct numerical simulation of the interaction and motion of dislocations. This ap-
proach, which is commonly known as Dislocation Dynamics (DD), was first introduced for 2-D
straight, infinitely long dislocation distributions, and then later for complex 3-D microstructure.
In DD simulations of plastic deformation, the computational effort per time-step is proportional
to the square of the number of interacting segments, because of the long-range stress field as-
sociated with dislocation lines. The computational requirements for 3-D simulations of plastic
deformation of even single crystals are thus very challenging.

The study of dislocation configurations at short-range can be quite complex, because of large
deformations and reconfiguration of dislocation lines during their interaction. Thus, adaptive
grid generation methods and more refined treatments of self-forces have been found to be nec-
essary. In some special cases, however, simpler topological configurations are encountered. For
example, long straight dislocation segments are experimentally observed in materials with high
Peierls potential barriers (e.g. covalent materials), or when large mobility differences between
screw and edge components exist (e.g. some bcc crystals at low temperature). Under conditions
conducive to glide of small prismatic loops on glide cylinders, or the uniform expansion of nearly
circular loops, changes in the loop shape is nearly minimal during its motion. Also, helical loops
of nearly constant radius are sometimes observed in quenched or irradiated materials under the
influence of point defect fluxes. It is clear that, depending on the particular application and
physical situation, one would be interested in a flexible method which can capture the essential
physics at a reasonable computational cost. A consequence of the long-range nature of the
dislocation elastic field is that the computational effort per time step is proportional to the
square of the number of interacting segments. It is therefore advantageous to reduce the num-
ber of interacting segments within a given computer simulation, or to develop more efficient
approaches to computations of the long range field.

While continuum approaches to constitutive models are limited to the underlying experi-
mental data-base, DD methods offer new directions for modeling microstructure evolution from
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fundamental principles. The limitation to the method presented here is mainly computational,
and much effort is needed to overcome several difficulties. First, the length and time scales rep-
resented by the present method are still short of many experimental observations, and methods
of rigorous extensions are still needed. Second, the boundary conditions of real crystals are more
complicated, especially when external and internal surfaces are to be accounted for. Thus, the
present approach does not take into account large lattice rotations, and finite deformation of the
underlying crystal, which may be important for explanation of certain scale effects on plastic
deformation. And finally, a much expanded effort is needed to bridge the gap between atomistic
calculations of dislocation properties on the one hand, and continuum mechanics formulations
on the other. Nevertheless, with all of these limitations, the DD approach is worth pursuing,
because it opens up new possibilities for linking the fundamental nature of the microstructure
with realistic material deformation conditions. It can thus provide an additional tool to both
theoretical and experimental investigations of plasticity and failure of materials.

Two main approaches have been advanced to model the mechanical behavior in this meso
length scale. The first is based on statistical mechanics methods. In these developments,
evolution equations for statistical averages (and possibly for higher moments) are to be solved
for a complete description of the deformation problem. The main challenge in this regard is that,
unlike the situation encountered in the development of the kinetic theory of gases, the topology
of interacting dislocations within the system must be included. The second approach, commonly
known as Dislocation Dynamics (DD), was initially motivated by the need to understand the
origins of heterogeneous plasticity and pattern formation. An early variant of this approach (the
cellular automata) was first developed by (Lepinoux and Kubin 1987), and that was followed
by the proposal of DD (Ghoniem and Amodeo 1988, Amodeo and Ghoniem 1990b, Amodeo
and Ghoniem 1990a). In these early efforts, dislocation ensembles were modelled as infinitely
long and straight in an isotropic infinite elastic medium. The method was further expanded
by a number of researchers, with applications demonstrating simplified features of deformation
microstructure.

Since it was first introduced in the mid-eighties independently by Lepinoux and Kubin, and
by Ghoniem and Amodeo, Dislocation Dynamics (DD) has now become an important computer
simulation tool for the description of plastic deformation at the micro- and meso-scales (i.e. the
size range of a fraction of a micron to tens of microns). The method is based on a hierarchy
of approximations that enable the solution of relevant problems with today’s computational
resources.

In its early versions, the collective behavior of dislocation ensembles was determined by direct
numerical simulations of the interactions between infinitely long, straight dislocations (Wang
and LeSar 1995). Recently, several research groups extended the DD methodology to the more
physical, yet considerably more complex 3-D simulations. The method can be traced back to
the concepts of internal stress fields and configurational forces. The more recent development
of 3-D lattice dislocation dynamics by Kubin and co-workers has resulted in greater confidence
in the ability of DD to simulate more complex deformation microstructure (Kubin, Canova,
Condat, Devincre, Pontikis and Brechet 1992, Canova, Brechet and Kubin 1992, Devincre and
Kubin 1994a). More rigorous formulations of 3-D DD have contributed to its rapid development
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and applications in many systems (Hirth, Rhee and Zbib 1996, Schwarz and Tersoff 1996, Zbib,
Rhee and Hirth 1998, Rhee, Zbib, Hirth, Huang and Diaz de la Rubia 1998, Ghoniem and Sun
1999b, Ghoniem, Tong and Sun 2000a, Ghoniem, Huang and Wang 2001). We can classify the
computational methods of DD into the following categories:

1. The Parametric Method: The dislocation loop can be geometrically represented as a con-
tinuous (to second derivative) composite space curve. This has two advantages: (1) there
is no abrupt variation or singularities associated with the self-force at the joining nodes in
between segments, (2) very drastic variations in dislocation curvature can be easily han-
dled without excessive re-meshing. Other approximation methods have been developed
by a number of groups. These approaches differ mainly in the representation of disloca-
tion loop geometry, the manner by which the elastic field and self energies are calculated,
and some additional details related to how boundary and interface conditions are han-
dled. The suitability of each method is determined by the required level of accuracy and
resolution in a given application. dislocation loops are divided into contiguous segments
represented by parametric space curves.

2. The Lattice Method: Straight dislocation segments (either pure screw or edge in the
earliest versions , or of a mixed character in more recent versions) are allowed to jump
on specific lattice sites and orientations. The method is computationally fast, but gives
coarse resolution of dislocation interactions.

3. The Force Method: Straight dislocation segments of mixed character in the are moved in
a rigid body fashion along the normal to their mid-points, but they are not tied to an
underlying spatial lattice or grid. The advantage of this method is that the explicit infor-
mation on the elastic field is not necessary, since closed-form solutions for the interaction
forces are directly used.

4. The Differential Stress Method: This is based on calculations of the stress field of a differ-
ential straight line element on the dislocation. Using numerical integration, Peach-Koehler
forces on all other segments are determined . The Brown procedure (Brown 1967) is then
utilized to remove the singularities associated with the self force calculation.

5. The Phase Field Microelasticity Method : This method is based on the reciprocal space
theory of the strain in an arbitrary elastically homogeneous system of misfitting coherent
inclusions embedded into the parent phase . Thus, consideration of individual segments of
all dislocation lines is not required. Instead, the temporal and spatial evolution of several
density function profiles (fields) are obtained by solving continuum equations in Fourier
space (Wang, Jin, Cuitino and Khachaturyan 2001).
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Chapter 2

Experimental Observations

2.1 Basic Dislocation Structures

One of the most important experimental observations is the direct experimental confirmation of
the Frank-Read mechanism by Transmission Electron Microscopy (TEM). Figures 2.1 and 2.2
show TEM observations of the operation of Frank Read sources in Silicon, where several loops
emitted from the source are shown. Frank-Read sources can result in a substantial increase in
the local dislocation density, once activated. Activation of these sources requires a local region
of high stress, for example, near a grain boundary, as can be seen in Figure 2.3.

Figure 2.1: Frank-Read source in silicon. Courtesy of Dash

Amelincx has used etch-pit and crystal growth techniques to capture the helical operation
of a dislocation spiral, as shown in Figure 2.4.

Dislocation planar arrays are formed under monotonic stress deformation conditions, and
are composed of parallel sets of dislocation dipoles, as shown in Figures 2.5, 2.6, and 2.7. While
PSB’s are found to be aligned in planes with normal parallel to the direction of the critical
resolved shear stress, planar arrays are aligned in the perpendicular direction.

7
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Figure 2.2: Frank-Read source in Si. Courtesy of Dash

Figure 2.3: Intense shear bands (ISBs) form preferentially at grain boundaries (G.B) and grow
into the crystal. The ISBs are first observed at the onset of the cyclic softening. Tht picture
shows Cu-30%Zn cycled to ε = 3.4 × 10−3.
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Figure 2.4: Dislocation Spiral. Courtesy of Amelincx

Figure 2.5: Two apparently different types of dipole arrays are observed in Cu-30%Zn. (a)
The array marked with A is a regularly spaced array of dipoles. (b) The array marked with B
appears to be a stacking fault band (Courtesy Riso National Laboratory in Roskilde, Denmark).



10 CHAPTER 2. EXPERIMENTAL OBSERVATIONS

Figure 2.6: Dislocation dipole arrays. Courtesy of Neuhauser

Figure 2.7: Considerable variations of the dipole spacing is found even within the same crystal
grain. The figure shows a dipole array, marked with an A. The measured dipole spacing is
approximately 650 Å. An interaction between two arrays is seen at B
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2.2 Inhomogeneous Plastic Deformation

Plastic deformation of materials has been observed to be heterogeneous at several length scales.
At the macroscopic level, shear bands are known to localize plastic strain, leading to material
failure. At smaller length scales, dislocation distributions are mostly heterogeneous in deformed
materials, leading to the formation of a number of strain patterns ((?), (?) - (?)). Generally,
dislocation patterns are thought to be associated with energy minimization of the deforming
material, and manifest themselves as regions of high dislocation density separated by zones of
virtually un-deformed material. Dislocation-rich regions are zones of facilitated deformation,
while dislocation poor regions are hard spots in the material, where plastic deformation does
not occur. Typical microstructure under fatigue conditions of Cu is shown in Figure 2.8, where
bands of dislocations are shown separated by regions of low dislocation densities. During early
stages of deformation, plastic slip is localized in ”planar” regions, separated by dislocation-
free zones, as can be seen in Figure 2.9. Dislocation structures, such as Persistent slip Bands
(PSB’s), planar arrays, dislocation cells, and sub-grains, are experimentally observed in metals
under both cyclic and steady deformation conditions (?). Observed at lower magnification,
dislocation structures form inside grains of the material, and are distributed as shown in Figure
2.10.

Figure 2.8: Fatigue-tested Cu at a stress amplitude of 80 MPa (N(f) = 515928) showing bands
of dislocations

Dislocation cell structures, are honycomb configurations in which the walls have high dislo-
cation density, while the cell interiors have low dislocation density. An example of the experi-
mental observations of dislocation cells is shown in Figure 2.11, while a schematic illustration
of cell evolution from the work of Takeuchi and Argon (?) is illustrated in Figure 2.12. Cells
can be formed under both monotonic (?), (?) and cyclic (?) deformation conditions. However,
dislocation cells under cyclic deformation tend to appear after many cycles, as shown in Figure
??.

Persistent slip bands are formed under cyclic deformation conditions, and have been mostly
observed in copper and copper alloys (?), (?), (?). They appear as sets of parallel walls
composed of dislocation dipoles, separated by dislocation-free regions. The length dimension
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Figure 2.9: A fairly uniform structure of planar dislocation arrays are seen after completion
of cyclic softening. No dipole arrays were found at this stage. The picture shows Cu-30%Zn
cycled to ε = 3.4 × 10−3. The polycrystal is found to contain a fairly uniform structure of
planar dislocation arrays
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Figure 2.10: Microstructure of the unirradiated copper and copper alloys.(a) OFHC-Cu (an-
nealed at 550 degrees C for 2h), (b) CuCrZr (prime aged) and (c) CuAl-25 (as-wrought).
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Figure 2.11: Dislocation cell structure in Iron. Picture adapted from the work of Reppich
(?)

Figure 2.12: Schematic of Dislocation cell structure evolution. Picture adapted from the work
of Takeuchi and Argon.

(?)
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Figure 2.13: Post-fatigue microstructure of unirradiated OFHC-Cu tested at room temperature
showing formation of equiaxed and elongated cells: (a,b) 180 MPa, N(f) = 1121, (c) 120 MPa,
N(f) = 21646.(Courtesy Riso National Laboratory in Roskilde, Denmark)
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of the wall is orthogonal to the direction of dislocation glide. Figures 2.14 and 2.15 show TEM
picture of experimental observations of PSB’s.

Figure 2.14: Transmission microscopy picture of Persistent Slip Bands (PSB’s) in cyclically-
deformed copper. Picture adapted from the work of Essman and Mughrabi

(?)

Figure 2.15: Transmission microscopy picture of Persistent Slip Bands (PSB’s) in cyclically-
deformed copper. Picture adapted from the work of Essman and Mughrabi

(?)

In irradiated materials, the interaction of energetic neutrons with lattice atoms produces
small interstitial atom clusters that migrate rapidly in response to the internal stress field of
dislocations. They form what is known as ”decorations” around dislocations, as shown in Figure
2.16, with the effect that dislocations become locked-in with reduced mobility or they become
totally immobile. Once an external stress is applied, areas of stress concentrations or where
dislocations can move start to respond to the stress. The strain is thus very localized, and
confined only to what is known as dislocation channels, as can be seen in Figures 2.17 and 2.18.
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Figure 2.16: Self-interstitial Atom (SIA) decorations of dislocations in irradiated Cu. Courtesy
of Singh

Figure 2.17: Dislocation channels in irradiated Cu. Courtesy of Singh
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Figure 2.18: Dislocation channels in irradiated Cu. Courtesy of Singh.
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Figure 2.19: Post-fatigue microstructure of the OFHC-Cu irradiated at 47 ◦C to 0.5 dpa and
tested at room temperature at a stress amplitude of 250 MPa (N(f) = 32) showing significant
area to area variations: (a) small cells with loose dislocation walls, (b) slip bands, and (c)
”cleared” channels. Note the lack of dislocation generation in the regions away from the cleared
channel (c).
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Chapter 3

Geometry of Defects

3.1 Topological Defects

Defects in crystals may usually be related to the local lack of atomic ordering. Let us describe
the various types of defects encountered in crystalline materials, and, when possible, relate
them to the general concept of topological defect.

3.1.1 Point defects

If one neglects thermal vibrations, all atoms of a perfect crystal occupy specific lattice sites.
In such a lattice, two types of intrinsic point defects are possible. One corresponds to a vacant
lattice site, or vacancy. The other one corresponds to an extra atom at a non-lattice site, or
interstitial. Vacancies and interstitials may be produced by plastic deformation and high-energy
particle irradiation, which is particularly important in nuclear materials. However, intrinsic
point defects may simply be produced by thermal effects, and there is thus a thermodynamically
stable concentration of point defects. The equilibrium fraction of defects of each type is given
by

N i
eq = Na exp

(
− Ed

f

kBT

)
(3.1)

where d = v, i stands for defect type i for interstitial, v for vacancy), na is the total number of
lattice sites, Ei

f is the formation energy of a single defect, kB is the Boltzmann constant and T
the temperature.

For vacancies, the formation energy is the energy required to remove an atom from a lattice
site and put it on the surface of the crystal. It varies from about 1 eV for fcc metals to about
3 eV for bcc metals. For example, in Copper Ev

f � 1.3 eV, and the fraction of vacant sites is of
the order of 10−22 at a temperature of 300 K, but of the order of 10−5 at 1300 K. Interstitial
formation energy is typically from two to four times larger then vacancy formation energy.

21
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Hence, in metals in thermal equilibrium interstitial concentration is negligible versus vacancy
concentration.

Another important property of point defects is the rate at which they move from one site to
another. It is proportional to exp(−Ed

m/kBT ), where Ed
m is the migration energy, which varies

typically from 0.1 eV to 1.0 eV. This rate is important for defect recombination, since, when
an interstitial meets a vacancy, they annihilate by recombination. On the other hand this rate
decreases exponentially with temperature. Hence point defects are nearly immobile at room
temperature. Besides their formation by thermal effects, point defects may also be created by
mechanical or ballistic effects, where equilibrium atoms are kicked off from their lattice site,
generating vacancy-interstitial pairs. or Frenkel pairs.

One also has to consider extrinsic point defects, such as impurity atoms, which play an
important role in physical and mechanical properties of crystals. They may be divided in two
types: substitutional impurity atoms, where an atom of the underlying lattice is replaced by an
impurity atom, and interstitials, where an impurity atom occupies a non-lattice site, similarly
to the self-interstitials described previously.

3.1.2 Dislocations

)(a

)(b

)(c

Figure 3.1: Dislocation types in materials

3

S
3

S

b

Figure 3.2: Burgers circuit for an edge dislocation
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The existence of dislocations has been deduced theoretically, before any direct observation
of these typical line defects. In fact, it appeared as the only way to reconcile theoretical
and experimental values of applied shear stresses required to plastically deform single crystals.
Plastic deformation is known to be induced by atomic plans sliding over each other. In 1934, G.
I. Taylor, E. Orowan, and M. Polyani independently proposed that lattice imperfections must
exist in materials, and that they can be moved with the application of small levels of stress.
In a perfect crystal, i.e. in the absence of dislocations, the sliding of one atomic plane over
an adjacent one requires the rigid motion of all the atoms in the plane, from one position to
another one. The shear stress required for this process was first calculated by Frenkel in 1926.
He assumed that the shearing force required to translate one row of atoms over another one by
a distance x is sinusoidally periodic in x, with a period equal to the interatomic distance b. His
result is then that the corresponding applied shear stress τ is given by

τ =
Gb

2πa
sin

2πx

b
(3.2)

where G is the shear modulus and a the spacing between rows. For small strains (x << b), one
recovers Hooke’s law, while the maximum value of τ , or theoretical critical shear stress is

τth =
G

2π

b

a
(3.3)

Since b and a are of the same order of magnitude, τth is only a fraction of the shear modulus.
More realistic expressions for the shear dependence of the force lead to values of τth of the order
of τth � G/30, in striking disagreement with measured values of shear stresses required for slip
in real, well annealed crystals, and which vary from 10−8 G to 10−4 G. Before considering the
role of dislocations in plastic deformation, let us first describe edge and screw dislocations, and
their basic properties. If one considers a cylinder cut along the axial direction, as shown in
Figure 3.1, then allows one part of the cylinder to slide either radially (a), azimuthally (b), or
axially (c), provided that the two parts are glued again together and prevented from sliding
back, a state of self-stress is created in the cylinder. The topological configuration of the line
imperfection is called a dislocation. The dislocation is described by two vectors, one along the
displacement direction, while the other is along the cut direction. The first vector is the Burgers
vector, b, while the second is the dislocation sense vector, ξ. If the two vectors are parallel,
the dislocation is termed a screw, as depicted in Figure 3.1-(a)&(b). On the other hand, it is
called edge when the two vectors are perpendicular to one another, as seen in Figure 3.1-(c).
An illustration of a Burgers circuit that is often used to define the geometry of a dislocated
crystal is shown in Figure 3.2, from Start (S) to Finish (F). The resulting crystal distortion
upon the passage of a dislocation from one surface to the other end is shown in Figure 3.3.

3.1.3 Surface defects

Surface defects are generated in materials by similar processes to what we described for dislo-
cations. For example, if the displacement on the two cuts of the cylinder described above are
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Figure 3.3: Crystal distortion as a result of a dislocation slip event

replaced by rotations, followed by a process of welding and release, a disclination is created,
as can be seen in Figure fig:disclinations. Because of the rotation of one surface with repeat
to another, a surface rather than a line defect is produced. Like a dislocation, a disclination
can be described by two basic vectors (or a single dyadic tensor) representing the cut direc-
tion and the rotation vector direction. Grain boundaries can be described either as collections
of dislocations on meeting surfaces, or as a result of surface disclinations. Examples of grain
boundaries are shown in Figures 3.5 and 3.6 for a low-angle tilt boundary, and in Figure 3.7
for a twist boundary between two adjacent grains.

When single crystals are subjected to external shearing forces, they accommodate the nec-
essary deformation in one of two possible ways. If shear deformation propagates to the crystal
surface and localize the strain in a adjacent packets of slip planes, a slip band is formed a s
surface defect between two virgin volumes, as can be seen in Figure 3.8. On the other hand,
atomic planes may locally buckle without slip on one another forming mirror images of atomic
plane stacking across two interfaces, a twin-band is thus formed. In this latter case, the strain
accommodated by twinning is totally recoverable because it is elastic. This gives rise to the
non-linear elastic response of materials undergoing martensitic transformations, such as shape-
memory alloys. This type of surface defect is shown in Figure 3.9.

3.1.4 Volume defects

Typical volume defects such as precipitates, voids and bubbles, may appear under different
circumstances and have important effects on physico-chemical properties of crystalline solids.
The presence of a volume that is distinctly different in phase (e.g. atomic arrangement, lattice
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)(a

)(b

)(c

Figure 3.4: Types of disclinations in materials

]100[

h
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2 2

Figure 3.5: < 100 >-tilt boundary

constant, etc.) from the otherwise homogeneous crystal lattice can be considered as a volume
defect. Internal volume inhomogeneities of this type also result in self-stress fields, and have
been considered by Eshelby in what is known as the inclusion problem. The most significant
type of volume defect is the three-dimensional crack that forms a volume bounded by crack
surfaces that cannot support traction. Three basic types of crack deformation are identified,
as shown in Figure 3.10. The crack opening mode, or mode I, is associated with with local
displacements in which the crack surfaces move directly apart, as shown in (a). The sliding
mode, or mode II, is characterized by crack surfaces sliding over each other in a direction
perpendicular to the leading edge of the crack, as shown in Figure 3.10-(b). The tearing,
twisting mode, or mode III, is developed when the crack surfaces slide with respect to each
other in a direction parallel to the leading edge of the crack, as illustrated in Figure 3.10-(c).
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Figure 3.6: Stable tilt boundary

Figure 3.7: Twist boundary between grains

Figure 3.8: Slip band geometry
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band Twin

face Twin

Figure 3.9: Twin band geometry

Figure 3.10: Classification of cracks: (a) mode-I (opening); (b) mode-II (sliding); (c) mode-II
(twisting)
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Chapter 4

Mathematical Foundations

4.1 Basic Vector and Tensor Operations

Consider the representation of a material point P, described by the triplet coordinates (x1, x2, x3),
along the direction of the basis unit vectors e1, e2 and e3, as shown in Fig. (4.1).

1e

2e

3e

1e
2e

3e

sphereUnit 

Figure 4.1: Cartesian coordinate system before and after rotation of axes

The vector R can be represented in terms of the triplet coordinates and the base vectors as:

R =
3∑

j=1

xjej (4.1)

where the base vectors {ei} posses the properties:

ei · ej = ej · ei = δij (4.2)

29
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where the Kronecker delta

δij =
{

1 for i = j,
0 for i �= j.

(4.3)

Performing the dot product R · R, we obtain the length of a vector as:

|R| =
√

R · R =
√

x2
1 + x2

2 + x2
3 (4.4)

If we now choose another basis set of vectors {e′
j}, with a corresponding triplet coordinate set

{x′
j}, as shown in Fig. (4.1), the vector R can be equally represented in the two coordinate

systems:

R =
3∑

j=1

xjej =
3∑

j=1

x′
je

′
j (4.5)

Taking the dot product:e′
j·R, and using the orthogonality property, we obtain a set of three

equations for the coordinate triplet in the ”prime” system:

x′
j = e′

j·R = (e′
j·e1)x1 + (e′

j·e2)x2 + (e′
j·e3)x3, j = 1, 2, 3 (4.6)

The dot products lij = e′
j·ei (i,j=1,2,3) represent the direction cosines between the original

and rotated (prime) coordinate axis. There are (3 × 3) direction cosines can be organized in a
(3 × 3) matrix, L. Thus, we may write:

{x′
j} = L{xj} (4.7)

or
R′ = LR (4.8)

as the coordinate transformation rule. It is easily verified that the matrix L is orthogonal, with
the following properties:

L−1 = LT & |L|2 = 1 (4.9)

Several important conventions will now be discussed, as they become essential in compact
formulations including vectors and tensors in later sections. We will first introduce the index
notation and summation convention for second order tensors, and define various elementary
operations with vectors and tensors.

• The range convention:

It states that every subscript (or index) takes on the values 1,2,3, unless otherwise stated.
Thus xj stands for the three coordinate numbers x1, x2, x3, and αij stands for numbers:
α11, α12, · · · etc.

• The summation convention:
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It states that if an index i appears twice in a given expression, a summation over i must
be performed. The repeated index is called a ”dummy index”, and cannot occur more
than twice in an equation. Thus, the previous coordinate transformation equation can
simply be written as:

R = xjej = x′
je

′
j (4.10)

and
x′

j = e′
j · (xi · ei) = (e′

j · ei)xi (4.11)

• The Kronecker delta:

δij, can now be used fore a number of properties, as listed below.

We note that xiδij = xj, aikδij = ajk. Thus, the presence of the dummy index i and δij

results in the replacement of i with j. This is known as the substitution property. Also,
the orthogonality of the vector basis {ei} can be easily represented as:

ei · ej = δNJ (4.12)

• The Permutation Symbol:

To express cross products between vectors, we introduce the permutation symbol εijk, as:

εijk =
1

2
(i − j)(j − k)(k − i) (4.13)

giving

εijk =

⎧⎪⎨⎪⎩
1 if ijk are in cyclic order, i.e. 123, 231 and 312,
−1 if ijk are not in cyclic order, i.e. 132, 213 and 321,
0 if any two indices are equal.

(4.14)

Thus,
ei × ej = εijkek (4.15)

(ei × ej) · ek = εijk (4.16)

u × v = εijkuivjek (4.17)

and

(u × v) · w = εijkuivjwk =

∣∣∣∣∣∣∣
u1 v1 w1

u2 v2 w2

u3 v3 w3

∣∣∣∣∣∣∣ (4.18)

is the volume spanned by the three vectors u, v and w.

• Cartesian Tensors:

As a generalization of vectors, Cartesian tensors are defined as follows. In 3-dimensional
Euclidean space, and for a given vector basis set {ei}, a collection of an ordered set of 3n
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numbers denoted by aijk··· containing n indices. The numbers aijk··· are the components
of an n-th order tensor A or a. Furthermore, if upon rotation of axes, the components of
A in the new vector basis {e′

i} become a′
ijk···, such that

a′
ijk··· = liαljβlkγ · · · aαβγ··· (4.19)

Note that lij is the direction cosine between the {e′
i} and {ej} axes. Here A is called a

Cartesian tensor of order n.

• Vector and Tensor Products:

Let us consider second order tensors S and A, vectors u, v, and w, and basis vector sets
{ei} and {e′

i}, with direction cosines of axes rotation lij = ei · e′
j. We will now consider

operations as inner (or dot) products, which lead to contraction of the tensor to lower
order, and operations as outer, dyad or tensor products, which lead to successive increase
in the tensor order.

Tensor products

The tensor product or dyad of the two vectors u and v, which is denoted u ⊗ v, is a
second order tensor that transforms a vector w into a vector with the direction of u, as
follows:

(u ⊗ v)w = u(v · w) = (v · w)u (4.20)

In general, the dyad is not commutative: u⊗v �= v⊗u. A dyadic is a linear combination
of dyads with scalar coefficients. For example, the linear combination: (au⊗v+ bw⊗v),
where a and b are scalars, is a dyadic. Thus, any second order tensor S can be expressed
as a dyadic (i.e. linear combination of basis dyads):

S = Sijei ⊗ ej (4.21)

The dyadic corresponding to the unit tensor I is the unit dyadic or idemfactor:

I = δijei ⊗ ej = ej ⊗ ej = e1e1 + e2e2 + e3e3 (4.22)

This notation is useful, for example, in obtaining individual components, as:

ek · S · em = ek · Sijeiej · em = δkiδjmSij = Skm (4.23)

likewise,
Smk = em · S · ek (4.24)

Dot products
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The dot product of two second order tensors A and B is also a second order tensor,
denoted by A · B, and defined by:

(A · B)u = A(B · u) (4.25)

In general, the dot product is not commutative: A · B �= B · A. The components of the
dot product are obtained by summation over one single index: (A · B)ij = AikBkj.

Trace and contraction

The trace of a tenor S is a scalar, denoted by trS. Thus, the trace of the dyad u ⊗ v is
just the dot product of the two vectors, i.e. tr(u⊗ v) = u · v = uivi. Also, the trace of a
tensor S with respect to the orthonormal basis {ei} is given by:

trS = tr(Sijei ⊗ ej) = Sijtr(ei ⊗ ej) = Sij(ei · ej) = Sijδij = Sii (4.26)

A double contraction operation is defined by summing the dot product of two second
order tensors over two indices, and is symbolically characterized by two dots, and yields
a scalar as shown below.

A : B = tr(ATB) = tr(BTA) = B : A (4.27)

Double contraction is very useful in tensor operations. Consider, for example, the follow-
ing identities:

I : S = trS = S : I (4.28)

(u ⊗ w) : (v ⊗ x) = (u · v)(w · x)

(ei ⊗ ej) : (ek ⊗ el) = (ei · ek) : (ej · el) = δikδjl

Symmetric and skew tensors

Any tensor W can be uniquely decomposed into a symmetric tensor S, and a skew (or
antisymmetric) tensor A, such that : W = S + A, where:

S =
1

2
(W + WT ) , A =

1

2
(W − WT ) (4.29)

The notation: symW for S and skewW for A is also used. Hence:

Sij = Sji , Aij = −Aji (4.30)

Projection, spherical and deviatoric tensors
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Consider the vector w and the unit vector e. We can decompose the vector w into a
component along e, and another for the projection of w on the plane normal to e, thus:
w = w‖ + w⊥. With the tensor product rules, we have:

u‖ = (w · e)e = (e ⊗ e)w = P‖
ew (4.31)

Similarly, we have for the normal component of w:

w⊥ = w − w‖ = w − (e ⊗ e)w = (I − e ⊗ e)w = P⊥
e w (4.32)

Therefore, the projection tensors, P‖
e and P⊥

e are defined by the relationships:

P‖
e = (e ⊗ e) , P⊥

e = (I − e ⊗ e) (4.33)

Every tensor can be decomposed into a spherical and a deviatoric part, as follows:

S = αI + devS, or Sij = αδij + devSij (4.34)

Where, α = 1
3
trS = 1

3
(I : S) = 1

3
Sii, and devS = S − 1

3
trSI.

Higher order tensors

A tensor of order three may be expressed as:

S = Sijkei ⊗ ej ⊗ ek (4.35)

Where Sijk are 33 = 27 components of the tensor S. A special third order tensor is the
triadic product: u⊗ v⊗w = (u⊗ v)⊗w. A few useful identities for third order tensors
are given below:

(u ⊗ v ⊗ w) · x = (w · x)u ⊗ v (4.36)

(u ⊗ v ⊗ w) : (m ⊗ n) = (v · m)(w · n)u

(u ⊗ v ⊗ w) : I = (v · w)u

The components of the third order tensor can be obtained by double contraction as:

Sijk = (ei ⊗ ej) : S · ek = ei ⊗ ej : Sijkei ⊗ ej ⊗ ek · ek (4.37)

Similar operations can be defined for tensors of higher order. For example, a fourth order
tensor can be written as vector products in the form:

C = Cijklei ⊗ ej ⊗ ek ⊗ el (4.38)

• Vector and Tensor Calculus:
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If the components of vectors or tensors are functions of space or time, they are termed
tensor (or vector) fields. We outline here a few useful differential and integral operation
with such fields. The first partial derivative of a scalar function of space and time φ(R, t)
is denoted by:

∂φ(R, t)

∂xk

= φ,k , k = 1, 2, 3 (4.39)

where the ”,” in φ,k stands for differentiation. We can now generalize to any tensor and
differentiation order. For example,

∂2sij

∂xk∂xl

= sij,kl (4.40)

Partial derivatives with respect to time are denoted as: ∂φ
∂t

= φ̇ = φ,t, etc.

It is easy to see that one can form three components of a vector from a scalar function
by differentiation as:

vi = φ,i

and that the vector v, transforms as:

v′
i = φ,j

∂xj

∂x′
i

= lijφ,j = lijvj (4.41)

This vector is called the gradient of φ. Thus a vector field is generated from a scalar field
as:

grad φ = ∇φ = φ,i ei (4.42)

similarly, a second order, symmetric tensor field can be generated by double differentia-
tion, as:

φ,ij =
∂2φ

∂xi∂xj

(4.43)

The scalar φ,ii is denoted by ∇2φ, where ∇2 is the Laplace operator:

∇2φ = φ,ii =
∂2φ

∂x2
1

+
∂2φ

∂x2
2

+
∂2φ

∂x2
3

(4.44)

If we consider a vector field v, we can generate a non-symmetric second order tensor field
by differentiation as:

aij = vi,j (4.45)

which can be shown to transform as a second order tensor. The particular condition
aii = vi,i is a scalar, and is denoted by the divergence of v:

div v = ∇ · v = vi,i (4.46)

In general, then, if S is a tensor of order n, then the components sijk···,m are the components
of a tensor of order (n+1), and is termed the gradient of S.
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The curl of a vector v is denoted by ∇× v, and in index notation is given by:

∇× v = εijkvj,i ek (4.47)

The following identities, which can be easily verified, will be useful:

∇×∇φ = 0 (4.48)

∇ · ∇φ = ∇2φ (4.49)

∇ · ∇ × v = 0 (4.50)

∇×∇× v = ∇(∇ · v) −∇2v (4.51)

Thus a gradient vector field is irrotational, while the curl of a vector field is divergence
free. Note that any operation that are written in direct vector notation are valid in any
coordinate system, and not only Cartesian.

The integration of vector and tensor fields over volumes, surfaces and lines can usefully
be manipulated through the divergence (Gauss) theorem and Stokes’s theorem as follows.

• Stokes’ (Circulation) Theorem:

Figure 4.2: Surface and bounding contour for Stokes’ theorem

For an open piece-wise smooth surface S, bounded by a simple closed curve C, for any
vector field v, we can show: ∮

C
v · dl =

∫
S

(∇× v) · ndS (4.52)

where dl is a line element (tangent to C), dS is an area element and n is an outward
surface normal, as can be seen in Fig. (4.2). This can be put in index notation as:∮

C
vi · dli =

∫
S

εijkvj,i nkdS (4.53)
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The theorem can be extended to any order tensor as:∮
C

αijk···dli =
∫

S
εijkαjk···,i nkdS (4.54)

• The Divergence (Gauss’) Theorem:

Consider the volume Ω of a region in space bounded by a piece-wise smooth and closed
surface S, depicted in Fig. (4.3). It can be shown that:

dS

S Surface

 Volume

Figure 4.3: Representative volume for Gauss’s theorem

∫
S
v · n dS =

∫
Ω
∇ · v dΩ (4.55)

In index notation, it can be re-written as:∫
S

vi · nidS =
∫
Ω

vi,i dΩ (4.56)

which can now be extended to any order tensor as:∫
S

αijk···nidS =
∫
Ω

αijk···,i dΩ (4.57)

4.2 Infinitesimal Deformation and the Strain Tensor

Under the action of applied forces, solids exhibit deformation and change in shape. The position
of any point in the body is defined by its radius vector r (with components x1 = x, x2 = y, x3 =
z) in some coordinate system. When the body is deformed, every point in it is in displaced.
Consider some particular point, let its radius vector before the deformation be R, and after the
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deformation have a different value R′ (with components x′
i). The displacement of this point

due to the deformation is then given by the vector u = R′ − R:

ui = x′
i − xi (4.58)

The vector u is called the displacement vector. The coordinates x′
i of the displaced point are

functions of the coordinates xi of the point before displacement. The displacement vector ui is
therefore also a function of the coordinates xi. If the vector u is given as a function of xi, the
deformation of the body is entirely determined.

When a body is deformed, the distances between its points change. Consider two points
very close together. If the radius vector joining them before the deformation is dx′

i = dxi +dui.

The distance between the points is dl =
√

dx2
1 + dx2

2 + dx2
3 before the deformation, and dl′ =√

dx′2
1 + dx′2

2 + dx′2
3 after it. Using the summation rule, we can write dl2 = dx2

i , dl′2 = dx′2
i =

(dxi + dui)
2. Substituting dui = ui,k dxk, we can write

dl′2 = dl2 + 2ui,k dxidxk + ui,k ui,l dxkdxl.

We note that ui,k dxidxk = uk,i dxidxk, then dl′2 takes the form

dl′2 = dl2 + 2uikdxidxk, (4.59)

the tensor uik is defined as

uik =
1

2
(ui,k +uk,i +ul,i ul,k ). (4.60)

The tensor uik is called the strain tensor, which is symmetric.

For small (infinitesimal) deformations, the strain tensor can be taken as:

uik =
1

2
(ui,k +uk,i ) (4.61)

which is evidently symmetric, and can thus be diagonalized. This means that, at any given
point, we can choose coordinate axes (the principal axes of the tensor) in such a way that
only the diagonal components u11, u22, u33 of the tensor uik are different from zero. These
components, the principal values of the strain tensor, and will be denoted by u(1), u(2), u(3).

If the strain tensor is diagonalized at a given point, the element of length square near it
becomes:

dl′2 = (δik + 2uik)dxidxk (4.62)

= (1 + 2u(1))dx2
1 + (1 + 2u(2))dx2

2 + (1 + 2u(3))dx2
3 (4.63)

We can see that the expression is the sum of three independent terms. This means that the
strain in any volume element may be regarded as composed of independent strains in three
mutually perpendicular directions, namely three of the principal axes of the strain tensor.
Each of these strains is a simple extension (or compression) in the corresponding direction: the
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length element along the first principal axes becomes dx′
1 =

√
1 + 2u(1)dx1, and similar for the

other two axes. The quantity
√

1 + 2u(i) − 1 is the relative extension (dx′
i − dxi)/dxi along the

ith principal axis. The relative extensions of the elements of length along the principal axes
of the strain tensor are, to within higher-order terms,

√
1 + 2u(i) − 1 ≈ u(i), i.e. they are the

principal values of the tensor uik.

Let us consider an infinitesimal volume element dV , and find its volume dV ′ after the
deformation. In this case, we take the principal axes of the strain tensor at the point considered,
as the coordinate axes. Then the elements of length dx1, dx2, dx3 along these axes become,
after the deformation, dx′

1 = (1+u(1))dx1, etc. The volume dV is the product dx1dx2dx3, while
dV ′ is dx′

1dx′
2dx′

3. Thus dV ′ = dV (1 + u(1))(1 + u(2))(1 + u(3)). Neglecting higher-order terms,
we would have dV ′ = dV (1+u(1) +u(2) +u(3)). The sum u(1) +u(2) +u(3) of the principal values
of a tensor can be shown to be invariant, and is equal to the sum of the diagonal components
uii = u11 = u22 = u33 in any coordinate system. Thus

dV ′ = dV (1 + uii) (4.64)

It is clear that the sum of the diagonal components of the strain tensor is the relative volume
change (dV ′ − dV )/dV .

4.3 The Stress Tensor

The theory of elasticity is based on the assumption that the range of internal forces between
atoms is very localized (i.e. short-range). As we will see later, lattice incompatibilities (e.g.
dislocations) can result in long range internal forces, and will therefore require careful consid-
eration. It follows from the basic assumption of elasticity that the force exerted on any part of
the body by surrounding parts can only exist at the surface. Consider the total force on some
portion of the body. First, this total force is equal to the sum of all the forces on all the volume
elements in that portion of the body, i.e. it can be written as the volume integral

∫
FdΩ, where

F is the force per unit volume and FdΩ the force on the volume element dΩ. Second, the forces
with which various parts of the portion considered act on one another cannot give anything but
zero in the total resultant force. Thus, each of the three components

∫
FidΩ of the resultant of

all internal stresses can be transformed into a surface integral. By the divergence theorem (eq.
(4.57) of Section (??)), we conclude that the force vector F must be the divergence of a tensor
of rank two. Thus:

Fi = σik,k (4.65)

or
F = ∇ · σ (4.66)

The force on any volume can be written as:∫
Ω

FidΩ =
∫
Ω

σik,k dΩ =
∫

S
σikdSk (4.67)
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The tensor σik is called the stress tensor. It is clear from eq.(4.67) that σikdSk is the ith
component of the force on the surface element dS. If we just consider element of area in the
planes of xy, yz, zx, the component σik will be the ith component of the force per unit area
perpendicular to the xk-axis. Thus, the force per unit area parallel to the x-axis and normal to
the yz-plane is σxx.

By considering internal moment equilibrium, it can be easily shown that the stress tensor
must be symmetric, i.e., we must have:

σik = σki (4.68)

The equation of equilibrium can be formed if we realize that the internal force at every
volume element must balance, i.e. Fi = 0. If there are additional body force per unit volume
(e.g. gravitational, centrifugal, etc.) with value fi, we must have Fi + fi = 0. Thus:

σij,j +fi = 0 (4.69)

Solution of this set of equilibrium equations is subject to boundary conditions. Let P be the
external force per unit surface area, thus the equilibrium of a surface element dS implies that
the sum of the internal (−σikdSk) and external PidS must vanish. Since dSk = nkdS, where n
is a unit normal, then, the condition of boundary equilibrium is expressed as:

σijnj = Pi (4.70)

4.4 Thermodynamics of Deformation

Let’s assume that the deformation of a body changes the displacement vector u by a small
amount δu, and we wish to determine the work done by internal stresses. We will adopt here
the sign convention that input work or heat to the body is positive. Thus, the work integrated
over the body is: ∫

δW dΩ =
∫

S
t · δu dS +

∫
Ω
F · δu dΩ (4.71)

where t is the surface traction vector, ti = σiknk, δW is the incremental amount of work done
per unit volume. The negative sign is for work done by the body. Input heat or work to the
body are positive by convention. Equation(4.71) can be re-written as:∫

Ω
δW dΩ =

∫
S

δuiσikdSk +
∫
Ω

fiδui dΩ (4.72)

Using the divergence theorem for the first integral, we obtain:∫
δW dΩ =

∫
Ω
(σikδui),k dΩ +

∫
Ω

fiδui dΩ (4.73)

=
∫
Ω
(fi + σik,k)δui dΩ +

∫
Ω

σikδui,k dΩ (4.74)
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As a result of mechanical equilibrium (7.207), the first term is zero. Also, because the stress
tensor is symmetric, we have:

∫
δW dΩ =

1

2

∫
(σikδui,k +σkiδuk,i ) dΩ (4.75)

=
1

2

∫
σikεik dΩ

This finally gives the work done on the body per unit volume as:

δW = σikεik (4.76)

We will assume that the deformation is slow enough such that thermodynamic equilibrium is
established, and that the deformation is elastic and reversible. The thermodynamic functions:
internal energy U , entropy S, Gibbs free energy G, and Helmholz free energy A are all taken
per unit volume. The first law of thermodynamics can be stated as:

dU = δQ + δW (4.77)

And since A = U − TS, we have:

dU = TdS + σikdεik (4.78)

dA = −SdT + σikdεik (4.79)

Also, we may generalize the standard form of the enthalpy for a P-V-T system (H = U + PV )
to (H = U − σikεik), and because G = H − TS, we would have:

G = U − TS − σikεik = A − σikεik (4.80)

Taking the differentials of the enthalpy and Gibbs free energy, we get:

dG = −SdT − εikdσik (4.81)

dH = TdS − εikdσik (4.82)

It is clear that the components of stress or strain tensors can be obtained from the previous
equations (4.78- 4.82) by differentiation as:

σik =

[
∂U

∂εik

]
S

=

[
∂A

∂εik

]
T

(4.83)

and,

εik = −
[

∂G

∂σik

]
T

= −
[

∂H

∂σik

]
S

(4.84)
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4.5 Constitutive Relations

The stress and strain tensors have been introduced as far without any connection between them.
When a body deforms, atoms move apart, and the forces are non-linearly dependent on the
distance between atoms via the inter atomic potential. For small deviations from equilibrium,
the interatomic potential can be approximated as a quadratic function of displacement, and
interatomic forcs become approximately linear functions of atomic displacements, with the pro-
portionality constant determined only by the curvature of the potential near equilibrium. This
microscopic picture can be extended to the macroscopic domain, if one ignores material incom-
patibilities due to dislocations and other defects. An analog to this microscopic relationship is
the situation encountered in dealing with the classical mass-spring system, when the force F is
linear with the displacement x (F = Kx), and the potential is quadratic (i.e. U = − 1

2
Kx2),

where K is the spring stiffness. Now, let’s generalize this to the case of elastic deformation
involving stress and strain tensors.

Consider a body in equilibrium. Then, for uik = 0, the internal stresses are zero also, i.e.
σik = 0. For an isothermal thermodynamic process, σik =

[
∂A
∂εik

]
T
. It follows that there is no

linear terms in the expansion of A in powers εik, otherwise we would have a constant force at
equilibrium. Next, since the Helmholtz free energy is a scalar, each term in the expansion of
A must be a scalar also. Two independent scalars of the second degree can be formed from
the components of the symmetrical tensor εik, they can be taken as the squared sum of the
diagonal components ε2

ii and the sum of the squares of all the components ε2
ik. Expanding A in

powers of εik, we therefore have, up to second order terms:

A = A0 +
1

2
λε2

ii + µε2
ik (4.85)

This is the general expression for the Helmholtz free energy of an isotropic body, deformed
isothermally. The quantities λ and µ are called Lamé coefficients.

The change in volume in the deformation is given by the sum εii. If this sum is zero, then
the volume of the body is unchanged by the deformation, only its shape being altered. Such
deformation is called a pure shear. The opposite case is that of deformation which causes a
change in the volume of the body but no change in its shape. Each volume element of the
body retains its shape also. The tensor of such deformation is εik =constant×δik. This type of
deformation is called hydrostatic compression.

Any deformation can be represented as the sum of a pure shear and a hydrostatic compres-
sion. To do so, we need only the identity:

εik = (εik − 1

3
δikεll) +

1

3
δikεll (4.86)

The first term on the right is obviously a pure shear, since the sum of its diagonal terms is
zero (δii = 3). The second term is a hydrostatic compression. As a general expression for
the Helmholtz free energy of a deformed isotropic body, it is convenient to replace eq. (4.85)
by another formula, using this decomposition of an arbitrary deformation into pure shear and
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hydrostatic compression. We take as the two independent scalars of the second degree the sums
of the squared components of the two terms in eq. (4.85). Then A becomes

A = µ(εik − 1

3
δikεll)

2 +
1

2
Kε2

ll. (4.87)

The quantities K and µ are called the bulk modulus and the shear modulus, respectively. K is
related to the Laméconstants by:

K = λ +
2

3
µ. (4.88)

To calculate the derivatives ∂A/∂εik, we write the total differential dA (for constant tempera-
ture):

dA = Kεlldεll + 2µ(εik − 1

3
δikεll)d(εik − 1

3
δikεll) (4.89)

In the second term, multiplication of the first parenthesis by δik gives zero, resulting in:

dA = [Kεlldεll + 2µ(εik − 1

3
δikεll)dεik (4.90)

or writing dεll = δikdεik, we have:

dA = [Kεllδik + 2µ(εik − 1

3
δikεll)]d(εik (4.91)

The stress tensor is therefore given by:

σik = Kεllδik + 2µ(εik − 1

3
δikεll). (4.92)

This constitutive relationship between the stress and strain tensors shows that, if the defor-
mation is a pure shear or a pure hydrostatic compression, the relation between σik and εik is
determined only by the shear modulus or the bulk modulus, respectively. If we now use eq.
(4.92) to find σii = 3Kεii, and substitute each into the same equation, we obtain the inverse
relationship between strain and stress.

εik = δikσll/9K + (σik − 1

3
δikσll)/2µ. (4.93)

Equations (4.92) and (4.93) are valid for small deformation, and represent Hooke’s law for
isotropic solids. It is clear that only two elastic constants are required to describe the stress-
strain relationship of isotropic solids. It is common to use Young’s modulus (E) and Poisson’s
ratio (ν) instead. We have:

µ =
E

2(1 + ν)
, K =

E

3(1 − 2ν)

Thus, Equations (4.92) and (4.93) become:

σik =
E

1 + ν
(εik +

ν

1 − 2ν
εllδik) (4.94)

and

εik =
1

E
[(1 + ν)σik − νσllδik]. (4.95)

This procedure can be extended to anisotropic crystals, as will be discussed briefly here.
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4.6 Anisotropic Crystals

In most crystalline materials, the elastic properties are dependent on specific directions as a
result of unique atomic arrangement. In addition, when certain regions of a parent phase
transform into another phase of a different crystal structure, the elastic properties change when
the phase boundary is crossed. Materials with macroscopic degrees of symmetry (e.g. natural
wood, fiber-reinforced composites, etc.) have elastic properties that are dependent on specific
directions. Under the most general conditions, the constitutive equation of a crystal undergoing
elastic deformation can be expressed in the form:

σij = Cijklεkl (4.96)

In eq. (4.96, the fourth-order tensor for the elastic constants, Cijkl has 81 independent
components. However, most of these components are redundant, as is shown in the following
arguments. For general anisotropic materials, both the stress and strain tensors are symmetric,
thus:

σij = σji; εij = εji (4.97)

Hence one can write:
Cijkl = Cjikl = Cijlk (4.98)

This symmetry leaves only 36 independent components of Cijkl. Moreover, assuming that
there exists a strain energy from which the stress can be derived as:

σij =
∂U

∂εij

(4.99)

where;

U =
1

2
Cijklεijεkl (4.100)

One can conclude that the index symmetry of Cijkl = Cklij results in only 21 independent
components. This most general condition is applicable to triclinic materials, or hyperelastic
materials. Several special cases will be outlined next. Let us now adopt a simpler notation, as
follows:

{σ}T = [σ1, σ2, σ3, σ4, σ5, σ6] = [σ11, σ22, σ33, σ23, σ13, σ12] (4.101)

and;
{ε}T = [ε1, ε2, ε3, ε4, ε5, ε6] = [ε11, ε22, ε33, 2ε23, 2ε13, 2ε12] (4.102)

The general constitutive elasticity relationship σij = Cijklεkl can thus be re-written as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

σ4

σ5

σ6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1

ε2

ε3

ε4

ε5

ε6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.103)



4.6. ANISOTROPIC CRYSTALS 45

In the following, we discuss the special cases of symmetry that are usually encountered in
anisotropic materials:

• Monoclinic (Monotropic) Materials

If one plane of elastic symmetry exists, the material is said to be monoclinic or monotropic,
and this condition leaves only 13 independent components of Cijkl. For example, let the
2-3 plane (y-z plane) be the symmetry plane, then:

C14 = C16 = C25 = C26 = C35 = C36 = C45 = C46 = 0 (4.104)

• Orthotropic Materials

If three mutually orthogonal planes of symmetry exist, the material is said to be or-
thotropic, which leaves 9 independent components of Cijkl. Wood is a common example
of orthotropic materials. Thus,

[C] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.105)

• Transversely Isotropic Materials

If an orthotropic solid exhibits symmetry with respect to arbitrary rotations about one
of the axes, it is then called transversely isotropic, which reduces the independent com-
ponents of Cijkl to only 5. For example, let x3-axis be the symmetric axis. Then,

[C] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.106)

With C66 = 1
2
(C11 − C12). A unidirectional fiber-reinforced composite is a common

example of a transversely isotropic material.

• Cubic Materials
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Cubic materials have similar symmetry about three mutually orthogonal planes, and thus
only 3 independent components of Cijkl are needed. Therefore, for materials of cubic
symmetry (e.g. FCC and BCC metals, cf. table 4.6), we have:

[C] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.107)

• Isotropic Materials

A material with point symmetry or an infinite number of material symmetry planes is
said to be isotropic, which leaves only 2 independent components of Cijkl. In this case,
we have:

[C] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.108)

With C44 = 1
2
(C11 − C12). In this very special case, the elasticity constants tensor has

only two components, and one can write:

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (4.109)

4.7 Navier’s Equation

Determination of the distribution of stress, strain and displacements everywhere within the
elastic body requires satisfying the equations of equilibrium, the constitutive equations and
the boundary conditions, which can be specified in terms of known surface traction, displace-
ments, or both. We will not concern ourselves here with boundary value problems, but we
will rather focus our attention on elasticity problems that involve internal defects of material
inhomogeneities. As such, we describe here the fundamental equation of elasticity that can
be derived from both equilibrium and stress-strain relationships (Navier’s equation), and then
dedicate the remainder of this chapter to problems of microstructure evolution, as described
by internal displacement discontinuities associated with dislocation loops, or internal sources
of stress as a result of phase transitions. If we substitute the stress-strain relationship into the
equilibrium equation:

σik,k +fi = Cijkluk,lj + fi = 0 (4.110)
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Table 4.1: Elastic constants C11, C12, & C44, and the anisotropy ratio A = 2C44

C11−C12
for common

metallic crystals

((?))

Metal Crystal Structure C11 C12 C44 A

Au fcc 18.6 15.7 4.20 2.9
Ag fcc 12.40 9.34 4.61 3.01
Al fcc 10.82 6.13 2.85 1.21
Cu fcc 16.84 12.14 7.54 3.21
Ni fcc 24.65 14.73 12.47 2.52
Mo bcc 46.0 17.6 11.0 0.775
Nb bcc 24.6 13.4 2.87 0.51
Cr bcc 35.0 5.78 10.1 0.69
Fe bcc 24.2 14.65 11.2 2.36
Ta bcc 26.7 16.1 8.25 1.56
V bcc 22.8 11.9 4.26 0.78

For isotropic materials, substituting eq. (4.109) into the equation of equilibrium (4.110), we
obtain:

(λ + µ)uj,ji + µui,jj + fi = 0 (4.111)

In vector form, this last equation can be written as:

(λ + µ)∇(∇ · u) + µ∇2u + f = 0 (4.112)

Equation (4.112) is known as Navier’s equation, which describe the displacement vector field
anywhere in a body in elastic equilibrium. In the absence of body forces, the Navier’s equation
of equilibrium becomes:

∇2u +
1

1 − 2ν
∇(∇ · u) = 0. (4.113)

General solutions for Navier’s equation without body forces have been obtained by Boussinesq
in 1878 and by Galerkin in 1930, as follows.

u = ∇2a − 1

2(1 − ν)
∇(∇ · a) (4.114)

where the vector function a satisfies the biharmonic equation: ∇2∇2a = 0. On the other hand,
Papkovitch (1932)and Neuber (1934) presented solutions of the form:

u = b − 1

4(1 − ν)
∇(b0 + r · b) (4.115)

Where: the scalar function b0, and the vector function b satisfy the harmonic equations:
∇2b0 = 0, ∇2b = 0, r = xiei, respectively.
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4.8 Parametric Dislocations

4.8.1 Differential Geometry of Dislocation Loops

The core of an arbitrary-shape, 3-D dislocation loop can be reduced to a continuous line.
Assume that the dislocation line is segmented into (ns) arbitrary curved segments, labelled
(1 ≤ i ≤ ns)., as shown in Figure 4.4. For each segment, we define r̂(u) = P(u) as the position
vector for any point on the segment, T(u) = T t as the tangent vector to the dislocation line,
and N(u) = Nn as the normal vector at any point (See Figure 4.5)). The space curve is then
completely described by the parameter u, if one defines certain relationships which determine
r̂(u). Note that the position of any other point in the medium (Q) is denoted by its vector r,
and that the vector connecting the source point P to the field point is R, thus R = r − r̂. In
the following developments, we restrict the parameter 0 ≤ u ≤ 1, although we map it later on
the interval −1 ≤ û ≤ 1, and û = 2u − 1 in the numerical quadrature implementation of the
method.

11 += nPP

2P  3P  

nP  

Segment n 

Segment 2 

ld
v

1 

2 

3 

Figure 4.4: A space dislocation loop discretized into a finite number of curved segments, Ns

To specify a parametric form for r̂(u), we will now choose a set of generalized coordinates

q
(j)
i for each segment (j), which can be quite general. If one defines a set of basis functions

Ni(u), where u is a parameter, and allows for index sums to extend also over the basis set
(i = 1, 2, .., I), the equation of the segment can be written as:

r̂(j)(u) = q
(j)
i Ni(u) (4.116)

Or, in compact component (k) form, this can be put as:

x̂
(j)
k (u) = q

(j)
ik Ni(u) (4.117)

Thus, the components of the displacement vector are given by:

δx̂
(j)
k (u) = δq

(j)
ik Ni(u) (4.118)
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Figure 4.5: Basic elements of a space curve representing one dislocation segment

At this point, we must specify the form of parametric description for the dislocation line.
Although this step is open to pure computational convenience, we present here those parametric
forms which we use later in this work. Parametric dislocation representation discussed below
are also sufficient to describe the majority of experimentally observed dislocation line geometry.

4.8.2 Circular, Elliptic and Helical Loops

Small prismatic loops of circular (or nearly elliptic) shapes are observed in many materials under
deformation, irradiation and quenching conditions(?). Helical loops of unusual regularity have
also been experimentally observed under large vacancy supersaturation (?). Therefore, it seems
natural to use a simple representation for such loops, where the shape functions are given by:

N1 = cos(2πu), N2 = sin(2πu), N3 = u (4.119)

And their parametric derivatives, which we use later in determining the arc length, are simply
given by:

N1,u = −2πN2, N1,u = 2πN1, N3,u = 1 (4.120)

Note that in this case, the description is not in Cartesian coordinates, and that the generalized
degrees of freedom are given by:

q1 = a, q2 = b, , & q3 = c (4.121)

Loop motion is described in terms of the time variations of the generalized coordinates, a, b,
and c.

4.8.3 Linear Parametric Segments

The majority of 3-D dislocation dynamics developments are based on analytic solutions to the
elastic field of linear segments(?)-(?). Sometimes it is just as convenient to use a purely numer-
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ical method, without any loss of computational speed or accuracy(?). Under these conditions,
the shape functions Ni(u) and their derivatives Ni,u take the form:

N1 = 1 − u N2 = u (4.122)

N1,u = −1 N2,u = 1 (4.123)

The available degrees of freedom for a free, or unconnected linear segment (j) are just the
position vectors of the beginning(j) and end (j + 1) nodes. Thus:

q
(j)
1k = P

(j)
k , & q

(j)
2k = P

(j+1)
k (4.124)

4.8.4 Cubic Spline Parametric Segments

The self-force on a dislocation segment can be approximated as a simple function of its curvature
((?),(?),(?)). To allow for continuity of the self-force along the entire dislocation loop, and to
capture non-linear deformations of the dislocation line itself during, a higher order parametric
representation is desired. For cubic spline segments, we use the following set of shape functions,
their parametric derivatives, and their associated degrees of freedom, respectively:

N1 = 2u3 − 3u2 + 1, N2 = −2u3 + 3u2, N3 = u3 − 2u2 + u, & N4 = u3 − u2

N1,u = 6u2 − 6u, N2,u = −6u2 + 6u2, N3,u = 3u2 − 4u + 1, & N4,u = 3u2 − 2u

q
(j)
1k = P

(j)
k , q

(j)
2k = P

(j+1)
k , q

(j)
3k = T

(j)
k , &q

(j)
4k = T

(j+1)
k (4.125)

4.8.5 Quintic Spline Parametric Segments

A greater degree of flexibility can be achieved if one considers even higher order representation.
The special case of continuous quintic splines is rather interesting. The available degrees of
freedom can be increased to include variations in the normal vector, N, as well as the position
P and tangent T vectors. So, in passing from linear to cubic and then to quintic representation,
one has {P} , {P&T}, and {P,T&N}, respectively. With that, line curvature can be smoothly
controlled and out-of-plane dislocation motion can be simultaneously followed with glide events.
The equations for shape functions, their parametric derivatives, and available degrees of freedom
for quintic splines are given by:

N1 = −6u5 + 15u4 − 10u3 + 1, N2 = 6u5 − 15u4 + 10u3, N3 = −3u5 + 8u4 − 6u3 + u,

N4 = −3u5 + 7u4 − 4u3, N5 =
1

2
(−u5 + 3u4 − 3u3 + u2), & N6 =

1

2
(u5 − 2u4 + u3)

N1,u = 30(−u4 + 2u3 − u2), N2,u = −N1,u, N3,u = −15u4 + 32u3 − 18u2 + 1,

N4,u = −15u4 + 28u3 − 12u2, N5,u =
1

2
(−5u4 + 12u3 − 9u2 + 2u), N6,u =

1

2
(5u4 − 8u3 + 3u2)

q
(j)
1k = P

(j)
k , q

(j)
2k = P

(j+1)
k , q

(j)
3k = T

(j)
k , q

(j)
4k = T

(j+1)
k , q

(j)
5k = N

(j)
k , &q

(j)
6k = N

(j+1)
k (4.126)

The total number of available degrees of freedom for a dislocation segment requires careful
consideration. Even though more flexibility, and hence accuracy, is achieved by higher order
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splines, it is still desirable to reduce the number of degrees (NDF ) of freedom from a com-
putational standpoint. For a free, or discrete segment, NDF is thus equal to the number of
components in the Cartesian vector q(j)

i; i.e. NDF = 6, 12, and 18, for linear, cubic and quintic
splines, respectively. However, NDF can be greatly reduced on physical and geometric grounds.
Since all segments must be connected on the loop, only one node is associated with each segment
instead of two. Loop boundary conditions can be used to define (or fix) specific DF ’s on certain
nodes. Thus, for a continuous representation, NDF is reduced by a factor of 2. Moreover, if
the motion is that of pure glide on the slip plane, appropriate coordinate transformations can
be used to assign local DF ’s in two dimensions. Thus, planar loop motion can be described
by N local

DF = 2, 4, &6 for the three parametric cases we consider here. Additional physical and
geometric constraints can still be imposed to reduce NDF even further.

Forces and energies of dislocation segments are given per unit length of the curved dislocation
line. Also, line integrals of the elastic field variables are carried over differential line elements.
Thus, if we express the Cartesian differential in the parametric form:

d�
(j)
k = x̂

(j)
k, udu = q

(j)
sk Ns, udu (4.127)

The arc length differential for segment j is then given by:

| d�(j) | =
(
d�

(j)
k d�

(j)
k

) 1
2 =
(
x̂

(j)
k, ux̂

(j)
k, u

) 1
2 du

=
(
q
(j)
pk Np, u q

(j)
sk Ns, u

) 1
2 du (4.128)
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Chapter 5

Two-dimensional Elastic Fields

5.1 Infinite Isotropic Media

5.1.1 Edge Dislocations

Consider an edge dislocation with the Burgers vector as x1-axis of a rectangular Cartesian
co-ordinate system and the dislocation line as x3-axis of an isotropic elastic cylinder of infinite
length L and radius R. We apply the linear theory of elasticity in the region r0 < r < R, where
r0 is the core radius (usually 5 to 10 atomic spacings) and assume that the surface tractions
acting at the inner and outer boundary are known and independent of x3. Therefore, the
straight edge dislocation described above produces displacement field that do not depend on
x3. The deformation induced is known as plane strain and is given by

u1 = u1(x1, x2), u2 = u2(x1, x2), u3 = 0 (5.1)

Consequently, ε13 = ε23 = ε33 = 0, and ε11, ε22, and ε12 are independent of x3. The stresses are
given by

σ11 = (λ + 2µ)ε11 + λε22

σ22 = λε11 + (λ + 2µ)ε22

σ33 = λ(ε11 + ε22) = ν(σ11 + σ22)
σ12 = 2µε12, σ13 = σ23 = 0 ( 5.2a)

Assuming the body force to be zero, the first two equilibrium equations become

σ11,1 + σ12,2 = 0
σ12,1 + σ22,2 = 0 ( 5.3a)

and the third one is identically satisfied.

We consider that u is single-valued in the region � between the inner and outer boundary.
Then, it is clear that u2 will be continuous across the cut x2 = 0, −R ≤ r ≤ −r0, while the

53



54 CHAPTER 5. TWO-DIMENSIONAL ELASTIC FIELDS

component u1 will have jump across this cut, given by

u1(x1, 0
+) − u1(x1, 0

−) = −b, −R ≤ r ≤ −r0 (5.4)

where, b is the magnitude of the true Burger vector. Since it was assumed that the traction,
t∗z = 0, for r = r0 and r = R, the components of the surface tractions acting on the elastic
boundary are t∗r and t∗θ. Assuming that these components may be expressed in complex Fourier
series of the polar angle θ, we write

t∗r + it∗θ =

⎧⎪⎪⎨⎪⎪⎩
∞∑

k=−∞
t
(1)
k eikθ for r = r0

∞∑
k=−∞

t
(2)
k eikθ for r = R

(5.5)

However, we can set t∗ = 0 on the external boundary of the cylinder, if we are interested only
in calculating the self-stresses produced by dislocations. On the contrary, the inner boundary
used to isolate the dislocation line is acted on by forces arising from the dislocation core, which
can be determined only by a combined continuum and atomistic calculation. It can be shown,
that the contributions of these forces toward the stress field are negligible with increasing
distance from the dislocation line compared to those arising from the effect of L and b that
characterize the long range stress field of the dislocation. Thus, we can set t∗ = 0 at r = r0.

It may be shown that

σrr + iσrθ =
1

2
[σ11 + σ22 + (σ11 − σ22 + 2iσ12)e

−2iθ] (5.6)

and hence the boundary conditions given by Equations 5.5 can be written in the equivalent
complex form

1

2
[σ11 + σ22 + (σ11 − σ22 + 2iσ12)e

−2iθ] = t∗r + it∗θ (5.7)

for r = r0 and for r = R. The above formulated boundary value problem can be solved using
complex variable method. It is well known that the general solution to the two-dimensional
equations of elastostatics can be expressed in terms of two analytic but otherwise arbitrary
functions of a complex variable. A detailed discussion can be found in Sokolnikoff (1956) and
England (1971). We summarize the results as follows.

σ11 + σ22 = 2[F ′(z) + F ′(z)] = 4Re[F ′(z)]
σ11 − σ22 + 2iσ12 = −2[zF ”(z) + G′(z)]

2µU(z, z) = (3 − 4ν)F (z) − zF ′(z) − G(z) (5.8)

where, F(z) and G(z) are analytic functions of complex number z in � and U is the complex
displacement. Equations 5.8 give the Kolosov’s representation of the solution of the plane strain
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problem of linear elasticity in terms of complex potentials F(z) and G(z). The jump condition
given by Equation 5.1 and boundary conditions (Equations 5.5) can then be restated as:

U(x1, 0
+) − U(x1, 0

−) = −b
F ′(z) + F ′(z) − e−2iθ {zF ′′(z) + G′(z)} = 0 for z = r0e

iθ, Reiθ (5.9)

The boundary value problem can now be solved by finding the functions F(z) and G(z) that are
analytic in � and that satisfy the jump condition Equation 5.1-(a) and the boundary conditions
of Equation 5.5-(b).

Since the stress components are continuous across the negative x1 axis, equations 5.8(a),(b)
imply that the analytic functions F ′(z) and G′(z) must be continuous and single valued in �
and hence they can be expanded in Laurent power series of z

F ′(z) =
∞∑

k=−∞
akz

k G′(z) =
∞∑

k=−∞
bkz

k (5.10)

Integrating (5.11) gives

F (z) = a−1 ln(z) +
∞∑

k=−∞,k �=−1

akz
k+1

k + 1
G(z) = b−1 ln(z) +

∞∑
k=−∞,k �=−1

bkz
k+1

k + 1
(5.11)

We set the constants of integration to zero in order to suppress the translational components
of the rigid body displacements in 5.8(c). This impose the supplementary conditions F (0) = 0
and G(0) = 0. In order to avoid the rigid body rotation we need to enforce the condition
Im F ′(0) = 0 which gives Im a0 = 0. The multiple valued function ln(z) may be determined
as single valued by introducing a suitable cut in the z-plane. As an example, by choosing a cut
x2 = 0, x1 ≤ 0, we can take

ln(z) = ln |z| + iarg(z), (5.12)

where

|z| = r =
√

x2
1 + x2

2 ( 5.13a)

arg(z) = θ =

⎧⎪⎨⎪⎩
cotan−1 x1

x2
for x2=0

0 for x2=0, x1=0
cotan−1 x1

x2
− π for x2=0

( 5.13b)

Thus, the limiting values of arg(z) on the upper and lower faces of the cut are π and −π,
respectively. Introducing 5.10 and 5.11 into 5.8(c), and using the jump condition 5.9(a), we
find

(3 − 4ν)a−1 + b−1 = − iµb

π
(5.14)

By substituting 5.10 into 5.9(b) and equating coefficients of eikθ for k = 0,±1,±1....., we obtain
for k = 0:

2a0 − b−2r0−2 = 0, 2a0 − b−2R
−2 = 0 (5.15)
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for k = −1:

a−1 − b−1 = 0 (5.16)

for k=1:

a1r0 + 2a−1r
−1
0 − b−3r

−3
0 = 0, a1R + 2a−1R

−1 − b−3R
−3 = 0 (5.17)

Solving 5.14-5.17, we obtain

a0 = 0, a−1 = b−1 =
iµb

4π(1 − ν)
, a1 =

iµb

2π(1 − ν)(R2 + r2
0)

, b−2 = 0, b−3 =
iµbR2r2

0

2π(1 − ν)(R2 + r2
0)
(5.18)

and all other coefficients ak, bk vanish if we solve all equations obtained by equating coefficients
for k = ±2,±3, .... . Thus, the boundary problem formulated above is completely solved. We
can now obtain the stress and displacements realizing that

F (z) = a−1 ln(z) +
a1z

2

2
, G(z) = b−1 ln(z) − b−3

2z2
. (5.19)

Using 5.18, 5.19 and 5.8(a)-(c), and taking into account that

σrr + σθθ = σ11 + σ22

σrr − σθθ + 2iσrθ = (σ11 − σ22 + 2iσ12)e
−2iθ

we obtain,

u1 = − b

2π
{θ +

1

4(1 − ν)
[1 +

(3 − 4ν)r2

R2 + r2
0

− R2r2
0

(R2 + r2
0)r

2
] sin(2θ)} ( 5.20a)

u2 =
b

8π(1 − ν)
{2(1 − 2ν) ln r +

2r2

R2 + r2
0

+ [1 +
(3 − 4ν)r2

R2 + r2
0

− R2r2
0

(R2 + r2
0)r

2
] cos(2θ)}( 5.20b)

σrr =
µb

2π(1 − ν)
(
1

r
− r

R2 + r2
0

− R2r2
0

(R2 + r2
0)r

2
) sin θ ( 5.20c)

σθθ =
µb

2π(1 − ν)
(
1

r
− 3

r

R2 + r2
0

+
R2r2

0

(R2 + r2
0)r

2
) sin θ ( 5.20d)

σrθ =
µb

2π(1 − ν)
(−1

r
+

r

R2 + r2
0

− R2r2
0

(R2 + r2
0)r

2
) cos θ ( 5.20e)

σzz = ν(σrr + σθθ), σrz = 0 ( 5.20f)

The displacement and stress components in (5.19,20) can be simplified extensively under
certain assumptions as follows: (a) it is assumed that the body containing the dislocations are
much larger than the range of elastic field produced, hence, we can set R −→ ∞ in (5.20),
(b) the terms of order O(r−3) in the stress and O(r−2) in the displacement components are
often ignored as r −→ ∞ , since the boundary conditions on the dislocation core are unknown
without a simultaneous atomic calculations. With these assumptions, (5.19) and (5.20) yield
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the simplified relations

u1 = − b

2π
{θ +

1

4(1 − ν)
sin(2θ)} ( 5.21a)

u2 =
b

8π(1 − ν)
{2(1 − 2ν) ln r + cos(2θ)} ( 5.21b)

σrr = σθθ =
µb

2π(1 − ν)

sin θ

r
( 5.21c)

σrθ = − νµb

π(1 − ν)

cos θ

r
( 5.21d)

σzz =
νµb

π(1 − ν)

sin θ

r
σrz = 0 ( 5.21e)

In cartesian coordinates the stresses are given by

σ11(x, y) =
µb

2π(1 − ν)

y(3x2 + y2)

(x2 + y2)2
( 5.22a)

σ22(x, y) = − µb

2π(1 − ν)

y(x2 − y2)

(x2 + y2)2
( 5.22b)

σ12(x, y) = − µb

2π(1 − ν)

x(x2 − y2)

(x2 + y2)2
( 5.22c)

For a linear elastic solid, the strain energy density may be written as

W =
1

2
Cijklεijεkl (5.23)

If the material is isotropic, (5.23) takes the simple form

W =
λ

2
ε2

mm + µεkmεmk (5.24)

where, λ = νE
(1+ν)(1−2ν)

and µ = E
2(1+ν)

. From (5.24), the strain energy density produced by the
edge dislocation is

W =
µb2

8π2(1 − ν)2

1 − 2ν sin2 θ

r2
(5.25)

The strain energy stored per unit length of the dislocation line can then be given by

E =
∫ R

r0

ρdρ
∫ 2π

0
Wdθ

∫ 1

0
dz =

µb2

4π(1 − ν)
ln

R

r0

(5.26)

If the energy per unit length of the dislocation core, say E0 is taken into account, (5.26) can
be rewritten in terms of total energy per unit length as

Et =
∫ R

r0

ρdρ
∫ 2π

0
Wdθ

∫ 1

0
dz =

µb2

4π(1 − ν)
ln

R

r0

+ E0 (5.27)
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5.1.2 Screw Dislocations

We now consider a screw dislocation with burgers vector parallel to the dislocation line that
coincides with the axis x3 of an isotropic elastic circular cylinder of radius R. Making use of the
cylindrical co-ordinates r, θ, z and the symmetry of the problem, it is clear that the strain and
stress components are independent of θ and z, and the displacement vector must be parallel to
the dislocation line and independent of z, i.e.

uz = uz(r, θ), ur = uθ = 0 (5.28)

Thus, in contrast to the case of edge dislocation, ur and uθ are now continuous across the cut
x2 = 0, −R ≤ r ≤ −r0, but, uz is discontinuous across this cut, given by

uz(r, π) − uz(r,−π) = −b, −R ≤ r ≤ −r0 (5.29)

We also assume that both cylindrical surfaces r = r0 and r = R are free of tractions, i.e.

σrr = σrθ = σrz = 0 − R ≤ r ≤ −r0 (5.30)

The condition (5.29) yields the solution for uz as

uz = − bθ

2π
θ ∈ [−π, π] (5.31)

Using the constitutive equations in cylindrical co-ordinates, the stress components are given by

σθz = σzθ = − µb

2πr
(5.32)

In cartesian coordinates, they are given by

σ13 =
µbx2

2π(x2
1 + x2

2)
( 5.33a)

σ23 = − µbx1

2π(x2
1 + x2

2)
( 5.33b)

σ11 = σ22 = σ12 = 0, σ33 = ν(σ11 + σ22) ( 5.33c)

Using (5.23), the strain energy density for a screw dislocation is given by

W =
µb2

8π2r2
(5.34)

Hence, the strain energy stored per unit length of screw dislocation can be obtained from (5.27)
as

E =
µb2

4π
ln

R

r0

(5.35)



5.2. INFINITE ANISOTROPIC MEDIA 59

while the total energy per unit length of screw dislocation is Et = E + E0. Comparing (5.26)
and (5.35), it is seen that the strain energy of a screw dislocation is smaller than that of an
edge dislocation for 0 < ν < 0.5.

It can be noticed further that the elastic field corresponding to edge and screw dislocations
in an infinite isotropic medium are ’uncoupled’. This allows us to calculate the elastic field
produce by a ’mixed dislocation’ whose Burgers vector makes an α with the dislocation line,
by replacing b with b sin α in the elastic field produced by an edge dislocation (eqs. 5.21), with
b cos α in that by an screw dislocation(eqs. 5.32) and summing up the results. The strain
energy stored per unit length of a mixed dislocation can thus be expressed as

w =
µb2

4π
(cos2 α +

sin2 α

1 − ν
) ln

R

r0

(5.36)

5.2 Infinite Anisotropic Media

The elastic field of infinite straight dislocations under a state of generalized plane strain was
developed by Eshelby et al.(1953) and was extended by Foreman, Stroh, Seeger, Shoeck, Chou
and others. Consider an anisotropic elastic body, B, referred to a rectangular cartesian coordi-
nate system, xk, with the x3 axis parallel to the dislocation line. The material properties, cijkl,
are also referred to this system. The elastic field, i.e, stresses, strains and displacements can
now be assumed to be independent of x3, and the corresponding state is called after Lekhnitski
a state of generalized plane strain. Thus

uk = uk(x1, x2), k = 1, 2, 3 (5.37)

The equations of equilibrium take the reduced form

∂σiα

∂xα

= 0 (5.38)

and the stress-displacement relationships become

σiα = ciαkβ
∂uk

∂xβ

(5.39)

where, the pair of Greek letters α and β are taken to be one of the numbers 1 and 2, and in
deriving Eq. (6.3), the general symmetries in cijkl are used.

On substituting (6.3) into (6.2), we obtain

ciαkβ
∂uk

∂xα∂xβ

= 0 (5.40)

Following Eshelby et al., the solutions of the partial deferential equations in (6.4) take the
standard forms

uk = Akf(z), (5.41)
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where f(z) is an analytic function of the complex variable z = x1 + px2, and Ak and p are
constants. (6.5) is a solution of Eqs. (6.4) provided the constant vector Ak satisfies the equations

(ci1k1 + pci1k2 + pci2k1 + p2ci2k2)Ak = 0 (5.42)

The nonzero values of Ak can be found to satisfy these equations if p is a root of the sextic
equation

|ci1k1 + pci1k2 + pci2k1 + p2ci2k2| = 0 (5.43)

It is often convenient to replace the pairs of suffices (i,j) and (k,l) by single suffices M and N
according to the scheme that 11 corresponds to 1, 22 to 2, 33 to 3, 23 to 4, 31 to 5, and 12
to 6. Then the sextic equation (6.7) can be written in explicit form in terms of the elastic
compliances SKM as

l(p) = l2(p)l4(p) − l23(p) = 0 (5.44)

where,

l2(p) = S55p
2 − 2S45p + S44 (5.45)

l3(p) = S15p
3 − (S14 + S56)p

2 + (S25 + S46)p − S24 (5.46)

l4(p) = S11p
4 − 2S16p

3 + (2S12 + S66)p
2 − S26p + S22 (5.47)

For each root pn, n = 1...6, there is a set Akn which satisfies Eqn. (6.6). Eshelby et al. have
proved that in order for the strain energy to be positive Eqn. (6.7) has no real roots, so that
the roots occur in complex conjugate pairs. A general expression for the the displacement can
then be written as

uk =
3∑

n=1

Aknfn(zn) +
3∑

n=1

Aknfn(zn) (5.48)

where, overbar denotes the complex conjugate and zn = x1 + pnx2. Since uk is real, expression
(6.8) can be written in an alternate form as

uk = Re[
3∑

n=1

Aknfn(zn)] (5.49)

where Re means ”the real part of”. Thus one need only consider three roots p1, p2, p3 (Im[p] > 0)
and the corresponding sets Ak1, Ak2, Ak3. The coefficients Akn can be calculated by the formulae:

A1α = S11p
2
α − S16pα + S12 + λα(S15pα − S14) ( 5.50a)

A2α = S12p
2
α − S26pα + S22 + λα(S25pα − S24)/pα ( 5.50b)

A3α = S14p
2
α − S46pα + S24 + λα(S45pα − S44)/pα ( 5.50c)

for α = 1, 2 and

A13 = λ3(S11p
3
α − S16p3 + S12) + S15p3 − S14) ( 5.51a)

A23 = {λ3(S12p
2
3 − S26p3 + S22) + S25p3 − S24}/p3 ( 5.51b)

A33 = {λ3(S14p
2
3 − S46p3 + S24) + S45p3 − S44}/p3 ( 5.51c)
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where

λ1 = − l3(p1)

l2(p1)
λ2 = − l3(p2)

l2(p2)
λ3 = − l3(p3)

l4(p3)
(5.52)

The fn are arbitrary analytic functions and need to be solved from the boundary conditions
of the problem as follows.

The displacements uk are multiple-valued if we make a cut encircling the dislocation lying
along the x3 axis. The boundary conditions require that the displacement vector,uk, is single
valued and of class C3 outside the cut, and is discontinuous across the cut x2 = 0, x1 > 0; its
jump across the cut is given by

uk(x1, 0
+) − uk(x1, 0

−) = bk, x1 > 0 (5.53)

where bk is the kth component true burgers vector b of the dislocation.

The stress boundary conditions suggest that the function f ′(z) is single valued and continuous
except at the origin and it can be expressed in a Laurent series,

f ′(z) =
∞∑

s=−∞
a

′
nz

n (5.54)

Integration of this relation gives the most general form of the function f(z)

f(z) = − D

2πi
ln(z) +

∞∑
s=−∞

anz
s (5.55)

Since all the power-series terms are continuous across the cut, from (6.12),

�f = +D. (5.56)

It is due to the fact that the we have considered imaginary part of p to be positive; then a
counterclockwise path around the dislocation corresponds to a counterclockwise path in the z
plane. Thus across the cut � ln(z) = −2πi.

From the previous studies on the straight dislocation in finite media, we have seen that the
terms involving s ≥ 1 and s ≤ 1 are not the characteristics of the straight dislocation in infinite
media. They only correspond to the image effects and the core effects. For brevity, we only
retain the logarithmic term. Hence,

fn(zn) = −Dn

2πi
ln(zn) (5.57)

Using the boundary condition (6.17) along with (6.13) and (6.20) we obtain the following
expression for Dn

Re[
3∑

n=1

AknDn] = bk k = 1, 2, 3 (5.58)
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It is clear that Eq. (6.22) gives a set of three equations containing six unknowns, the real and
imaginary parts of the Dn for n = 1, 2, 3. Thus we need three additional equations to completely
solve the current boundary-value problem. The supplementary condition that brings three more
equations is given by the requirement that there be no force on the dislocation core.

The resultant force per unit length, L, on the surface of a cylinder enclosing the dislocation
and parallel to it is

F

L
=
∮

Σ · (dl × e3) (5.59)

where Σ is the stress tensor and dl = e1dx1 + e2dx2. Setting F=0 we obtain∮
(σi1dx2 − σi2dx1) = 0 i = 1, 2, 3 (5.60)

The integral over dx2 vanishes if we choose the integration path as a rectangle, infinitely narrow
in the limit (in the x2 direction) and containing the dislocation. Hence, using (6.3), 6.24 becomes∮

(ci2k1
∂uk

∂x1

+ ci2k2
∂uk

∂x2

)dx1 = 0 (5.61)

Introducing (6.13) into (6.25) we obtain

Re[
∮

(ci2k1 + ci2k2pn)Akn
∂fn(zn)

∂x1

dx1] = 0 (5.62)

The integral in (6.26) can be evaluated directly for the integration path chosen, since we know∮ ∂fn(zn)

∂x1

dx1 = −∆fn(zn) = −Dn (5.63)

Eq. (6.22) is then

Re[
3∑

n=1

(ci2k1 + ci2k2pn)AknDn] = 0 i = 1, 2, 3 (5.64)

Eqns. (6.22) and (6.28) give six equations to determine Dn completely. The final form of uk

can then be given by

uk = Re[
−1

2πi

3∑
n=1

AknDn ln(zn)] (5.65)

The stresses are given by

σij = Re[
−1

2πi

3∑
n=1

LijknAknDn
1

(zn)
] (5.66)

where, Lijkn = cijk1 + cijk2pn

The strain energy stored per unit dislocation length can be calculated using work-energy
principle. The energy stored is equal to the work done in forming the dislocation by cutting
and displacing the plane x2 = 0. In this plane zn = x1 so that

σij = Im[− 1

2πx1

3∑
n=1

LijknAknDn] (5.67)
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Applying the theorem of work and energy, the work done per unit length on the plane cut
x2 = 0, r0 ≤ x1 ≤ R is

W

L
= −1

2

∫ R

r0

σi2bidx1 ( 5.68a)

=
bi

4π
ln

R

r0

Im[
3∑

n=1

LijknAknDn] ( 5.68b)

Introducing an energy factor K, Eq. (6.32b) becomes

E =
W

L
=

Kb2

4π
ln(

R

r0

) (5.69)

where,

Kb2 = biIm[
3∑

n=1

LijknAknDn] (5.70)

For an isotropic media, the energy factor, K, replaces the isotropic parameter µ for a screw
dislocation, µ/(1 − ν) for an edge dislocation.

5.3 Finite Media

In presence of free surfaces the solutions for the dislocations in infinite media need to be
modified. This is due to the fact that the dislocations interact with the free surfaces due
the traction free boundary conditions imposed on the free surfaces. Several approaches have
been undertaken over the last century. Here, we briefly review several simple approaches in a
systematic manner.

5.3.1 Image Construction

a. Screw dislocation

Let us consider a screw dislocation parallel to a planar free surface and located at a distance
l from the free surface as shown. The boundary condition requires that σ13 = 0 at the free
surface. This can be achieved through the superposition of the stress field of the original
screw dislocation with that of an imaginary (image) screw dislocation of the same strength
and opposite sign located at the mirror position outside the solid. The superposed stress field
induced can be written as

σ13 = −µb

2π

x2

((x1 + l)2 + x2
2)

+
µb

2π

x2

((x1 − l)2 + x2
2)

( 5.71a)

σ23 =
µb

2π

x1 + l

((x1 + l)2 + x2
2)

− µb

2π

x1 − l

((x1 − l)2 + x2
2)

( 5.71b)
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It is now clear that σ13 = 0 at the free surface (x1 = l) and the image stress at the core of
the dislocation (x1 = −l) is given by

σ23 =
µb

4πl
(5.72)

b. Edge dislocation

Following the same procedure as that of an screw dislocation, it is clear that if the stresses
from the dislocation and its image are added together, all stresses acting on the surface vanish
except σ12, given by

σ12(0, x2) =
µb

π(1 − ν)

l(l2 − x2
2)

(l2 + x2
2)

2
(5.73)

Hence the simple image construction doesn’t give correct solution. In order to enforce the
stress free boundary condition, we must introduce a function, namely Airy’s stress function, φ,
which produces

σ12(0, x2) = − µb

π(1 − ν)

l(l2 − x2
2)

(l2 + x2
2)

2
(5.74)

and σ11 = σ13 = 0 at the boundary and vanishing stress at x1 = −∞. The stress function must
satisfy the equation

∇4φ = 0 (5.75)

if the stresses are expressed in the form

σ11 =
∂2φ

∂x2
2

, σ22 =
∂2φ

∂x2
1

, σ12 = − ∂2φ

∂x1∂x2

(5.76)

The solution of φ subject to the aforementioned conditions can be obtained using the method
of ’separation of variables’ as follows:

Assume φ of the form

φ = A(x1)B(x2) (5.77)

The solutions of A and B can readily be obtained after substituting (5.7) into (5.5) and are
given by

A(x1) = (a0 + a1x1)e
kx1 + (a2 + a3x1)e

−kx1 ( 5.78a)

B(x2) = b0 sin(kx2) + b1 cos(kx1) ( 5.78b)

Since A(x1) needs to be zero as x → −∞, a2 and a3 must be zero. Also, the traction free
boundary condition σ11(0, x2) = 0 for A(0, x2) = 0 is satisfied if a0 = 0. It is also clear that the
term involving cos(kx2) is dropped since σ12(0, x2) = 0 is even function in x2. Hence, the final
form of the solution is

φ =
∫ ∞

0
b0(k)xekx1 sin(kx2)dk (5.79)
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The solution of b0(k) can be obtained satisfying the boundary condition for σ12.

σ12(0, x2) = −
(

∂2φ

∂x1∂x2

)
x1=0

= −
∫ ∞

0
b0(k)k cos(kx2)dk = − µb

π(1 − ν)

l(l2 − x2
2)

(l2 + x2
2)

2
(5.80)

so that the fourier inversion after some manipulation yields

b0(k) =
µbl

π(1 − ν)
e−kl. (5.81)

Therefore,

φ =
µbl

π(1 − ν)

∫ ∞

0
x1e

k(x1−l) sin(kx2)dk =
µblx1x2

π(1 − ν) [(x1 − l)2 + x2
2]

(5.82)

The complete stress distribution for the edge dislocation can then be written in explicit form,
after superposing the stress fields of the dislocation itself, the image dislocation, and the stresses
derived from (5.12), as

σ11 = − 2µblx1x2

π(1 − ν)(l2 + x2
2)

3

[
3(l − x1)

2 − x2
2

]
(5.83)

σ22 =
µbl

π(1 − ν)(l2 + x2
2)

3

[
4(l − x1)

3x2 + 6(l − x1)
2x1x2 + 4(l − x1)x

3
2 − 2x1x

3
2

]
(5.84)

σ12 = − µbl

π(1 − ν)(l2 + x2
2)

3

[
(l − x1)

4 + 2x1(l − x1)
3 − 6x1x

2
2(l − x1) − x4

2

]
(5.85)

σ33 =
4µblν

π(1 − ν)(l2 + x2
2)

3

[
(l − x1)

3x2 + (l − x1)x
3
2

]
(5.86)

5.3.2 Complex Variable Method

A closed-form Green’s function for the elastic field of an edge dislocation of arbitrary Burger’s
vector at an arbitrary point in an orthotropic finite elastic medium, that is free of traction, was
developed by El-Azab and Ghoniem N.M (1993). The method is based on the classical theory
of potential fields, with an additional distribution of surface dislocations to satisfy the free trac-
tion boundary condition. A solution is first developed for a dislocation in a semi-infinite half
plane. The resulting field is composed of two parts: a singular contribution from the original
dislocation, and a regular component associated with the surface distribution. The Schwarz-
Christoffel transformation is then utilized to map the field quantities to a finite, polygonal
domain. The method is described here briefly. For a detailed discussion the reader is referred
to El-Azab and Ghoniem N.M (1993).
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a. Infinite domain solution

The elastic field of a two dimensional continuum under plane stress are written in terms of
complex potentials, φ1(z1) and φ2(z2) as follows

σx = 2Re[λ2
1φ

′
1(z1) + λ2

2φ
′
2(z2)] ( 5.87a)

σy = 2Re[φ
′
1(z1) + φ

′
2(z2)] ( 5.87b)

σxy = −2Re[λ1φ
′
1(z1) + λ2φ

′
2(z2)] ( 5.87c)

u = p(λ1)φ1(z1) + p(λ2)φ2(z2) + p(λ1)φ1(z1) + p(λ2)φ2(z2) ( 5.87d)

where the overbar denotes the complex conjugate and prime represents the derivative. The
constants λ1 and λ2 and their complex conjugates are the roots of the following characteristic
equation

S11λ
4 − 2S16λ

3 + (2S12 + S66)λ
2 − 2S26λ + S22 = 0 (5.88)

where, Smn are the elastic constants requiring Hooke’s law and z1 and z2 are complex variables
defined as

z1 = x + λ1y = (γ1z + δ1z)/2 ( 5.89a)

z2 = x + λ2y = (γ2z + δ2z)/2 ( 5.89b)

in which, z = x + iy, γj = 1 − iλj and δj = 1 + iλj, j=1,2. The polynomial p(λ) is given by

p(λ) = (S12 − S16λ + S11λ
2) +

i

λ
(S22 − S26λ + S12λ

2) (5.90)

Assuming that the complex potentials,φ1(z1) and φ2(z2) of the dislocation are analytic except
at the core of the dislocation zo, they can be expressed as

φ1s(z1) = A1log(z1 − z10) ( 5.91a)

φ2s(z2) = A2log(z2 − z20) ( 5.91b)

where, z10 and z20 are related to z0 by the set of equations (5.16). The subscript s is used to
indicate that the infinite domain potentials are singular at the location of the dislocation z0.
The complex constants A1,2 are determined by the conditions:
(a) the deformation due to a single dislocation is non single valued, i.e.

b = [u]L =
∮

L
du(z1, z2, z1, z2) (5.92)

where du is the exact differential of the complex displacement u, and L is any contour in the z
plane which encircles the dislocation with burgers vector b = |b|eiθ. Equation (5.19) after some
manipulation gives

b = 2πi
[
A1p(λ1) − A1p(λ1) + A2p(λ2) − A2p(λ2)

]
(5.93)



5.3. FINITE MEDIA 67

(b) the traction integral along any arbitrary contour surrounding the dislocation vanishes (self-
equilibrium), the stress resultant X + iY around a contour is written as

X + iY =
∮

L
(σx + iσxy)dy − (iσy + σxy)dx = 0 (5.94)

This condition yields the following equation

δ1A1 − γ1A1 + δ2A2 − γ2A2 = 0 (5.95)

By taking the complex conjugate of (5.20) and (5.22), two additional equations are obtained.
The four equations can now be solved for A1, A1, A2, A2. For the case of an orthotropic domain,
where S16 = S26 = 0, A1 and A2 are written as

A1 = c11Im(b) + ic12Re(b) ( 5.96a)

A2 = c21Im(b) + ic22Re(b) ( 5.96b)

where,

c11 = − β2

2π(β1α2 − β2α1)
; α1 =

2

β1

(S22 − S12β
2
1); β2

1 = | − r1 +
√

r2
1 − r2|

c12 = − 1

2π(α3 − α4)
; α2 =

2

β2

(S22 − S12β
2
2); β2

2 = | − r1 −
√

r2
1 − r2|

c21 =
β1

2π(β1α2 − β2α1)
; α3 = 2(S12 − S11β

2
1); r1 =

(
2s12 + s66

2s11

)
c22 =

1

2π(α3 − α4)
; α4 = 2(S12 − S11β

2
2); r2 =

(
s22

s11

)

b. Semi-infinite domain solution

The Green’s function in an unbounded medium automatically satisfies the governing field
equations. Any linear combination of the infinite domain Green’s functions, which also satisfies
specified boundary conditions for a finite domain, must be the Green’s function in that finite
domain. The solution, therefore, will be constructed as a linear combination of the singular,
infinite domain solution, and an additional distribution of surface dislocations, such that the
boundary is free of forces (i.e. zero surface tractions).

Let F (t) be a distribution function of surface dislocation, which is complex, and written as

F (t) = f1(t) + if2(t) (5.97)

where, t is a complex variable describing the domain boundary L, and f1(t), f2(t) are real
functions of complex variable t. It is now clear that the traction caused by the original dislocation
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and the surface distribution, evaluated at any arbitrary point along the boundary, must be equal
to any prescribed boundary tractions. Assuming the boundary is traction free, this condition
is written as

Xd(t) + iYd(t) +
∮

L
[Xs(t0, t) + iYs(t0, t)]ds0 = 0 (5.98)

where s0 = s(t0) and Xd(t)+ iYd(t) is the residual complex traction at t on L due to the original
dislocation at z0 inside the finite domain D+ bounded by the contour L. Xs(t0, t) + iYs(t0, t)
is the complex traction at t on L due to a surface dislocation of Burger’s vector F (t0) at t0
on L. Equations (5.14), (5.18) and (5.23) should be used to calculate both Xd(t) + iYd(t) and
Xs(t0, t) + iYs(t0, t) with the exception that Re(b) and Im(b) in (5.23) need to be replaced by
f1(t0) and f2(t0) while calculating the second one. This means that the complex quantities A1

and A2 are no longer constant when dealing with surface dislocations. Let these quantities be
denoted by B1 and B2, and be written as

B1 = c11f2(t) + ic12f1(t) ( 5.99a)

A2 = c21f2(t) + ic22f1(t) ( 5.99b)

Equation (5.25) can now be utilized to determine f1(t) and f2(t) and the total stress field
can then be calculated.

Mathematics to find the distribution functions is somewhat laborious and is omitted here
for brevity. The reader is referred to the article mentioned before. Choosing the domain of the
solution D+ is the upper half plane, Im(z) ≥ 0, so that the contour L is taken to be the x axis
from −∞ to +∞ and assuming that the dislocation of an arbitrary Burger’s vector b = |b|eiθ

is located at the point z0 = x0 + iy0, the distribution functions for the surface dislocations of
the semi-infinite domain can be found as

f1(x) = − i

πa1

[
λ1A1

x − z10

− λ1A1

x − z10

+
λ2A2

x − z20

− λ2A2

x − z20

]
( 5.100a)

f2(x) =
i

πa2

[
A1

x − z10

− A1

x − z10

+
A2

x − z20

− A2

x − z20

]
( 5.100b)

The potentials for the total stress field for the semi-infinite domain is now constructed as
the superposition of the singular (infinite domain) and regular (surface dislocations) fields as

φj(zj) = φjs(zj) + φjr(zj) (5.101)

c. Rectangular finite domain solution: Schwarz-Christoffel transformation

Schwarz-Christoffel transformation, which maps the upper half-plane onto a polygon, is ap-
plied to the semi-infinite domain solution to obtain the solution in a rectangular domain. The
boundaries of the rectangular domain are assumed to be traction free. The general form of the



5.4. INTERFACIAL DISLOCATION NETWORKS 69

transformation is written as

w = f(z) = C1

∫ z

0

n∏
j=1

(z − aj)
αj−1dz + C2 (5.102)

This transformation maps the upper half of the z-plane onto a polygon on n vertices in the
w-plane. C1,2 are complex constants which adjust the size, orientation and location of the
polygon. The points aj on the x-axis (z plane) transform to vertices of the polygon, and αjπ
are the interior angles of the polygon. With thsi transformation, solutions in polygonal domains
can be obtained from the semi-infinite domain solution. In case of a rectangle, αj = 0.5, and
n = 4. Equation (5.29) can now be written as

w = f(z) =
∫ z

0

dξ√
(1 − ξ2)(1 − k2ξ2)

= F (z, k); 0 < k < 1 (5.103)

where, F (z, k) is the elliptical integral of the first kind. The integral (5.30) maps the upper half
of the z-plane onto a rectangle in the w plane for any k. The vertices of the rectangle in the
w plane (where w = u + iv) are ±K(k) and +iK(k′); k2 + k′2 = 1, where K(k) is a complete
elliptic integral of the first kind given by (5.30) with the integration limit 0 → 1 and K(k ′) is
the complementary complete elliptic integral of the first kind replacing k by k ′. The vertices of
the rectangle are mapped to the points ±1 and ±1/k, on the x-axis in the z plane.

If the actual rectangular domain which contains the dislocation is defined in the w∗-plane
(where, w∗ = u∗ + iv∗) with the vertices ±H1 and ±H1 + iH2, then the mapping from w∗ plane
to w plane and hence to the z plane can be obtained through

u∗ =
H1

K(k)
u ( 5.104a)

v∗ =
H2

K(k′)
v ( 5.104b)

w∗ = u ∗ +iv∗ =
H1

K(k)
u + i

H2

K(k′)
v ( 5.104c)

Assuming a linear mapping of the form w∗ = cw where c is a constant; it follows that
H1/K(k) = H2/K(k′) = c. Once the parameter k is determined by solving the transcendental
equation

H2

H1

=
K(k′)
K(k)

; k2 + k′2 = 1, (5.105)

the constant c will be determined and hence all the field quantities can be obtained completely
as explained by El-Azab and Ghoniem N.M (1993).

5.4 Interfacial Dislocation Networks

In the present work, the elastic field of the surface is obtained in two steps. The first step is
to simplify the model to a thin film and substrate system, as shown in Figure 5.1, in which
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the Si capping layer is ignored. In this step, the basic elastic field solution is set up using
the the Fourier transform approach, (?, ?). Ignoring the interactions between dislocations, a
2-dimensional field solution can be obtained by superposing the basic dislocation solution at
different location. The surface curvature can also be obtained from the displacement field. The
second step is to consider the stretching of the Si capping layer as a result of lattice mismatch.
A simple model based on the analysis of 2-D stress state is developed for this purpose. The
curvature effects and chemical potential terms will be discussed based on the analytical solution.
Results will be presented at the end of this section.

5.4.1 Single Dislocation Solution

The stress field for a single straight infinite-long dislocation in a layered structure is a plane
problem, which means it’s in x − y plane or z − y plane. Considering x − y plane first, as
illustrated in figure 5.1.

1

2

3

o
X (Z)

Y

dx

(symmetric)(anti-symmetric)

bx

byb

Figure 5.1: Bonded layer structure with a single interfacial dislocation

The solution can be obtained by the Fourier transform with respect to x:

U (i) (x, y) =
1√
2π

+∞∫
−∞

Ψ(i) (α, y) e−iαxdα (5.106)

where i denotes ith layer (i = 1, ...n) and the dislocation lies at the interface between layers (i)
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and (i + 1).

U (i) is the displacement vector of the ith layer and:

U (i) =
(
u(i) (x, y) , v(i) (x, y)

)T
(5.107)

Ψ(ı) is the complex transformed displacement vector of the ith layer in Fourier space and:

Ψ(i) =
(
φ(i) (α, y) , ψ(i) (α, y)

)T
(5.108)

The displacement and transformed displacement can be decomposed to symmetric and anti-
symmetric parts.

U (i) = U (i)
s + U (i)

a , Ψ(i) = Ψ(i)
s + Ψ(i)

a (5.109)

Consider the solution for the symmetric case,

u(i)
s (x, y) =

2

π

∫ ∞

0
φ(i)

s (α, y) sin αxdα

v(i)
s (x, y) =

2

π

∫ ∞

0
ψ(i)

s (α, y) cos αxdα (5.110)

Using the Navier’s equations for an isotropic, homogeneous medium, i.e.

(
λ(i) + µ(i)

)
∇
(
∇ · U (i)

s

)
+ µ(i)∇2U (i)

s = 0 (5.111)

The displacement vector can be obtained with unknown Asj, which are the functions of α:

u(i)
s (x, y) =

2

π

+∞∫
0

[(
A

(i)
s1 + A

(i)
s2 y
)
e−αy +

(
A

(i)
s3 + A

(i)
s4 y
)
eαy
]
sin αxdα

v(i)
s (x, y) =

2

π

+∞∫
−∞

{[
A

(i)
s1 +

(
κ(i)

α
+ y

)
A

(i)
s2

]
e−αy (5.112)

+

[
−A

(i)
s3 +

(
κ(i)

α
− y

)
A

(i)
s4

]
eαy

}
cos αxdα

where κ(i) = 3 − 4ν(i) for plane strain and
(
3 − ν(i)

)/(
1 + ν(i)

)
for plane stress. and A

(i)
sj are

functions of α , which will be determined from the boundary and the continuity conditions by
the following:
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αA
(1)
s1 + αA

(1)
s3 − αA

(2)
s3 = bx cos αt

−αA
(1)
s1 − κ(1) + αA

(1)
s3 − κ(1)A

(1)
s4 − αA

(2)
s3 + κ(2)A

(2)
s4 = 0

−αµ(1)A
(1)
s1 − 2µ(1)

(
1 − ν(1)

)
A

(1)
s2 − αµ(1)A

(1)
s3

+2µ(1)
(
1 − ν(1)

)
A

(1)
s4 + αµ(2)A

(2)
s3 − 2µ(2)

(
1 − ν(2)

)
A

(2)
s4 = 0

−αµ(1)A
(1)
s1 − µ(1)

(
1 − 2ν(1)

)
A

(1)
s2 + αµ(1)A

(1)
s3

−µ(1)
(
1 − 2ν(1)

)
A

(1)
s4 − αµ(2)A

(2)
s3 + µ(2)

(
1 − 2ν(2)

)
A

(2)
s4 = 0 (5.113)

−αe2αhA
(1)
s1 −

[
αh + 2

(
1 − ν(1)

)]
e−2αhA

(1)
s2

−αA
(1)
s3 −

[
αh − 2

(
1 − ν(1)

)]
A

(1)
s4 = 0

−αe2αhA
(1)
s1 −

[
αh +

(
1 − 2ν(1)

)]
e−2αhA

(1)
s2

+αA
(1)
s3 +

[
αh −

(
1 − 2ν(1)

)]
A

(1)
s4 = 0

Using 2-D stress-strain relations, the stresses can be evaluated as follows:

σ(i)
sxx =

4µ(i)

π

∫ ∞

0

{[
α
(
A

(i)
s1 + A

(i)
s2 y
)
− 2ν(i)A

(i)
s2

]
e−αy

+
[
α
(
A

(i)
s3 + A

(i)
s4 y
)

+ 2ν(i)A
(i)
s4

]
eαy
}

cos αxdα

σ(i)
syy =

4µ(i)

π

∫ ∞

0

{
−
[
α
(
A

(i)
s1 + A

(i)
s2 y
)

+ 2
(
1 − ν(i)

)
A

(i)
s2

]
e−αy (5.114)

+
[
−α
(
A

(i)
s3 + A

(i)
s4 y
)

+ 2
(
1 − ν(i)

)
A

(i)
s4

]
eαy
}

cos αxdα

σ(i)
sxy =

4µ(i)

π

∫ ∞

0

{
−
[
α
(
A

(i)
s1 + A

(i)
s2 y
)

+
(
1 − 2ν(i)

)
A

(i)
s2

]
e−αy

+
[
α
(
A

(i)
s3 + A

(i)
s4 y
)
−
(
1 − 2ν(i)

)
A

(i)
s4

]
eαy
}

sin αxdα

For the anti-symmetric case:

u(i)
a (x, y) =

2

π

∫ ∞

0
φ(i)

a (α, y) cos αxdα

v(i)
a (x, y) =

2

π

∫ ∞

0
ψ(i)

a (α, y) sin αxdα (5.115)

By the same procedure as the symmetric case, we have the equations for solving A
(i)
aj :

αA
(1)
a1 + αA

(1)
a3 − αA

(2)
a3 = 0
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−αA
(1)
a1 − κ(1) + αA

(1)
a3 − κ(1)A

(1)
a4 − αA

(2)
a3 + κ(2)A

(2)
a4 = by sin αt

−αµ(1)A
(1)
a1 − 2µ(1)

(
1 − ν(1)

)
A

(1)
a2 − αµ(1)A

(1)
a3

+2µ(1)
(
1 − ν(1)

)
A

(1)
a4 + αµ(2)A

(2)
a3 − 2µ(2)

(
1 − ν(2)

)
A

(2)
a4 = 0

−αµ(1)A
(1)
a1 − µ(1)

(
1 − 2ν(1)

)
A

(1)
a2 + αµ(1)A

(1)
a3

−µ(1)
(
1 − 2ν(1)

)
A

(1)
a4 − αµ(2)A

(2)
a3 + µ(2)

(
1 − 2ν(2)

)
A

(2)
a4 = 0 (5.116)

−αe2αhA
(1)
a1 −

[
αh + 2

(
1 − ν(1)

)]
e−2αhA

(1)
a2

−αA
(1)
a3 −

[
αh − 2

(
1 − ν(1)

)]
A

(1)
a4 = 0

−αe2αhA
(1)
a1 −

[
αh +

(
1 − 2ν(1)

)]
e−2αhA

(1)
a2

+αA
(1)
a3 +

[
αh −

(
1 − 2ν(1)

)]
A

(1)
a4 = 0

The displacement and stress solutions are as following:

u(i)
a (x, y) =

2

π

+∞∫
0

[(
A

(i)
a1 + A

(i)
a2y
)
e−αy +

(
A

(i)
a3 + A

(i)
a4y
)
eαy
]
cos αxdα

v(i)
a (x, y) =

1

π

+∞∫
−∞

{[
A

(i)
1 +

(
κ(i)

α
+ y

)
A

(i)
2

]
e−αy (5.117)

+

[
−A

(i)
3 +

(
κ(i)

α
− y

)
A

(i)
4

]
eαy

}
cos αxdα

σ(i)
axx =

4µ(i)

π

∫ ∞

0

{[
−α
(
A

(i)
a1 + A

(i)
a2y
)

+ 2ν(i)A
(i)
a2

]
e−αy

−
[
α
(
A

(i)
a3 + A

(i)
a4y
)

+ 2ν(i)A
(i)
a4

]
eαy
}

sin αxdα

σ(i)
ayy =

4µ(i)

π

∫ ∞

0

{[
α
(
A

(i)
a1 + A

(i)
a2y
)

+ 2
(
1 − ν(i)

)
A

(i)
a2

]
e−αy (5.118)

+
[
α
(
A

(i)
a3 + A

(i)
a4y
)
− 2
(
1 − ν(i)

)
A

(i)
a4

]
eαy
}

sin αxdα

σ(i)
axy =

4µ(i)

π

∫ ∞

0

{
−
[
α
(
A

(i)
a1 + A

(i)
a2y
)

+
(
1 − 2ν(i)

)
A

(i)
a2

]
e−αy

+
[
α
(
A

(i)
a3 + A

(i)
a4y
)
−
(
1 − 2ν(i)

)
A

(i)
a4

]
eαy
}

cos αxdα

The medium is assumed to be traction-free at the top surface such that:

σ(n)
syy = σ(n)

ayy = 0 (5.119)

σ(n)
sxy = σ(n)

axy = 0



74 CHAPTER 5. TWO-DIMENSIONAL ELASTIC FIELDS

While at the interfaces, continuity is required in adjacent layers, such that:

u(i+1)
s − u(i)

s = u(i+1)
a − u(i)

a = 0

v(i+1)
s − v(i)

s = v(i+1)
a − v(i)

a = 0 (5.120)

σ(i+1)
syy − σ(i)

syy = σ(i+1)
ayy − σ(i)

ayy = 0

σ(i+1)
sxy − σ(i)

sxy = σ(i+1)
asxy − σ(i)

axy = 0

For an interface with a dislocation at x = dx, we have:

∂

∂x

(
u(1)

s − u(2)
s

)
= be

xδ (x − dx)

∂

∂x

(
u(1)

a − u(2)
a

)
= 0 (5.121)

∂

∂x

(
v(1)

s − v(2)
s

)
= 0

∂

∂x

(
v(1)

a − v(2)
a

)
= be

yδ (x − dx)

where δ(x − dx) is the Dirac Delta function.

By numerical methods, the solutions for displacement and stress expressions can be ob-
tained by substituting Equation (5.114, 5.112) into Equations (5.119, 5.120, 5.121). The final
displacement and stress field are the sum of the symmetric and anti-symmetric parts.

5.4.2 Network Dislocation Solution

If the solution is applied in z−y plane, which means making the coordinate substitutes: x → z
and y → y, the elastic field is obtained for w(i), v(i)σ(i)

yy , σ(i)
zz , σ(i)

yz according to the dislocation
array in z − y plane.

Solutions for dislocation networks can be constructed by the superposing single dislocation
solutions given above. Assuming d(kx)

x and d(kz)
z are the kth dislocations’ location along the x

and z directions respectively, the solution becomes:

uxi =
nx∑

k=1

uxi

(
x − dk

x, y
)

uyi =
nx∑

kx=1

ny∑
kz=1

[
uyi

(
x − dkx

x , y
)

+ uyi

(
z − dkz

z , y
)]

(5.122)

uzi =
nz∑

k=1

uzi

(
z − dk

z , y
)
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In the x − y plane problem, since an edge dislocation line is along the z-direction, the
deformation along the z direction is zero, which implies a plain strain state. It is the same for
the z − y plane. Hence, we have:

σxx =
nx∑

kx=1

ny∑
kz=1

[
σxx

(
x − dkx

x , y
)

+ νσzz

(
z − dkz

z , y
)]

σyy =
nx∑

kx=1

nz∑
kz=1

[
σyy

(
x − dkx

x , y
)

+ σyy

(
z − dkz

z , y
)]

(5.123)

σzz =
nx∑

kx=1

ny∑
kz=1

[
σzz

(
x − dkx

x , y
)

+ νσxx

(
z − dkz

z , y
)]

5.4.3 Results

During the following calculations, the material constants used in the present simulation are
selected as shown in Table 5.1:

Shear Poisson Lattice Burger’s

Material Modulus Ratio Constant Vector

Si 79.9 GPa 0.266 5.43095 Å 3.84026 Å

Ge 67.0 GPa 0.280 5.64613 Å 3.99241 Å

Si0.85Ge0.15 77.965 GPa 0.268 5.46322 Å 3.86308 Å

Table 5.1: Elastic and lattice constants for Si, Ge, and Si0.85Ge0.15

The accuracy of the Fourier transform method is tested by a simple 1-D case which has a
single dislocation at the interface of a bi-layer structure as illustrated in Figure 5.1 without 3rd

layer. The comparison is first made between Fourier transform method and Complex variable
method in the case that the substrate and the film are the same material, say Si. The Burger’s
vector is assumed to be: b = 0.1x + 0.1y(nm). Table 5.2 shows the error estimation of two
methods with different thickness of thin film, in which, the normal stress along x direction (σxx)
is calculated and averaged along the same length of a specimen.

Method Absolute Error εa Relative Error εr

Complex Variable 0 0
Fourier Transform (h=8nm) 7.94 × 10−5GPa 0.017%
Fourier Transform (h=80nm) 3.55 × 10−6GPa 0.020%

Table 5.2: Comparison of σxx between Fourier Transform method and Complex Variable Method
by averaging errors.
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The effect of inhomogeneous structures is shown in Figure 5.2. The difference of the values
of homogenous material calculated by Fourier transform and Complex variable methods is very
small, as can be seen from the figure.

-100 -50 0 50 100
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-0.6
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0.0

0.2

 (
G

P
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X (nm)

  Si/Ge (Fourier)
  Si (Fourier)
  Si (Complex)

σσ σσ x
x

Figure 5.2: Comparison of σxx between inhomogeneous system (Si/Ge) and homogeneous sys-
tem(Si) with a single dislocation at the thickness of 8 nm

In the following calculations, we focus on two different thicknesses of Si/Ge buffer layer: 8nm
and 80nm. In 8nm thickness case, a 2 × 2 interfacial dislocation network is considered. The
dislocations exist at x(z)=25 and 75nm. In 80nm thickness, due to the computational reasons,
only a 1 × 1 dislocation network is considered. The dislocations exist at x(z)=250nm. The
Burger’s vector is selected as shown in Table 5.1.

The calculated stress maps with capping layer of thin film and thick film are shown in Figure
5.3 and Figure 5.6. Figure shows the displacement and curvature maps of the film with the
thin case.
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Figure 5.3: Surface stress map of 8 nm thin film structure
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Figure 5.4: Surface stress map of 80 nm thin film structure
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Figure 5.5: Surface displacement map of 8 nm thin film
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Figure 5.6: Surface curvature map of 8 nm thin film



Chapter 6

Green’s Tensor Functions

6.1 Basic Equations

Define Green’s function: Uij(R), as the displacement component Ui(r) at position (R) due to
point force in the Rj-direction at the origin. It can be obtained by considering the equation of
translational equilibrium, that is:

Cijkluk,lj + fi = 0 (6.1)

If the point force is in the m-direction, it can be represented by:

fi = δimδ(r) (6.2)

Where the Dirac-delta function is δ(r) = δ(r1)δ(r2)δ(r3), with the property:∫
V

δ(r − r̂)f(r̂) dV = f(r)

Translational equilibrium is satisfied by:

CijklUk,lj + δimδ(r) = 0 (6.3)

Given a point force distribution fm(r), the corresponding displacement vector distribution
is obtained as:

ui(r) =
∫

allspace

Ukm(r − r̂)fm(r̂) dV̂ (6.4)

79
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However, for a finite region of space, we use the divergence theorem for any rank tensor T
is expressed as: ∫

V

∇ • T dV =
∫
S

T• dS =
∫
V

T,idV =
∫
S

TdSi

Now consider the following equation:

∫
V̂

Cijkl

[
ui(r̂)Ukm,l̂ĵ − Uim(r − r̂)uk,l̂ĵ(r̂)

]
dV̂ =

=
∫
Ŝ

Cijkl

[
ui(r̂)Ukm,l̂ − Uimuk,l̂(r̂)

]
dSĵ

=
∫
V̂

[−ui(r̂)δijδ(r − r̂) + Uimfi] dV̂

=
∫
Ŝ

[
ui(r̂)CijklUkm,l̂ − Uimσij(r̂)

]
dSĵ (6.5)

Re-arranging terms, we can easily determine the displacement vector anywhere, given that a
distributed force system is specified in the volume, and that stress and displacement conditions
are prescribed at the boundary. Hence, we have:

um (r) =
∫
V̂

Uim (r − r̂) fi (r̂) dV̂ −
∫
Ŝ

ui (r̂) CijklUkm,l̂ (r − r̂) dŜj

+
∫
Ŝ

Uim (r − r̂) σij (r̂) dŜj (6.6)

The second and third terms in Equation 7.84 account for displacement and traction boundary
conditions on the surface Ŝ, respectively. The specific case of a dislocation loop is characterized
by the absence of body forces within the volume (i.e. fi = 0), zero tract ions on the boundary
(i.e. σij = 0) on Ŝ, and a rigid displacement vector bi across the surface Ŝ. The displacement
equation is finally given by:

um (r) = −bi

∫
Ŝ

CijklUkm,l̂ (r − r̂) dŜj = bi

∫
Ŝ

CijklUkm,l (r − r̂) dŜj (6.7)

To complete determination of the displacement field, we need to evaluate Green’s functions
of isotropic elasticity, as given below. We use the method of Fourier transform, defined as:

Ũkm (k) =
∫
V

Ukm (r) e−ik·rdV (6.8)
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Figure 6.1: Representation of the solid angle, Ω, at a field point (Q) away from the dislocation
loop line containing the set of points (P)

with its inverse:

Ukm (r) =
1

(2π)3

∫
Vk

Ũkm (k) eik·rdVk (6.9)

and the associated differentiation rules:

klŨkm =
∫
V

Ukm,l(r)e
−ik·rdV (6.10)

−klkjŨkm =
∫
V

Ukm,lj(r)e
−ik·rdV (6.11)

We start now from the equilibrium equation, and take its Fourier transform:

CijklUkm,lj = −δimδ(r)

−CijklklkjŨkm(k) = −δim (6.12)

6.2 Differential Geometry

As will be clear later in this section, Green’s tensor functions are used to obtain the elastic
fields in inhomogeneous materials, in which compatibilities are described along internal lines or
surfaces. Differential geometry of closed lines will then be essential to further development of
the theory of internal elastic fields. We consider here differential geometric aspects of a closed
space curve bounding an internal surface within the material. As shown in Figure 6.1, the solid
angle differential dΩ is the ratio of the projected area element dS to the square of R. Thus:
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Ω =
∫

dΩ =
∫
S

e • dS

R2
=
∫
S

XidSi

R3
= −1

2

∫
S

R,ppidSi (6.13)

where e = R/R = set {ei} is a unit vector along R = set {Xi}, and R,ppi = −2Xi/R
3. The

solid angle can be computed as a line integral, by virtue of Stokes theorem. A vector potential
A (R) is introduced by deWit to satisfy the differential equation: ∈pik Ak,p(R) = XiR

−3.
The solution is given by (?): Ak(R) =∈ijk Xisj/[R(R + R • s)], where s is an arbitrary unit
vector. This results in non-uniqueness of the displacement field, although it can be arbitrarily
symmetrized (?). The solid angle is then given as a line integral: Ω(R) =

∮
C Ak(R)d�k. Taking

the derivatives of Ω in Equation 6.13, and applying Equation 7.87, we obtain:

Ω,j =
1

2

∫
S

(R,pplldSj − R,ppljdSl) =
1

2

∮
C

∈jkl R,ppldlk (6.14)

Successive derivatives of the vector R are given by the following set of equations:

R,i =
Xi

(XqXq)
1
2

=
Xi

R
= ei

R,ij =
δij

(XqXq)
1
2

− XiXj

(XqXq)
3
2

=
δij

R
− XiXj

R3
= (δij − eiej)/R

R,ijk = −δjkXi + δikXj + δijXk

(XqXq)
3
2

+
3XiXjXk

(XqXq)
5
2

= −δjkXi + δikXj + δijXk

R3
+

3XiXjXk

R5

= (3eiejek − [δijek + δjkei + δkiej]) /R2 (6.15)

The third rank tensor Rijk has only 10 non-vanishing terms, and these are given below for
convenience.

R,111 = 3e1(e1
2 − 1)/R2, R,112 = e2(3e

2
1 − 1)/R2

R,113 = e3(3e
2
1 − 1)/R2, R,221 = e1(3e

2
2 − 1)/R2

R,222 = 3e2(e
2
2 − 1)/R2, R,223 = e3(3e

2
2 − 1)/R2

R,331 = e1(3e
2
3 − 1)/R2, R,332 = 3e2(3e

2
3 − 1)/R2

R,333 = 3e3(e
2
3 − 1)/R2, R,123 = 3e1e2e3/R

2 (6.16)

One can also write the vector R,i ≡ R1 and the second order tensor R,ij ≡ R2 in dyadic
notation as (see eq. (4.33)):

R1 = e (6.17)

R2 = (I − e ⊗ e)/R = P⊥
e /R
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6.3 Green’s Functions in Isotropic Materials

6.3.1 Full Space

For an isotropic elastic solid, we have:

µ (δikδjl + δilδjk) klkjŨkm(k) + λδijδklklkjŨkm(k) = δim

µδikδjlklkjŨkm(k) + µδilδjkklkjŨkm(k) + λδijδklklkjŨkm(k) = δim (6.18)

Using the substitution property of the delta function, we obtain:

µδikδjlklkjŨkm(k) = µklklŨim(k)

µδilδjkklkjŨkm(k) = µkikjŨjm(k) = µkikkŨkm(k) (6.19)

Now, exchange j → k:

λδijδklklkjŨkm(k) = λklkiŨlm(k) = λkikkŨkmk) (6.20)

And exchange l → k:

(µ + λ)kkkiŨkm + µk2Ũim = δim (6.21)

Then, multiply by ki and sum over i:

(µ + λ)kkkikiŨkm + µk2kiŨim = δimki

(µ + λ)kkk
2Ũkm + µk2kiŨim = km (6.22)

Exchange i ← k, and re-arrange:

(µ + λ)kkk
2Ũkm + µk2kkŨkm = km

(2µ + λ)kkk
2Ũkm = km or,

kkŨkm =
km

(2µ + λ)k2
(6.23)

This result can now be substituted back into Equation 6.21 above. The elastic Green’s functions
are readily obtained in Fourier space as:
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(
µ + λ

2µ + λ

)
kikm

k2
+ µk2Ũim = δim

Ũim(k) =
1

µ

[
δkim

k2
−
(

µ + λ

2µ + λ

)
kkkm

k4

]
(6.24)

To obtain the elastic Green’s functions in Cartesian space, we use the following properties
of the inverse Fourier transform:

1

π2

∫
Vk

eik·r

k4
dVk = −r (6.25)

And its second derivative:

1

π2

∫
Vk

kmkmeik·r

k4
dVk = r,km (6.26)

While for k = m = p, we have:

1

π2

∫
Vk

eik·r

k2
dVk = r,pp (6.27)

Finally, we can now use Equations 6.26 and 6.55, and take the inverse Fourier transform of
Equation 6.24 to obtain the explicit form of the isotropic elastic Green’s functions:

Ukm (r) =
1

8πµ

[
δkmr,pp −

(
λ + µ

λ + 2µ

)
r,km

]
(6.28)

Similarly, the Green’s functions Ukm(r − r̂) = Ukm(R), and their derivative with respect to
l are given by:

Ukm (R) =
1

8πµ

[
δkmR,pp −

(
λ + µ

λ + 2µ

)
R,km

]

Ukm,l (R) =
1

8πµ

[
δkmR,ppl −

(
λ + µ

λ + 2µ

)
R,kml

]
(6.29)

6.3.2 Half Space

For an isotropic case, the complete solution of the displacement induced by a concentrated
force on the surface is a classical elasticity problem, which is known as Boussinesq’s problem
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for a normal concentrated force and Cerruti’s problem for a tangential concentrated force. The
most direct and regular method of solving the Navier’s equation is to use Fourier’s method as
Rob Philips did in his book. But in that case we always have to meet some fairly complicated
integrals. On the other hand, by some artificial stress functions, the calculations are simpler.
Here I will not reproduce the well-known but laborious procedure and just give the final results
of the problem.

The physical problem is illustrated in the figure 6.2

x

y

z

o

F

Figure 6.2: A concentrated force applied to an isotropic half space medium

The displacement field are determined by the following formulae (Landau and Lifshitz 1959):

ux =
1 + ν

2πE

{[
xz

r3
− (1 − 2ν) x

r (r + z)

]
Fz +

2 (1 − ν) r + z

r (r + z)
Fx +

[2r (νr + z) + z2] x

r3 (r + z)2 (xFx + yFy)

}

uy =
1 + ν

2πE

{[
yz

r3
− (1 − 2ν) y

r (r + z)

]
Fz +

2 (1 − ν) r + z

r (r + z)
Fy +

[2r (νr + z) + z2] y

r3 (r + z)2 (xFx + yFy)

}
(6.30)

uz =
1 + ν

2πE

{[
2 (1 − ν)

r
+

z2

r3

]
Fz +

[
1 − 2ν

r (r + z)
+

z

r3

]
(xFx + yFy)

}

where E is Young’s modulus and ν is Poisson’s ratio.

In particular, the displacement of points on the surface of the medium is given by putting
z = 0:

ux =
1 + ν

2πE

1

r

{
−(1 − 2ν) x

r
Fz + 2 (1 − ν) Fx +

2νx

r2
(xFx + yFy)

}

uy =
1 + ν

2πE

1

r

{
−(1 − 2ν) y

r
Fz + 2 (1 − ν) Fy +

2νy

r2
(xFx + yFy)

}
(6.31)
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uz =
1 + ν

2πE

1

r

{
2 (1 − ν) Fz + (1 − 2ν)

1

r
(xFx + yFy)

}

Considering the solution on the surface z = 0 and using the 2-D position vector �R = �ρ− �ρ′,
i, j = 1, 2, we can obtain the surface Green’s tensor as:

Uij

(
�R, 0
)

=
1 + ν

πE

[
(1 − ν)

δij

R
+ ν

RiRj

R3

]
(6.32)

6.4 Green’s Functions in Anisotropic Materials

It is well known that the Green’s functions (which is the elastic displacement response of a linear
elastic solid to a point force), are foundations of many numerical methods when analyzing an
engineering or physical problem. They are essential to various integral equation methods and
numerical element methods. Furthermore, they can be applied directly to some modern physical
problems, such as elastic fields in quantum-dot semiconductors and atomistic simulations of
point defects in crystals. Though they are basic and important, unfortunately, there is no
unique universal Green’s functions. Generally, they can be classified by isotropic or (monoclinic,
transversely isotropic or general) anisotropic elastic media, by two-dimensional (2-D) or three-
dimensional (3-D) deformation, and by infinite space, half-space, bi-materials or multi-layers.
They are listed as following:

1. Isotropic, Two-dimensional Deformations.

(a) Infinite space (Fredholm 1900)

(b) Half-Space (Dundurs 1969, Head 1953)

(c) Bimaterials (Dundurs 1969, Dundurs and Hetenyi 1965, Dundurs and Sendeckyj
1965a).

2. Isotropic, Three-dimensional Deformations.

(a) Infinite space (Boussinesq 1885, Synge 1885)

(b) Half-Space (Mindlin 1953)

(c) Bimaterials (Rongved 1955b, Dundurs 1969, Dundurs and Hetenyi 1965, Dundurs
and Sendeckyj 1965b).

3. Anisotropic, Two-dimensional Deformation.

(a) Infinite space (Asaro, Hirth, Barnett and Lothe 1973, Barnett 1972, Barnett and
Lothe 1973, Barnett and Swanger 1971, Chadwick and Smith 1977, Eshelby, Read
and Shockley 1953, Kirchner and Alshits 1987, Malen 1971, Stroh 1958, Ting 1992a,
Willis 1970)
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(b) Half-Space (Barnett and Lothe 1975, Head 1953, Head 1965, Tewary, Wagoner and
Hirth 1989a, Ting 1992b, Ting and Barnett 1993, Tucker 1969, Willis 1970)

(c) Bimaterials (Barnett and Lothe 1974, Barnett and Lothe 1995, Qu 1991, Tewary et
al. 1989a, Tewary, Wagoner and Hirth 1989b, Ting 1992b, Tucker 1969)

4. Anisotropic, Three-dimensional Deformations.

(a) Infinite space (Dederichs and G. 1969, Dikici 1986, Dunn and Wienecke 1996, Elliott
1948, Hanson and Wong 1997, Indenbom and Orlov 1968, Kroner 1953, Lejcek 1969,
Lie and Koehler 1968, Lifshitz and Rozenzweig 1947, Mura and Kinoshita 1971, Pan
and Chou 1971, Tewary 1995, Ting and Lee 1997, Willis 1966, Wu 1999, Yu and
Sanday 1994, Wang 1997, Tonon, Pan and Amadei 2001)

(b) Half-Space (Dunn and Wienecke 1999, Hanson and Wong 1997, Lee 1979, Barnett
and Lothe 1975, Pan and Chou 1979b, Rongved 1955a, Wu 1999)

(c) Bimaterials (Pan and Chou 1979a, Rongved 1955b, Ting 1996, Pan and Yuan 1999).

(d) Three and multilayer (Yang and Pan 2002a, Yang and Pan 2002b, Yuan, Yang and
Yang 2003).

For anisotropic elastic solids, the Green’s functions can be obtained by the Fourier trans-
form method as well. In the transformed domain, the Green’s functions G̃km(k) satisfy the
equilibrium equations:

CijklklkjG̃km(k) = δim

Using the notation:

Kik(k) = Cijklklkj (6.33)

The equation can be written as

Kik(k)G̃km(k) = δim (6.34)

Then G̃ij (k) can be obtained as:

G̃ij(k) = K−1
ij (k) =

Nij(k)

D(k)
(6.35)

where K−1
ij (k), Nij(k) and D(k) are the inverse matrix, adjoint matrix and the determinant of

Kij(k), respectively.

The Green’s functions then can be obtained by the inverse Fourier transformation:

Gij (r) =
1

(2π)3

∫
Vk

G̃ij (k) eik·rdVk

=
1

(2π)3

∫
Vk

Nij(k)

D(k)
eik·rdVk (6.36)
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Now the main problem is to carry out the triple integrations. First, the volume element dVk

is expressed as
dVk = k2dkdSk (6.37)

where k = |k| and dSk is the surface element on the unit sphere |k| = 1. By denoting

k̄ = k/k, (6.38)

Eq.(6.36) can be written as

Gij (r) =
1

(2π)3

∫ ∞

0
dk
∫

Sk

Nij(k̄)

D(k̄)
eikk̄·rdSk (6.39)

Since Nij(k) and D(k) are polynomials with degrees four and six, respectively, Nij(k)/D(k) =
k−2Nij(k̄)/D(k̄) is used.
Noticing that Nij(−k̄)/D(−k̄)=Nij(k̄)/D(k̄), The integral can be further expressed as:

Gij (r) =
1

2 (2π)3

∫ ∞

−∞
dk
∫

Sk

Nij(k̄)

D(k̄)
eikk̄·rdSk (6.40)

Noticing that the delta function δ(x) = 1
2π

∫∞
−∞ eikxdk, the integration with respect to k leads

to

Gij (r) =
1

8π2

∫
Sk

δ(k̄ · r)Nij(k̄)

D(k̄)
dSk (6.41)

Denoting the angle between k̄ and r by θ, we have

k̄ · r = r cos θ, dSk = sin θdθdφ = −r−1d(k̄ · r)dφ (6.42)

where r = |r|, and φ is an angle staring arbitrary on the plane perpendicular to r, and the
integration becomes

Gij (r) =
1

8π2r

∫ r

−r
δ(k̄ · r)d(k̄ · r)

∫ 2π

0
dφ

Nij(k̄)

D(k̄)
(6.43)

Using the property of delta function
∫∞
−∞ δ(x)f(x)dx = f(0), we have

Gij (r) =
1

8π2r

∮
Ck

Nij(k̄)

D(k̄)
dφ (6.44)

where the integral is taken around the unit circle Ck (|k̄| = 1) on the plane normal to r, and
k̄ · r = 0 in the equation. This integration can be calculated by numerical method.

The Fourier transform method is used by Mura (1987). Other methods can be used to
obtain the Green’s functions also, such as the Radon transform method by Bacon, Barnett and
Scattergodd (1980). Their result is written in another form as:

Gij (r) =
1

8π2r

∮
|z|=1

(zz)−1
ij ds, (6.45)
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where the notation (zz)ij = Cmijpzmzp is used, (zz)−1
ij is the inverse of (zz)ij, and the integration

contour is the unit circle |z| = 1 lying in the plane normal to r.

The Green’s functions can be written in other integral expressions. Let n and m be any two
orthogonal unit vectors on the normal to r. The unit vector k̄ on the plane can be represented
by

k̄ = n cos φ + m sin φ

and the equation can be expressed as

Gij (r) =
1

8π2r

∫ 2π

0

Nij(n cos φ + m sin φ)

D(n cos φ + m sin φ)
dφ

=
1

4π2r

∫ π

0

Nij(n cos φ + m sin φ)

D(n cos φ + m sin φ)
dφ (6.46)

The second equality follows from the fact that Nij(n cos φ + m sin φ)/D(n cos φ + m sin φ) is
periodic in φ with periodicity π.

Now introducing the substitution ζ = tan φ, and considering the fact that Nij(k)/D(k) is a
function of k of degree −2, we can write the equation (6.46) as

Gij (r) =
1

4π2r

∫ ∞

−∞
Nij(n + mζ)

D(n + mζ)
dζ (6.47)

The integral in the equation (6.47) can be expressed in terms of residues in the complex ζ-plane
by Cauchy’s theorem. Then, eq.(6.47) becomes

Gij (r) =
i

2πr

3∑
N

Nij(n + mζN)
∂D
∂ζ

(n + mζN)
(6.48)

where ζN are the three roots, with positive imaginary parts, of the equation

D(n + mζN) = 0 (6.49)

Since D(n + mζN) = 0 is the sextic equation in ζN , for its roots, which has no closed-form
solution exits for general anisotropy, and considerable computation is required. For the degen-
erate case of multiple roots, the solution base on the sextic equation method need to be treated
specially, and cannot pass smoothly to the isotropic limit. While the integral expressions can
be evaluated directly by numerical method, and they can pass smoothly into degenerate cases.

In many cases, the derivatives of Green’s functions are needed, and should be considered
specially. Differentiating the expression (6.41) of Green’s functions with respect to coordinate
rk, leads to

Gij,k (r) =
1

8π2

∫
Sk

δ′(k̄ · r)k̄kNij(k̄)D−1(k̄)dSk, (6.50)

Since
∫
Sk

dSk = r−1
∮
Ck

dφ
∫ r
−r d(k̄ · r), and δ(k̄ · r)kkNij(k̄)D−1(k̄) = 0 at k̄ · r = ±r, integration

by parts of equation () yields

Gij,k (r) =
−1

8π2r

∮
Ck

dφ
∫ r

−r
δ(k̄ · r)∂[k̄kNij(k̄)D−1(k̄)]/∂(k̄ · r)d(k̄ · r)

=
−1

8π2r

∮
Ck

∂[k̄kNij(k̄)D−1(k̄)]/∂(k̄ · r)dφ. (6.51)
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where Ck is the unit circle normal to r. On the plane, k̄ · r = 0. Let n and m be any two
orthogonal unit vectors on the plane. The unit vector k̄ can be write as

k̄ = cos θr̄ + sin θ cos φn + sin θ sin φm

where r̄ = r/r, θ is the angle between k̄ and r. On the Ck plane, θ = π/2, and we have

∂k̄k/∂θ = −x̄k, ∂(k̄ · r) = −rdθ (6.52)

On the other hand, differentiating KlmNmjD
−1 = δlj and Klm = Clpmqk̄pk̄q with respect to θ,

we obtain
∂(NijD

−1/∂θ) = NilNjmD−2Clpmq(r̄pk̄q + k̄pr̄q) (6.53)

Thus, the first derivatives of Green’s functions can be expressed as

Gij,k (r) =
1

8π2r2

∮
Ck

[−r̄kNij(k̄)D−1(k̄)

+k̄kClpmq(r̄pk̄q + k̄pr̄q)Nil(k̄)Njm(k̄)D−2(k̄)]dφ (6.54)

Higher derivatives can be obtained in a similar manner. Such as, the second derivatives of
Green’s functions can be expressed as

Gij,kl(r) =
1

8π2r3

∮
Ck

{
2r̄kr̄lNij(k̄)D−1(k̄)

−2[(r̄kk̄l + r̄lk̄k)(r̄pk̄q + r̄qk̄p) + r̄pr̄qk̄kk̄l]ChpmqNih(k̄)Njm(k̄)D−2(k̄)

+k̄kk̄lChpmq(r̄pk̄q + r̄qk̄p)Csatb(r̄ak̄b + r̄bk̄a)

×[Njm(k̄)Nis(k̄)Nht(k̄) + Njs(k̄)Nih(k̄)Nmt(k̄)]D−3(k̄)
}

dφ (6.55)

Accuracy verification

Since the derivatives of Green’s functions are the key functions in the evaluation of elastic
field of dislocation loop, the calculating accuracy and computational efficiency to them will
play a important role and effect the final results. We will first we compare the results of
Green’s functions and their derivatives by our direct integral method with other available ones.
There is no closed form solution for the Green’s functions and their derivatives in a generalized
anisotropic elastic medium. To validate the direct numerical integration method we used here,
our results are compared, for the case of transversely isotropic material, which a closed form
solution is available (Pan and Chou 1971), and an example was given by Tonon et al. (2001).

In the example, the plane of transverse isotropy is parallel to the x1x2 plane, the material
constants are C1111 = C11 = 88, C3333 = C33 = 24, C1122 = C12 = 72, C1133 = C13 = 40,
C2323 = C44 = 1.6, the source point is at x′ = (0, 0, 0) and the field point at x = (−1, 0.8, 1.5).
The elastic constants are in the unit of 104kN/m2 and distances in m.

The Green’s functions (displacements) are listed in Table 1, with the results calculated by
present Gaussian numerical methods and those given in the reference by Tonon et al. (2001).
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When the number Nmax of Gaussian quadrature is 16, the results have high accuracy with 9
significant digits, i.e., the relative errors are less than 10−9. With the quadrature number Nmax

increasing, the accuracy of the present results increases also, and they convergent to the closed
form solutions till the last (11th) digital figures when Nmax is great than 16 × 5.

The Green’s functions (displacements) are calculated first, and the results by the present
(numerical Gaussian integration) method agree very well with those given in the reference by
Tonon et al. (2001). When the number Nmax of Gaussian quadrature is 16, the results have
high accuracy with 9 significant digits, i.e., the relative errors are less than 10−7%. With the
quadrature number Nmax increasing, the accuracy of the present results increases also, and they
convergent to the closed form solutions till 11th numerical figures when Nmax is greater than
80.

Table 1 Green’s functions (

×10−4

m) calculated by present method and compared with those given in the Reference (Tonon et
al. 2001)

ij Gij Ref. Gij present
Nmax = 8 Nmax = 16 Nmax = 32

11 4.0141588610×10−3 4.0145152760×10−3 4.0141588605×10−3 4.0141588610×10−3

22 3.8822389799×10−3 3.8818535196×10−3 3.8822389804×10−3 3.8822389806×10−3

33 1.9003220284×10−2 1.9002795095×10−2 1.9003220276×10−2 1.9003220287×10−2

12 -2.9315529143×10−4 -2.9318417701×10−4 -2.9315529058×10−4 -2.9315529032×10−4

23 1.7214308137×10−3 1.7216123966×10−3 1.7214308070×10−3 1.7214308138×10−3

31 -2.1517885172×10−3 -2.1516822418×10−3 -2.1517885241×10−3 -2.1517885173×10−3

The derivatives of Green’s functions were not shown in the reference (Tonon et al. 2001), in
stead the Green’s stresses were given, which can be used to check the results of the derivatives
of Green’s functions. The Green’s stress vector σk = (σ11k, σ22k, σ33k, σ23k, σ31k, σ12k) is related
to Green’s strain vector εk = (ε11k, ε22k, ε33k, ε23k, ε31k, ε12k) according to the constitutive, and
the Green’s strain is related to the derivatives of Green’s functions by εijk = (Gik,j +Gjk,i )/2.
The Green’s stresses are calculated, they (some components) are listed and compared in Table
2. When the number Nmax of Guassain quadrature is 16, the results have high accuracy with
6 significant digits, i.e., the relative errors are less than 10−4%. With Nmax increasing, the
accuracy of the present results increases also. When Nmax = 32, the relative errors decrease to
within 10−6%. Even if Nmax = 8 only, the relative errors are less than 1%.

Table 2 Green’s stresses (kN/m2) calculated by present method and compared with those
given in the Reference (Tonon et al. 2001)
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ijk σijk Ref. σijk present
Nmax = 8 Nmax = 16 Nmax = 32

111 3.05346453×10−3 3.035337×10−3 3.053463×10−3 3.05346449×10−3

221 5.55165324×10−3 5.574246×10−3 5.551655×10−3 5.55165325×10−3

331 6.95945427×10−3 6.958346×10−3 6.959454×10−3 6.95945424×10−3

121 -1.80336282×10−3 -1.789644×10−3 -1.803363×10−3 -1.803362831×10−3

231 2.51603056×10−3 2.515036×10−3 2.516030×10−3 2.51603054×10−3

311 -3.39333301×10−3 -3.397382×10−3 -3.393333×10−3 -3.39333298×10−3

From this example it can be seen that the derivatives of Green’s functions (and including
Green’s functions) evaluated by present direct numerical integral method have high accuracy
and computational efficiency.

6.5 Green’s Functions in Layered Media

Introduction

Real solids are most often heterogeneous rather than homogenous ones. There are many
problems in physical and material areas, can be modeled as a layered system, such as com-
posite laminates, coatings and thin films on substrates, sandwiched interphases etc. For this
system, since there are usually many laminates and interfaces, they pose great difficulty for
existing numerical methods, such as the domain-discretizing finite element method (FEM) or
the surface/interface-discretizing boundary element method (BEM). An reasonable approach
with a computational efficiency and accuracy is to apply numerical formulations to the layered
system with the Green’s functions being those in the layered system instead of being those in
a homogeneous and infinite domain. By doing so, no discretization along each interface is nec-
essary, and the boundary condition along all interfaces are satisfied strictly. Therefore the key
point in the modeling of layered systems is to provide the Green’s functions for such systems.

There are several approaches for calculating the Green’s functions in layered system. The
most strict approach towards a horizontal layered system, is the transformation method in
which some kinds (such as Fourier or Hankel) transformation is used to suppress the horizon-
tal variables (Willis 1966, Singh 1970, Ting 1996, Pan 1989, Pan and Yuan 1999). A general
solution for each layer in the transformed field can be found with coefficients to be undeter-
mined, by solving the constitutive equation. The exact forms of those general solutions are
often combinations of exponential terms of vertical variable Z. To avoid the numerical inver-
sion transformation, series expansion can be used to approximate the exact general solutions to
certain extents (Seale and Kausel 1989, Kausel and Roesset 1981, Choi and Earmme 2002). For
a multilayered medium, the unknown transformed coefficients in each layers can be determined
according to the boundary conditions of all surfaces and interfaces by forming a global algebraic
linear system directly (Mal 1988, Lin and Keer 1989, Kuo and Keer 1995), or by a local system
method, such as the propagator matrix method (Singh 1970, Singh 1986, Pan 1989, Pan 1997).
After the transformed coefficients are determined, one need to perform the correspondent in-
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Figure 6.3: Geometry of a multilayered thin film system.

verse transformation to obtain the Green’s functions in the physical domain. The elastostatic
solutions of a layered system were derived by Singh (1970) and Kuo and Keer (1995) for the
isotropic media, and by Singh (1986), Pan (1989) and Pan (1997) for the transverse isotropic
media. For general anisotropic media, recently, the 3-D Green’s functions have been derived by
Ting (1996) and Pan and Yuan (1999) for bimaterials and Yang and Pan (2002b) for trimateri-
als. In this paper we will derive the 3-D Green’s functions for a general anisotropic multilayered
media.

6.5.1 Basic formulas

Consider a multilayered medium consisting of a stack of N layers bonded with uniform thickness
and perfect bonded along the interfaces. We assume that each layer is homogeneous, anisotropic
and with distinct material property in general.

Define Greens function: Gij(x,x′), as the displacement component ui at position x due to
a unit point force in the xj-direction applied at point x′. The equilibrium equation should be
satisfied as

Cijkluk,lj + fi = 0 (6.56)

With fi = δimδ(x,x′), the equilibrium equation for Green’s functions is

Cijkl(x)Gkm,lj(x) + δimδ(x,x′) = 0 (6.57)

Now, introduce the two dimensional spatial Fourier transforms applied to the in-plane coor-
dinates (x1, x2) of the displacement and the stress components defined by the pair:

f̃(ξ1, ξ2, x3) =
∫ ∞

−∞

∫ ∞

−∞
f(x1, x2, x3)e

iξαxαdx1dx2,
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f(x1, x2, x3) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
f̃(ξ1, ξ2, x3)e

−iξαxαdξ1dξ2. (6.58)

where α = 1, 2, and i =
√−1.

Applying the 2D Fourier transform to the governing eq.(6.57), it becomes a ordinary differ-
ential equation as

CiαkβξαξβG̃km + i(Ciαk3 + Ci3kα)ξαG̃km,3 −Ci3k3G̃km,33 = eiξαx′
αδimδ(x3, x

′
3) (6.59)

Solving it yields the general solution in the transformed field for the Green’s function G̃ji

(displacement in the jth direction due to a unit point force in the ith direction), as (Ting
1996, Pan and Yuan 1999, Yang and Pan 2002b):

G̃(ξ1, ξ2, x3;x
′) = eiξαx′

α

[
G̃∞(ξ1, ξ2, x3; x

′
3) + iη−1(Ā < e−ip̄ηx3 > V + A < e−ipηx3 > W)

]
(6.60)

where the over bar denotes complex conjugate, (η, θ) are the polar coordinates related to
(ξ1, ξ2) by ξ1 = η cos θ and ξ2 = η sin θ, V and W are unknown functions of η, θ and x′

3,
< e−ipηx3 >= diag[e−ip1ηx3 , e−ip2ηx3 , e−ip3ηx3 ], with pi and A = (a1, a2, a3) being (chosen to be
the three independent pairs with Impi > 0) the eigenvalues and eigenmatrix of the generalized
Stroh eigenproblem (Ting 1996, Pan and Yuan 1999, Yang and Pan 2002b)

[Q + piR + RT ) + p2
i T]ai = 0 (6.61)

Qik = Cijksnjns, Rik = Cijksnjms, Tik = Cijksmjms

with n = [cos θ, sin θ, 0]T and m = [0, 0, 1]T , In this solution (9.23), the Green’s displacement is
separated as two part: the full-space solution G̃∞ (with elastic properties being those where the
field point x is located and the point force is applied at x’=(0, 0, x′

3)), and the complementary
part (the other terms) which involves only regular functions. Separating the solution into
an infinite-space solution and a complementary part has the advantage of avoiding numerical
integral of singular function involved in the infinite-space solution. The full space Green’s
functions, in the transformed field, are

G̃∞(ξ1, ξ2, x3; x
′
3) = iη−1

{
A < e−ipη(x3−x′

3) > AT , x3 < x′
3

−Ā < e−ip̄η(x3−x′
3) > ĀT , x3 > x′

3

(6.62)

The full-space Green’s functions in the physical-domain, have been derived explicitly by Ting
and Lee (1997) and Tonon et al. (2001) based on the sextic equations. In our calculations,
the integral expressions (including the Green’s functions and their derivatives in the physical
domain) derived by Barnett (1972), Willis (1975), Mura (1987), and given in the former chapter.

Using the elastic constitutive equation and the general solution for the Green’s displacement,
the Green’s stress σjki(x;x′) (the last subscript i indicates the direction of the unit point
force) can be derived out. The out-of plane stress t = (σ31i, σ32i, σ33i) and in-plane stress
t = (σ11i, σ12i, σ22i) can be expressed (in the transformed field) as

t̃(ξ1, ξ2, x3;x
′) = eiξαx′

α

[
t̃∞(ξ1, ξ2, x3; x

′
3) + (B̄ < e−ip̄ηx3 > V + B < e−ipηx3 > W)

]
(6.63)
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s̃(ξ1, ξ2, x3;x
′) = eiξαx′

α

[
s̃∞(ξ1, ξ2, x3; x

′
3) + (C̄ < e−ip̄ηx3 > V + C < e−ipηx3 > W)

]
(6.64)

with t̃∞ and s̃∞ derived from ũ∞ being the full-space Green’s stresses, and in the transformed
domain they are

t̃∞(ξ1, ξ2, x3; x
′
3) =
{

B < e−ipη(x3−x′
3) > AT , x3 < x′

3

−B̄ < e−ip̄η(x3−x′
3) > ĀT , x3 > x′

3

(6.65)

s̃∞(ξ1, ξ2, x3; x
′
3) =
{

C < e−ipη(x3−x′
3) > AT , x3 < x′

3

−C̄ < e−ip̄η(x3−x′
3) > ĀT , x3 > x′

3

(6.66)

The matrix B = (b1,b2,b3) and C = (c1, c2, c3) are related to A by

bi = (RT + piT)ai, ci = Diai (6.67)

with
Dkli = C1klαnα + piC1kl3 for k = 1, 2, and D3li = C22lαnα + piC22l3.

Noticing that the general solutions (9.23), (9.26) and (9.27) remain valid if x3 (in < e−ip̄ηx3 >
and < e−ipηx3 >) is replaced by (x3 − γ) with γ being an arbitrary real constant. The displace-
ments and stresses for kth layer, zk−1 < x3 < zk can be rewriten in forms as

(
ũ
t̃

)
k

(x3) = eiξαx′
α

[(
ũ
t̃

)∞
k

(x3) + Zk(x3)
(

V
W

)
k

]
(6.68)

s̃k(x3) = eiξαx′
α

[̃
s∞k (x3) + (C̄k < e−ip̄kη(x3−zk−1) > Vk + Ck < e−ipkη(x3−zk) > Wk)

]
(6.69)

with

Zk(x3) =
(

iη−1Āk iη−1Ak

B̄k Bk

)(
< e−ip̄kη(x3−zk−1) > 0

0 < e−ipkη(x3−zk) >

)
(6.70)

If the 0th layer, is a half-space, the finite solution requirmence as |x3| → ∞ gives V0 = 0 in
it’s general solution. Similarly, if nth layer is a half-space, Wn = 0 in it’s general solution.

The boundary conditions (perfectly bonded) along the interfaces (k = 0, ...n − 1), are

(Zk(zk) −Zk+1(zk) )

⎛⎜⎜⎜⎝
Vk

Wk

Vk+1

Wk+1

⎞⎟⎟⎟⎠ =
(

ũ
t̃

)∞
k+1

(zk) −
(

ũ
t̃

)∞
k

(zk), k = 0, ...n − 1 (6.71)

If nth layer has a free surface along x3 = zn, the boundary condition along it gives another
equation as

( B̄n < e−ip̄nηhn > Bn )
(

Vn

Wn

)
= −t̃∞n (zn) (6.72)

These boundary condition equations (6.71) (and (6.72) when the layer n has a finite free
surface) form a banded (with width 12) linear algebraic equation system. In this system, all
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elements of the coefficients matrix are regular and finite ones (including terms as Ak, Bk,
Āk, B̄kand combinations with exponentials terms < e−ip̄kηhk > and < eipkηhk >, see equation
(6.70)). The banded linear equation system can be solved easily. Then the unknowns Vk and
Wk (k = 0, ...n) are determined, and the solutions for every layers in the transformed domain
are obtained.

Having obtained the transformed-domain solutions, the corresponding physical-domain so-
lutions can be derived by the inverse Fourier transform. The inverse transform can be taken in
the polar coordinates (η, θ) instead of (ξ1, ξ2) as

f(x1, x2, x3) =
1

(2π)2

∫ ∞

0

∫ 2π

0
ηf̃(η, θ, x3)e

−iη(x1 cos θ+x2 sin θ)dθdη. (6.73)

When applying the inverse transform to the Green’s functions (6.68) and stresses (6.69)
solutions, since the full-space solutions are available, only need to carry out the 2-D transform
to the regular complementary parts by a standard numerical integral method.

6.5.2 Derivatives of the Green’s functions

When the Green’s functions are know, the elastic field of a dislocation loop (or inclusion etc.)
can be constructed by integration. But the derivatives of the Green’s functions (with respect to
the field point or source point) are needed. In last section, we calculate the Green’s functions
and Green’s stresses (including the derivatives of Green’s functions with respect the field point).
We need to calculate their derivatives with respect to the source point now.

From equation (6.68), the derivatives with respect to x′
1 and x′

2 in the transform-domain,
can be obtained by

∂G̃k/∂x′
α = iξαG̃k , α = 1, 2 (6.74)

where G̃k denotes the Green’s functions (can be the Green’s stresses or the Green’s derivatives
with respect to x also) of the k-th layer in the transform domain. From equation (6.68), the
the derivatives of Green’s functions with respect to x′

3 can be expressed as

∂G̃k/∂x′
3 = eiξαx′

α

[
∂G̃∞

k

∂x′
3

+ iη−1(Āk < e−ip̄kη(x3−zk−1) >
∂Vk

∂x′
3

+ Ak < e−ipkη(x3−zk) >
∂Wk

∂x′
3

)

]
(6.75)

The the derivatives of Green’s stresses can be expressed in the same way and won’t be shown
here.

When we calculate the Green’s functions, Vk and Wk can be determined. But their deriva-
tives ∂Vk/∂x′

3 and ∂Wk/∂x′
3 are not available, and we need to calculate them separately, as

follow. Performing derivatives to the boundary condition equations (6.71) (and (6.72) if nth
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layer has a free surface), we obtain

(Zk(zk) −Zk+1(zk) )

⎛⎜⎜⎜⎝
∂Vk/∂x′

3

∂Wk/∂x′
3

∂Vk+1/∂x′
3

∂Wk+1/∂x′
3

⎞⎟⎟⎟⎠ =

⎛⎝ ∂ũ∞
k+1

∂x′
3

∂t̃∞k+1

∂x′
3

⎞⎠ (zk) −
⎛⎝ ∂ũ∞

k

∂x′
3

∂t̃∞k
∂x′

3

⎞⎠ (zk), k = 0, ...n − 1 (6.76)

( B̄n < e−ip̄nηhn > Bn )
(

∂Vn/∂x′
3

∂Wn/∂x′
3

)
= −∂t̃∞n (zn)

∂x′
3

(6.77)

Solving these linear algebric equations (6.76) (and (6.77) when needed), ∂Vk/∂x′
3 and ∂Vk/∂x′

3

(k = 0, ...n) can be determined. Taking inverse Fourier transforms to corresponding equations
(6.74) and (6.75), the derivatives with respect to x′ can be obtained.

6.5.3 Green’s Functions in Bimaterials

In this section, for the special case of bimaterials, we give the formulae of the Green’s functions,
stresses and their derivatives stresses, using the method derived by Pan and Yuan (1999), and
Yang and Pan (2002b).

The low half-space z < 0 and upper one z > 0 are denoted as 0-th layer and 1-th layer
respectively, and quantities in different materials are denoted by corresponding subscripts. The
Green’s functions (displacement) u, stresses t, s, and their derivaties with respect to the source
point x′ are listed below.

For the case of the source point x located in material 1

u1(x,x′) = u∞
1 (x,x′) +

1

4π2

∫ 2π

0
Ā1G

(1)
u AT

1 dθ

t1(x,x′) = t∞1 (x,x′) +
1

4π2

∫ 2π

0
B̄1G

(1)
t AT

1 dθ

s1(x,x′) = s∞1 (x,x′) +
1

4π2

∫ 2π

0
C̄1G

(1)
t AT

1 dθ

u0(x,x′) = − 1

4π2

∫ 2π

0
Ā0G

(0)
u AT

1 dθ

t0(x,x′) = − 1

4π2

∫ 2π

0
B̄0G

(0)
t AT

1 dθ

s0(x,x′) = − 1

4π2

∫ 2π

0
C̄0G

(0)
t AT

1 dθ

∂u1(x,x′)
∂x′

j

=
∂u∞

1 (x,x′)
∂x′

j

− 1

4π2

∫ 2π

0
Ā1G

(1)
t < gj > AT

1 dθ

∂t1(x,x′)
∂x′

j

=
∂t∞1 (x,x′)

∂x′
j

− 1

2π2

∫ 2π

0
B̄1G

(1)
td < gj > AT

1 dθ
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∂s1(x,x′)
∂x′

j

=
∂s∞1 (x,x′)

∂x′
j

− 1

2π2

∫ 2π

0
C̄1G

(1)
td < gj > AT

1 dθ

∂u0(x,x′)
∂x′

j

=
1

4π2

∫ 2π

0
Ā0G

(0)
t < gj > AT

1 dθ

∂t0(x,x′)
∂x′

j

=
1

2π2

∫ 2π

0
B̄0G

(0)
td < gj > AT

1 dθ

∂s0(x,x′)
∂x′

j

=
1

2π2

∫ 2π

0
C̄0G

(0)
td < gj > AT

1 dθ

with A, B and C being the same as in the text (see eq.(5) and (11)) which obtained from the
generalized Stroth eigenproblem, and

(G(1)
u )ij =

(G1)ij

−p̄
(1)
i x3 + p

(1)
j x′

3 − [(x1 − x′
1) cos θ + (x2 − x′

2) sin θ]

(G
(1)
t )ij =

(G1)ij

{−p̄
(1)
i x3 + p

(1)
j x′

3 − [(x1 − x′
1) cos θ + (x2 − x′

2) sin θ]}2

(G
(1)
td )ij =

(G1)ij

{−p̄
(1)
i x3 + p

(1)
j x′

3 − [(x1 − x′
1) cos θ + (x2 − x′

2) sin θ]}3

(G(0)
u )ij =

(G0)ij

−p
(0)
i x3 + p

(1)
j x′

3 − [(x1 − x′
1) cos θ + (x2 − x′

2) sin θ]

(G
(0)
t )ij =

(G0)ij

{−p
(0)
i x3 + p

(1)
j x′

3 − [(x1 − x′
1) cos θ + (x2 − x′

2) sin θ]}2

(G
(0)
td )ij =

(G0)ij

{−p
(0)
i x3 + p

(1)
j x′

3 − [(x1 − x′
1) cos θ + (x2 − x′

2) sin θ]}3

where p
(0)
i and p

(1)
i are the eigenvalues (see eq. (5)) for material 0 and 1, < g1 >= diag[cos θ, cos θ, cos θ],

< g2 >= diag[sin θ, sin θ, sin θ], < g3 >= diag[p
(1)
1 , p

(1)
2 , p

(1)
3 ] and

G1 = −Ā−1
1 (M̄1 + M0)

−1(M1 − M0)A1, G0 = A−1
0 (M̄1 + M0)

−1(M1 + M̄1)A1, M = −iBA−1

For the case of the source point x located in material 0

u1(x,x′) =
1

4π2

∫ 2π

0
Ā1G

(1)
u ĀT

0 dθ

t1(x,x′) =
1

4π2

∫ 2π

0
B̄1G

(1)
t ĀT

0 dθ

s1(x,x′) =
1

4π2

∫ 2π

0
C̄1G

(1)
t ĀT

0 dθ
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u0(x,x′) = u∞
0 (x,x′) − 1

4π2

∫ 2π

0
A0G

(0)
u ĀT

0 dθ

t0(x,x′) = t∞0 (x,x′) − 1

4π2

∫ 2π

0
B0G

(0)
t ĀT

0 dθ

s0(x,x′) = s∞0 (x,x′) − 1

4π2

∫ 2π

0
C0G

(0)
t ĀT

0 dθ

∂u1(x,x′)
∂x′

j

= − 1

4π2

∫ 2π

0
Ā1G

(1)
t < gj > ĀT

0 dθ

∂t1(x,x′)
∂x′

j

= − 1

2π2

∫ 2π

0
B̄1G

(1)
td < gj > ĀT

0 dθ

∂s1(x,x′)
∂x′

j

= − 1

2π2

∫ 2π

0
C̄1G

(1)
td < gj > ĀT

0 dθ

∂u0(x,x′)
∂x′

j

=
∂u∞

0 (x,x′)
∂x′

j

+
1

4π2

∫ 2π

0
A0G

(0)
t < gj > ĀT

0 dθ

∂t0(x,x′)
∂x′

j

=
∂t∞0 (x,x′)

∂x′
j

+
1

2π2

∫ 2π

0
B0G

(0)
td < gj > ĀT

0 dθ

∂s0(x,x′)
∂x′

j

=
∂s∞0 (x,x′)

∂x′
j

+
1

2π2

∫ 2π

0
C0G

(0)
td < gj > ĀT

0 dθ

where

(G(1)
u )ij =

(G1)ij

−p̄
(1)
i x3 + p̄

(0)
j x′

3 − [(x1 − x′
1) cos θ + (x2 − x′

2) sin θ]

(G
(1)
t )ij =

(G1)ij

{−p̄
(1)
i x3 + p̄

(0)
j x′

3 − [(x1 − x′
1) cos θ + (x2 − x′

2) sin θ]}2

(G
(1)
td )ij =

(G1)ij

{−p̄
(1)
i x3 + p̄

(0)
j x′

3 − [(x1 − x′
1) cos θ + (x2 − x′

2) sin θ]}3

(G(0)
u )ij =

(G0)ij

−p
(0)
i x3 + p̄

(0)
j x′

3 − [(x1 − x′
1) cos θ + (x2 − x′

2) sin θ]

(G
(0)
t )ij =

(G0)ij

{−p
(0)
i x3 + p̄

(0)
j x′

3 − [(x1 − x′
1) cos θ + (x2 − x′

2) sin θ]}2

(G
(0)
td )ij =

(G0)ij

{−p
(0)
i x3 + p̄

(0)
j x′

3 − [(x1 − x′
1) cos θ + (x2 − x′

2) sin θ]}3

with < g1 >= diag[cos θ, cos θ, cos θ], < g2 >= diag[sin θ, sin θ, sin θ], < g3 >= diag[p̄
(0)
1 , p̄

(0)
2 , p̄

(0)
3 ]

and

G1 = Ā−1
1 (M̄1 + M0)

−1(M̄0 + M0)Ā0, G0 = A−1
0 (M̄1 + M0)

−1(M̄1 − M̄0)Ā0, M = −iBA−1
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Numerical accuracy

In this section, several numerical examples are carried out to compare the present results and
the existing ones, for reduced cases. These include Green’s functions (and stresees) in an infinte
ansiotropic space where the infinite space is divided artificially into two identical materials, a
transversely isotropic half-space and in an isotropic multilayers. It is found that for these
reduced cases, the present 2D Fourier transform method predict the same results as those
obtained by Tonon et al. (2001) and Han, Ghoniem and Wang (2002) for the infinite space, and
Pan and Yuan (1999) for anisotropic half/bi-half space, and Pan (1997) for isotropic/transverse
isotropic multilayers. Since for bi-half space system, 1D Fourier transform results are available
for Green’s functions (and stresses) (Pan and Yuan 1999), they are given in the appendix B
together with their derivatives with respect with the source point, and used to check present
2D solutions also.

Transversely isotropic half-space

The properties of the transversely isotropic (x1 − x2 is isotropic plane) material are E1 = 1,
E3 = 10, G13 = 1, ν12 = ν31 = 0.3. The numerical results of the half-space (x3 ≤ 0) Green’s
functions and stresses are presented in Table 1, and compared with the known ones (Pan and
Yuan 1999), with the source and field point at (0, 0,−1) and (0, 0,−0.75) respectively. It can
be seen from the table, that the present results agree very well with the existing ones.

Table 1 Green’s functions and stresses in a transversely isotropic half-space

uij Present Pan & Yuan (2000)
(11)=(22) 0.64233731 0.64233732

(33) 0.39504885 0.39504886
σijk

(131)=(232) -1.34601662 -1.34601664
(113)=(223) 0.65825907 0.65825908

(333) -11.9102534 -11.9102536

Isotropic multilayers

We choose a three layer isotropic materials as an example. The properties of the three layers
are E(0) = 4, E(1) = 2, E(2) = 1, ν(0) = ν(1) = ν(2) = 0.3. Layer 0 is a half-space and layer
2 has a free surface, with z0 = 0 z1 = 1.0 and z2 = 2.5 (see figure 1). The source point and
the field point are located at (0, 0, 0.5) and (0, 0, 0.6) respectively. The numerical results are
presented in Table 2, and compared with the known ones (Pan 1997). It can be seen from the
table, that the present results agree well with the existing ones. In our calculation for isotropic
cases, the material properties are perturbed slightly so that all the roots of the sextic equations
are distinct, and this result in tiny errors in the computed results.

Table 2 Green’s functions and stresses in a transversely isotropic half-space
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uij Present Pan (1997)
(11)=(22) 0.6694 0.6696070

(33) 1.0467 1.047322
σijk

(113)=(223) 2.3111 2.310295
(333) -19.088 -19.10030

Derivatives of Green’s functions and stresses in bimaterials

To check the rightness and accuracy of the Green’s functions and their derivatives by the
present 2D Fourier transform method, we use the transformed expressions (6), (9) and (10) of
the Green’s functions and stresses (and their first derivatives) in an infinite space, and perform
the inverse transform. The results agree well with those obtained by the integral formulae.

For bimaterials (including half-space), 1D integral expressions of the Green’s functions and
stresses have been derived by Pan and Yuan (1999). For the bimaterial case, we use the 1D
formulae of the Green’s functions, stresses and their derivatives also (see Appendix B), and
compare the results with those by the present 2D transform method. The results agree very
well. In the example, the low half-space z < 0 is Copper, and up, Aluminum. They are cubic
anisotropic crystals, with their crystallographic axes [100],[010] and [001] along the x, y and z
coordinates axes, respectively, and their elastic constants (in units of 1010 Pa), together with
anisotropic ratios A = 0.5(C11 − C12)/C44) being listed in Table 3. The numerical results of
some components of the Green’s functions, stresses and their derivatives are presented and
compared in Table 4, with the source point x located at (0, 0, 0.5) (in Al), and field points x′

at (1,−0.5, 1) (in Al) and (1,−0.5,−0.5) (in Cu), respectively, and Gij, Gij,k′ in units of 10−10.

Table 3 Elastic constants of some cubic crystals

C11 C12 C44 A
Cu 16.84 12.14 7.54 3.21
Al 10.82 6.13 2.85 1.21
Ni 24.65 14.73 12.47 2.52

Isotropy 16.84 12.14 2.35 1.0

Table 4 Green’s functions, stresses and their derivatives in Cu-Al bimaterilas
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x = (0, 0, 0.5), x′ = (1,−0.2, 1) x = (0, 0, 0.5), x′ = (1,−0.2,−0.5)
Present 1D formulae Present 1D formulae

G11 1.95384557581×10−2 1.95384557533×10−2 1.21296191840×10−2 1.21296191770×10−2

G12 -1.61140414276×10−3 -1.61140414282×10−3 9.59625004458×10−4 9.59624977115×10−4

G33 1.44011129949×10−2 1.44011129933×10−2 1.27002385472×10−2 1.27002385459×10−2

∂G11/∂x′
1 1.55441441718×10−2 1.55441441723×10−2 4.67278893468×10−3 4.67278892083×10−3

∂G13/∂x′
2 -1.33814164191×10−3 -1.33814164185×10−3 3.13711240665×10−4 3.13711249267×10−4

∂G33/∂x′
3 1.51434493595×10−3 1.51434493495×10−3 -4.62792119563×10−3 -4.62792115332×10−3

σ111 -1.00407315956E-1 -1.00407315960E-1 -4.91883171614×10−2 -4.91883163435×10−2

σ132 1.06384293746×10−2 1.06384293745×10−2 -1.07747701122×10−2 -1.07747706699×10−2

σ333 -9.12125675695×10−3 -9.12125677138×10−3 5.43572079822×10−2 5.43572085312×10−2

∂σ111/∂x′
2 5.86732661296×10−2 5.86732661295×10−2 7.22120675245×10−3 7.22120630742×10−3

∂σ132/∂x′
1 3.28928262254×10−2 3.28928262253×10−2 -1.73017885558×10−2 -1.73017880366×10−2

∂σ333/∂x′
3 5.87165788662×10−2 5.87165788667×10−2 6.14433699513×10−3 6.14433720238×10−3

6.5.4 Application to infinitesimal dislocations

When the Green’s functions are know, the elastic field of a dislocation loop can be constructed
by integration. The displacement of a dislocation loop in a solid (no matter homogeneous
medium or not) can be expressed as (Volterra 1907, Mura 1968)

ui(x) = −
∫

S
Cjlmnbm

∂

∂x′
l

Gij(x,x′)nndS(x′) (6.78)

where Gij(x,x′) are the Green’s functions at x due to a point force applied at x′, S is the
surface capping the loop, nn is a unit normal to S and bm is the Burgers vector.

When the field point is far from a dislocation loop, the loop can be considered as infinitesimal
one, and the finite loop can be generated by integrating the capping surface with infinitesimal
loops. Here we only consider the infinitesimal loop. The displacement of a infinitesimal dis-
location loop with surface dS and located at x′can be obtained directly from equation (9.13)
as

ui(x) = −Cjlmn(x′)bm
∂

∂x′
l

Gij(x,x′)nndS (6.79)

And the stress field can be expressed as

σij(x) = −Cijkl(x)Cpqmn(x′)bm
∂2

∂xl∂x′
q

Gkp(x,x′)nndS (6.80)

From the Betti’s reciprocal theorem and the definition of Green’s function, we have

Gij(x,x′) = Gji(x
′,x) (6.81)

Using this relation, the equations (6.79) and (9.16) can be rewriten in other convenient forms
as

ui(x) = −Cjlmn(x′)bm
∂

∂x′
l
Gji(x

′,x)nndS

= −σmni(x
′,x)bmnndS

(6.82)
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σij(x) = −Cijkl(x)Cpqmn(x′)bm
∂2

∂xl∂x′
q
Gpk(x

′,x)nndS

= −Cijkl(x) ∂
∂xl

σmnk(x
′,x)bmnndS

(6.83)

where σmni(x
′,x) are the mn-th Green’s stress components at the field point x′ due to a unit

point force in the i-th direction applied at the source point x.

For the special case of an infinitesimal dislocation loop in an isotropic infinite space, there is
a analytical solution. The displacement of an infinitesimal dislocation in an infinite space can
be written as

ui(x) = CjlmnbmGij,l (r)nndS

with r = x − x′, Gij,l (r) = ∂Gij(r)/∂xl. For isotropic media, there are

Cjlmn = λδjlδmn + µ(δjmδln + δjnδlm)

Gij(r) =
1

16πµ(1 − ν)r
[(3 − 4ν)δij + r̄ir̄j]

with r = |r| and r̄ = r/r. Finally, we have

ui(x) =
−bmnndS

8π(1 − ν)

gmni

r2

with gmni = (1 − 2ν)(δmir̄n + δnir̄m − δmnr̄i) + 3r̄mr̄nr̄i.

For a slip dislocation loop with b = b(1, 0, 0) and n = (0, 0, 1), the displacements are

u1(x) = fu[(1 − 2ν)r̄3 + 3r̄2
1 r̄3]

u2(x) = fu(3r̄1r̄2r̄3)
u1(x) = fu[(1 − 2ν)r̄1 + 3r̄1r̄

2
3]

with fu = −bdS/[8π(1 − ν)r2], and the stresses are

σ11(x) = fσr̄1r̄3(1 − 5r̄2
1)

σ22(x) = fσr̄1r̄3(1 − 2ν − 5r̄2
2)

σ33(x) = fσr̄1r̄3(1 − 5r̄2
3)

σ23(x) = fσr̄1r̄2(ν − 5r̄2
3)

σ31(x) = fσr̄1r̄3[(1 + ν)/3 − νr̄2
2 − 5r̄2

1 r̄
2
3]

σ12(x) = fσr̄2r̄3(ν − 5r̄2
1)

with fσ = −3µbdS/[4π(1 − ν)r3].

The stresses of a slip infinitesimal dislocation in an infinite isotropic medium calculated by
the present method are shown in a table, and compared with known analytical formulae. In
this example, the material constants are: E = 1, ν = 0.3, the dislocation is located at (0, 0, 0)
with the Burgers vector b(1, 0, 0) and a surface S on the plane (0, 0, 1), and the field point is
(1,−0.5, 0.1). In the table, the stress is normalized (divided) by bS. It can be seen the results
agree very well.
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The stresses of an infinitesimal dislocation in an infinite space

Present Analytical
σ11 2.184815141968856×10−2 2.184815141768209×10−2

σ12 -1.350028820685802×10−2 -1.350028821557843×10−2

σ13 -3.174758385200676×10−2 -3.174758387554415×10−2

σ22 4.357946805850190×10−3 4.357946780104503×10−3

σ23 9.580472855695101×10−3 9.580472814170755×10−3

σ33 -7.068519604061059×10−3 -7.068519576308913×10−3

Numerical results

Green’s functions and stresses

In this section, the Green’s functions in layered materials.

First example, a thin film (Al or Ni) (height being h) on a (Cu) half space (z < 0), see fig.
6.4. The two materials are bonded well, and their crystallographic axes [100],[010] and [001]
are along the x, y and z coordinates axes, respectively, and the film has a free upper surface
(at z = h).

Figure 6.5 show the variations of the Green’s displacements (normalized/divided ones by
10−10/h) along the field point (x/h, y/h, z/h) = (0.5, 0, z/h), with the applied source point
being (0, 0,−0.5h). Figure 6.6 and 6.7 show the corresponding Green’s stresses (out-plane ones
and in-plane ones respectively). The stresses are normalized by 1/h2. In these figures, also show
the results of Cu half-space (with the moduli of all films being that of Cu) and Cu infinite-space.

We give another example of a multilayered material, a half-space system of four layers,
see fig. 6.8. The lower substrate (z < 0) is Cu. The 1st, 2nd and 3rd layer is Al, Ni and
Al film, respectively, and the height of each film is h. All layers are bonded well, and their
crystallographic axes [100],[010] and [001] are along the x, y and z coordinates axes, respectively,
and the 3rd film has a free upper surface (at z = 3h).

Figure 6.9 show the variations of the Green’s displacements (normalized/divided by 10−10/h)
along the field point (x/h, y/h, z/h) = (0.5, 0, z/h), with the applied source point being (0, 0, 0.5h).
Figure 6.10 and 6.11 show the corresponding Green’s stresses (out-plane ones and in-plane ones
respectively). The stresses are normalized by 1/h2. In these figures, also show the results of
Cu half-space and Cu infinite-space.

Infinitesimal dislocations

The field of a infinitesimal dislocation in an Al or Ni film system is considered. The film
height is h (0 < z < h), it has a free upper surface and is bounded perfectly with a copper
half-space, see Figure 9.51. Their crystallographic axes [100],[010] and [001] are along the x,
y and z coordinates axes, respectively. A infinitesimal dislocation is assumed to be a slip one
with normal direction (1, 1, 1), surface dS and Burger’s vector b along [1̄, 1, 0] and located at
(0, 0, 0.5h).

Figure 6.13 shows the in-plane stress σ12 on the y = 0 plane due to the infinitesimal disloca-
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tion at (0, 0, 0.5h) in different material systems: Cu(substrate)-Al(film), Cu(substrate)-Ni(film),
Cu half-space and isotropic half-space (with modulus given in table 4), respectively. The stress
field is normalized/divided by bdS×1010/h3. Figure 6.14 shows the out-plane stress σ32 on the
y = 0 plane, correspondingly. The strain energy E = 1

2
σijεij is also calculated in the corre-

sponding systems. Figure 6.15 and 6.16 show the strain energy in the y = 0 plane and z = h
plane respectively. The strain energy is normalized by (bdS/h3)2 × 1010.

z

x
h Al or Ni film

Free surface

Cu half-space

Half-space

Figure 6.4: Al or Ni film on Cu substrate.
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Figure 6.5: The Green’s displacements along (0.5h, 0, z) due to a point force at (0, 0,−0.5h) in
the (a) x-direction; (b) y-direction; (c) z-direction.
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Figure 6.6: The Green’s out-plane stresses along (0.5h, 0, z) due to a point force at (0, 0,−0.5h)
in the (a) x-direction; (b) y-direction; (c) z-direction.
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Figure 6.7: The Green’s in-plane stresses along (0.5h, 0, z) due to a point force at (0, 0,−0.5h)
in the (a) x-direction; (b) y-direction; (c) z-direction.
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Figure 6.8: Four-layer material.
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Figure 6.9: The Green’s displacements along (0.5h, 0, z) due to a point force at (0, 0, 0.5h) in
the (a) x-direction; (b) y-direction; (c) z-direction.
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Figure 6.10: The Green’s out-plane stresses along (0.5h, 0, z) due to a point force at (0, 0, 0.5h)
in the (a) x-direction; (b) y-direction; (c) z-direction.
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Figure 6.11: The Green’s in-plane stresses along (0.5h, 0, z) due to a point force at (0, 0, 0.5h)
in the (a) x-direction; (b) y-direction; (c) z-direction.
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Figure 6.12: An infinitesimal dislocation in a Al or Ni film on Cu substrate.
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Figure 6.13: The in-plane stress σ12 on y = 0 plane due to a infinitesimal dislocation at
(0, 0, 0.5h) in the (a) Cu(substrate)-Al(film) solid; (b) Cu(substrate)-Ni(film) solid; (c) Cu
half-space; (d) isotropic half-space.
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Figure 6.14: The out-plane stress σ32 on y = 0 plane due to a infinitesimal dislocation at
(0, 0, 0.5h) in the (a) Cu(substrate)-Al(film) solid; (b) Cu(substrate)-Ni(film) solid; (c) Cu
half-space; (d) isotropic half-space.
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Figure 6.15: The strain energy on y = 0 plane due to a infinitesimal dislocation at (0, 0, 0.5h)
in the (a) Cu(substrate)-Al(film) solid; (b) Cu(substrate)-Ni(film) solid; (c) Cu half-space; (d)
isotropic half-space.
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Figure 6.16: The strain energy on the z = h free surface due to a infinitesimal dislocation
at (0, 0, 0.5h) in the (a) Cu(substrate)-Al(film) solid; (b) Cu(substrate)-Ni(film) solid; (c) Cu
half-space; (d) isotropic half-space.
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Chapter 7

Three-dimensional Elastic Fields

7.1 Fundamental Principles & Theorems

7.1.1 Minimum Potential Energy Principle

An equilibrium state of the solid is obtained when the potential energy functional is minimized.
In particular, the equilibrium displacement field is that that minimizes the functional Π given
by:

Π{u(x)} =
1

2

∫
Ω

CijklεijεkldV −
∫

∂Ω

t · udA −
∫
Ω

f · udV (7.1)

The first term on the left is for the elastic energy stored in the solid, the second stands for
the work done on the body by external forces at its surface, and the last term is associated with
the work of body forces. The principle of minimum potential energy stated above will be useful
in finding approximate solutions to elasticity boundary value problems, for example, through
the application of the Finite Element Method (FEM). It is formally equivalent to the equation
of elastic equilibrium, as shown next.

Let’s take the total variation of Equation 7.1. Using index notation, we obtain

δΠ =
1

2

∫
Ω

CijklδεijεkldV +
1

2

∫
Ω

CijklεijδεkldV −
∫

∂Ω

tiδuidA −
∫
Ω

fiδuidV (7.2)

As a consequence of the symmetries of the elastic compliance tensor and the strain tensors,
the first two terms may be combined together:

1

2

∫
Ω

CijklδεijεkldV +
1

2

∫
Ω

CijklεijδεkldV =
∫
Ω

σijδεijdV

123
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=
∫
Ω

σij
∂

∂xj

(δui)dV

=
∫
Ω

[
∂

∂xj

(σijδui) − σij,jδui

]
dV (7.3)

Plugging this result back into Equation 7.2, and utilizing the divergence theorem, we obtain
the following form for energy variation:

δΠ =
∫
Ω

[(σij,j + fi)δui] dV +
∫

∂Ω

[(σijni − ti)δui] dA = 0 (7.4)

Since the variation in the displacement vector δi is arbitrary, the first and second integrands
must be independently zero. The first integrand is just the condition of equilibrium within
the elastic body, while the second is representative of boundary equilibrium. Therefore, the
variational principle of minimum potential is equivalent to the conditions of equilibrium.

7.1.2 The Reciprocity Theorem

This theorem considers two elastic states (u(1), ε(1),σ(1)) and (u(2), ε(2),σ(2)), where each state
satisfies the condition of elastic equilibrium and the boundary conditions associated with body
forces f1 and f2, respectively. The reciprocity theorem is stated as:

The work done by the external forces of system 1 on the displacement field of system
2 is equal to the work done by the external forces of system 2 on the displacement
field of system 1.

Proof

The work done by body forces and surface tractions of system 1 during the virtual displace-
ments u(2) is stored as elastic strain energy, thus:∫

∂Ω

t(1) · u(2)dA +
∫
Ω

f(1) · u(2)dV =
∫
Ω

ε(2) : σ(1)dV =
∫
Ω

ε(2) : Cε(1)dV (7.5)

Utilizing the symmetry of the elastic constants tensor, we can write:

∫
Ω

ε(2) : Cε(1)dV =
∫
Ω

ε(1) : Cε(2)dV =
∫

∂Ω

t(2) · u(1)dA +
∫
Ω

f(2) · u(1)dV (7.6)

which proves the theorem, mathematically stated as:

∫
∂Ω

t(1) · u(2)dA +
∫
Ω

f(1) · u(2)dV =
∫

∂Ω

t(2) · u(1)dA +
∫
Ω

f(2) · u(1)dV (7.7)
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7.1.3 The Volterra Formula

Consider a solid that has two different configurations. In the first configuration, the solid
contains a dislocation with fields labelled with the superscript (d) and no body forces (i.e.
f(d) = 0), while the solid in the second configuration contains a point force with associated
fields labelled by the superscript (p). Applying the reciprocity theorem given by Equation 7.7
above, we have ∫

∂Ω

t(d) · u(p)dA =
∫

∂Ω

t(p) · u(d)dA +
∫
Ω

f(p) · u(d)dV (7.8)

Since the displacements associated with a dislocation loop are prescribed on the slip plane,
we will re-write the surface integral that spans the slipped region as∫

∂Ω

t(d) · u(p)dA =
∫

∂Ω

t(d)(−) · u(p)(−)dA +
∫

∂Ω

t(d)(+) · u(p)(+)dA

=
∫

∂Ω

t(d)(+) · u(p)(+)dA −
∫

∂Ω

t(d)(+) · u(p)(+)dA

= 0 (7.9)

In re-writing the last equation, we used the notation (+) for quantities above the slip plane and
(-) for below. We also note that the displacements must be continuous across the slip plane (i.e
u(p)(+) = u(p)(−)), and that equilibrium dictates that the tractions must be equal and opposite
( i.e. t(d)(+) = −t(d)(−))).

Thus, we are left with a simple form of the reciprocity theorem∫
∂Ω

t(p) · u(d)dA = −
∫
Ω

f(p) · u(d)dV (7.10)

Again, utilizing equilibrium of tractions and continuity of displacements across the slip plane,
the left hand side of Equation 7.10 can be re-written as∫

∂Ω

t(p) · u(d)dA =
∫

∂Ω

t(p)(+) · [u(d)(+) − u(d)(−)]dA =
∫

∂Ω

t(p)(+) · bdA (7.11)

and since the traction vector is related to the stress tensor as t = σ · n, and n is the slip plane
normal, then we have for the left hand side∫

∂Ω

t(p) · u(d)dA =
∫

∂Ω

σ
(p)
ij njbi dA

=
∫

∂Ω

C
(p)
ijklu

(p)
m,nnjbi dA

=
∫

∂Ω

C
(p)
ijklGmk,nfknjbi dA (7.12)
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Noting that the right hand side of Equation 7.10 is just∫
Ω

f(p) · u(d)dV = u
(d)
k fk (7.13)

because of the point force property f
(p)
j (r′) = fjδ(r − r′). As a result of Equations 7.12 and

7.13, the following form of Volterra’s formula is obtained

uk(r) = −
∫

∂Ω

CijklGmk,n(r − r′)njbi dA (7.14)

7.1.4 Eshelby’s Methods

Basic Definitions

The idea of eigenstrain was introduced t solve a variety of internal stress problems, with most
of the initial developments carried out by Eshelby and Mura. An eigenstrain is defined as any
nonelastic strain from sources such as from thermal expansion, phase transformations, initial
residual strains, plastic strains, and misfit strains. Eigenstrains are free from external force
and surface constraints, and are sometimes called stress free strains. Eshelby referred to the
eigenstrain as stress-free transformation strain.

An eigenstress is defined as an internal stress caused by the incompatibility of eigenstrains
when they remain constrained in materials. Let’s take an example first. Consider a domain Ω,
where temperature is raised by ∆T above the rest of the confining material, as shown in Figure
7.1. The eigenstrain here is the thermal expansion strain, when Ω can expand freely without
any surrounding constraints, that is

ε∗ij = αTδij (7.15)

Inclusion: When the eigenstrain ε∗ij is prescribed in a finite sub-domain Ω in a homogeneous
material D, and is zero in the matrix D − Ω, then Ω is called an inclusion.

Inhomogeneity: If the sub-domain Ω in a material D has elastic constants different from
those of the matrix, then the domain ω is called an inhomogeneity. An illustration to show the
differences between an inclusion and an inhomogeneity is shown in Figure 7.2.

Solution Methods for the Eigenstrain Problem

The basic equations of elasticity are

eij =
1

2
(ui,j + uj,i) Kinematics

σij = Cijklekl = Cijkluk,l Constitutive
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Figure 7.1: Example of an eigenstrain in a domain Ω caused by thermal expansion inside a
confining matrix

Figure 7.2: Representation of volume defects as either an inhomogeneity (left) or inclusion
(right)
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σij,j = 0 (−fi) (Cijkluk,lj = 0 (−fi)) Equilibrium
σijnj = 0 (Ti) (Cijkluk,lnj = 0 (Ti)) Boundary conditions (7.16)

The basic equations that describe the eigenstrain problem are

εij = eij + ε∗ij Eigenstrain

εij =
1

2
(ui,j + uj,i) Kinematics

σij = Cijklekl = Cijkl(εkl − ε∗kl) = Cijkl(uk,l − ε∗kl) Constitutive
σij,j = 0 (Cijkluk,lj = Cijklε

∗
kl,j) Equilibrium

σijnj = 0 (Cijkluk,lnj = Cijklε
∗
klnj) Boundary conditions (7.17)

It is seen that the displacement vector ui caused by the eigenstrain ε∗ij is equivalent to a body
force −Cijklε

∗
kl,j and a surface force Cijklε

∗
klnj.

Solution Method I– Green’s Functions

The Green’s function Gkm(x,x′)–xk is the displacement component at point x when a
unit force in the xm direction is applied at the point x′. The unit force in the xm-direction
point x′ can be represented by: fi = δimδ(x,x′), where the Dirac-delta function is δ(x,x′) =
δ(x1, x

′
1)δ(x2, x

′
2)δ(x3, x

′
3), has the property:

∫
V

δ(x,x′)f(x′) dV = f(x). Gkm should obey the

equilibrium equation (Cijkluk,lj + fi = 0), that is Gij satisfies the condition:

CijklGkm,lj(x,x′) + δimδ(x,x′) = 0 (7.18)

For a body force distribution fm(x′), the corresponding displacement can be obtained as:

ui(x) =
∫
Ω

Gij(x,x′)fj(x
′)dV ′ (7.19)

The displacement vector ui caused by ε∗ij satisfying Cijkluk,lj = Cijklε
∗
kl,j, can be considered as

a displacement caused by the body force −Cilmnε∗mn,l in the xi direction, so the solution for the
eigenstrain problem can be presented by the product of Gij and the body force −Cjlmnε

∗
mn,l,

i.e.

ui(x) = −
∫
Ω

Gij(x,x′)Cjlmnε
∗
mn,l(x

′)dV ′ (7.20)

Integrating by parts and assuming that boundary terms vanish, then

ui(x) =
∫
Ω

Cjlmnε
∗
mn(x′)

∂

∂x′
l

Gij(x,x′)dV ′ (7.21)

For a homogeneous infinite body, we can utilize the symmetry properties

Gij(x,x′) = Gij(x − x′),
∂

∂x′
l

Gij(x − x′) = − ∂

∂xl

Gij(x − x′) = −Gij,l(x − x′) (7.22)
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Therefore, the displacement induced by the eigenstrain can be written as

ui(x) = −
∫
Ω

Cjlmnε
∗
mn(x′)Gij,l(x − x′)dV ′ (7.23)

and the corresponding expressions for the strain and stress become

εij(x) = −1

2

∫
Ω

Cklmnε
∗
mn(x′)[Gik,lj(x − x′) + Gjk,li(x − x′)]dV ′ (7.24)

σij(x) = −Cijkl

⎡⎣∫
Ω

Cpqmnε∗mn(x′)Gkp,ql(x − x′)dV ′ + ε∗kl(x)

⎤⎦ (7.25)

When the eigenstrain εij(x)∗ is given in the inclusion domain Ω, and is zero in the matrix
domain D − Ω, the elastic field due to the inclusion can be written as:

ui(x) = −
∫
Ω

Cjlmnε
∗
mn(x′)Gij,l(x − x′)dV ′ (7.26)

εij(x) = −1

2

∫
Ω

Cklmnε
∗
mn(x′)[Gik,lj(x − x′) + Gjk,li(x − x′)]dV ′ (7.27)

σij(x) = −Cijkl

⎡⎣∫
Ω

Cpqmnε∗mn(x′)Gkp,ql(x − x′)dV ′ + ε∗kl(x)

⎤⎦ (7.28)

When the eigenstrain ε∗mn is uniform in Ω, the volume integrations can be rewritten as surface
integrals, i.e.

ui(x) =
∫
|Ω|

Cjlmnε
∗
mnGij(x − x′)nldS ′ (7.29)

εij(x) =
1

2

∫
|Ω|

Cklmnε
∗
mn[Gik,j(x − x′) + Gjk,i(x − x′)]nldS ′ (7.30)

σij(x) = Cijkl

⎡⎢⎣∫
|Ω|

Cpqmnε
∗
mnGkp,l(x − x′)nqdS ′ + ε∗kl(x)

⎤⎥⎦ (7.31)

Solution Method II– Fourier Integrals

The Fourier transform and its inverse are given by

f̄(ξ) = (2π)−3

∞∫
−∞

f(x)exp(−iξx)dx ; f(x) =

∞∫
−∞

f̄(ξ)exp(iξx)dξ (7.32)

where ∞∫
−∞

dξ =

∞∫
−∞

dξ1

∞∫
−∞

dξ2

∞∫
−∞

dξ3 ;

∞∫
−∞

dx =

∞∫
−∞

dx1

∞∫
−∞

dx2

∞∫
−∞

dx3 (7.33)
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In the Fourier integral method, we take the Fourier transform of the governing equation
Cijkluk,lj = Cijklε

∗
kl,j, to obtain:

Cijklūkξlξj = −iCijklε̄
∗
klξj (7.34)

Using the notation Kik(x) = Cijklξlξj, the displacement ūi, can be obtained as:

ūi(ξ) = −iCijklε̄
∗
klξiNij(ξ)/D(ξ) (7.35)

where Nim(x) and D(ξ) are co-factors and determinant of the matrix: [Kik]. That is:

D(ξ) =∈ijk Ki1Kj2Kk3 ; Nij(ξ) =
1

2
∈ikl∈jmn KkmKln (7.36)

and ∈ijk is the permutation tensor.

Substituting ε̄∗ij(ξ) = (2π)−3
∞∫

−∞
ε∗ij(x

′)exp(−iξx′)dx′ and taking the inverse Fourier trans-

form to ūi, we have

ui(x) = −i(2π)−3

∞∫
−∞

dξ

∞∫
−∞

Cjlmnε
∗
mn(x′)ξlNij(ξ)D

−1(ξ) exp[iξ · (x − x′)]dx′ (7.37)

ui(x) = −(2π)−3 ∂

∂xl

∞∫
−∞

dξ

∞∫
−∞

Cjlmnε
∗
mn(x′)Nij(ξ)D

−1(ξ) exp[iξ · (x − x′)]dx′ (7.38)

and

εij(x) = (2π)−3

∞∫
−∞

dξ

∞∫
−∞

1

2
Cklmnε

∗
mn(x′)ξl[ξjNik(ξ) + ξiNjk(ξ)]D

−1(ξ) exp[iξ · (x − x′)]dx′

(7.39)

σij(x) = Cijkl

⎡⎣(2π)−3

∞∫
−∞

dξ

∞∫
−∞

Cpqmnε∗mn(x′)ξqξlNkp(ξ)D
−1(ξ) exp[iξ · (x − x′)]dx′ − ε∗kl(x)

⎤⎦
(7.40)

To show that the two methods are equivalent, let’s take the Fourier transform of equilibrium
equation of Green’s functions:

CijklGkm,lj(x − x′) + δimδ(x − x′) = 0 (7.41)

resulting in
CijklḠkmξlξj = δim (7.42)

From which the Green’s functions in the Fourier domain can be obtained as

Ḡij(ξ) = Nij(ξ)D
−1(ξ) (7.43)

where Nim(x) and D(ξ) are co-factors and determinant of the matrix: Kik(x) = Cijklξlξj.
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Taking the inverse transform, we obtain

Gij(x − x′) = (2π)−3

∞∫
−∞

Nij(ξ)D
−1(ξ) exp[iξ · (x − x′)]dxi (7.44)

Substituting it into Eqns. (7.38-7.40), we find that they are reduced to Eqns. (7.23-7.25).

Solution Method III–Eshelby’s Theory

Consider an inclusion region Ω embedded in an isotropic infinite body D. The region un-
dergoes a change of shape and size (transformation eigenstrain). As a result of the constraint
imposed by the surrounding material matrix, internal stresses will be induced. This is illustrated
in Figure 7.3.

Figure 7.3: Illustration of the eigenstrain induced by a stress-free transformation of shape or
size of an inclusion

To solve this problem, imagine the following cutting, straining and welding operations:

1. Cut around the inclusion region Ω; remove it from the matrix; allow the unconstrained
inclusion to undergo the (eigenstrain ε∗ij) transformation freely, as shown in Figure 7.4.

At this stage, the stresses in the inclusion and matrix are zero. Let σ∗
ij = Cijklε

∗
kl be the

stress derived from ε∗ij by general Hooke’s law.

2. Now, apply surface tractions −σ∗
ijnj to the inclusion boundary ∂Ω. This brings it back

to the original form (shape and size) before the transformation took place. Put it back
in the matrix hole and reweld the material across the cut boundary surface, as shown in
Figure 7.5.

The applied surface tractions −σ∗
ijnj now become a layer of body forces spread over the

surface ∂Ω. The stress is zero in the matrix and has the known value (−σ∗
ij = −Cijklε

∗
kl)

in the inclusion.
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Figure 7.4: Free expansion of an inclusion with the eigenstrain ε∗ij

Figure 7.5: Applying tractions −σ∗
ijnj on the inclusion to fit it back in the original matrix cut
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3. To remove the unwanted layer of surface tractions, we now apply an equal and opposite
layer of body forces +σ∗

ijnj over the surface ∂Ω, as shown in Figure 7.6.

Figure 7.6: Applying an equal and opposite layer of body forces +σ∗
ijnj over the surface ∂Ω to

remove unwanted tractions

The body is now free of any external forces, but is in a state of internal self-stress due
to the eigenstrain of the inclusion. The additional elastic field induced by the body force
+σ∗

ijnj over the inclusion surface ∂Ω can be found by integration of the point force solution
(Green’s functions) as

ui(x) =
∫

∂Ω

σ∗
jknkGij(x − x′)dS ′ =

∫
S

Cjlmnε
∗
mnGij(x − x′)nldS ′ (7.45)

The strain in matrix and inclusion is eij = 1
2
(ui,j + uj,i), while the stress in the matrix

is derived from eij by Hooke’s law: σij = Cijklekl = Cijkluk,l, The inclusion has now the
stress −σ∗

ij, so the total stress in the inclusion is

σij = Cijkl(ekl − ε∗kl) (7.46)

Isotropic Ellipsoidal inclusions

Consider an ellipsoidal inclusion Ω in an isotropic infinite body. The eigenstrain in the ellipsoidal
domain Ω is assumed to be uniform (constant). Eshelby derived explicit analytical expressions
for the induced elastic field. For this ellipsoidal inclusion problem, the displacement takes the
form

ui(x) = −Cjkmnε∗mn

∫
Ω

Gij,k(x − x′)dx′ (7.47)

where the ellipsoid Ω satisfies

x2
1

a2
1

+
x2

2

a2
2

+
x2

3

a2
3

≤ 1, or
xixi

a2
I

≤ 1 (7.48)
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For isotropic materials, we have Cijkl = λδijδkl + µ(δikδjl + δilδjk), and the isotropic Green’s
function is given by:

Gij(x − x′) =
1

16πµ(1 − ν)|x − x′|
[
(3 − 4ν)δij +

(xi − x′
i)(xj − x′

j)

|x − x′|2
]

(7.49)

Solution for Interior Points

When the point x is located inside the inclusion, the integral can be explicitly performed. Af-
ter some manipulation, the strain field inside the domain Ω is found to be constant, independent
of x, given by:

εij(x) = εij = −1

2
Cklmnε

∗
mn

∫
Ω

[Gik,lj(x − x′) + Gjk,li(x − x′)]dx′

= Sijmnε
∗
mn

where Sijmn is called Eshelby’s tensor, and is defined as:

Sijmn ≡ −1

2
Cklmn

∫
Ω

[Gik,lj(x − x′) + Gjk,li(x − x′)]dx′, x ∈ Ω (7.50)

The stress field inside the domain (x ∈ Ω) is given by

σij = Cijkl(Sklmn − Iklmn)ε∗mn (7.51)

where the Eshelby tensor is given by:

Sijkl = S
(1)
IK(0) δijδkl + S

(2)
IJ (0) (δikδjl + δilδjk) (7.52)

where:

S
(1)
IK(0) = − ν

2(1 − ν)
JI(0) +

1

4(1 − ν)

[
a2

I

a2
I − a2

K

JI(0) +
a2

K

a2
K − a2

I

JK(0)

]

S
(2)
IJ (0) = −1

4
[JI(0) + JJ(0)] +

1

4(1 − ν)

[
a2

I

a2
I − a2

J

JI(0) +
a2

J

a2
J − a2

I

JJ(0)

]
(7.53)

with:

JI(0) = JI(λ)|λ=0, JI(λ) =

λ∫
∞

ρ3(λ)

a2
I + λ

dλ, ρ(λ) = [ρ1(λ)ρ2(λ)ρ3(λ)]1/3, ρI(λ) =
aI√

a2
I + λ

(7.54)
Note that: Sijkl = Sjikl = Sijlk �= Sklij. For the special case of a spherical inclusion, we have

Sijkl =
1

15(1 − ν)
[(5ν − 1) δijδkl + (4 − 5ν) (δikδjl + δilδjk)] (7.55)

Solution for Exterior Points



7.1. FUNDAMENTAL PRINCIPLES & THEOREMS 135

When point x is located outside the inclusion Ω, the field depend on x. The strain field is
expressed as

εij(x) = −1

2
Cklmnε

∗
mn

∫
Ω

[Gik,lj(x − x′) + Gjk,li(x − x′)]dx′

= Ḡijmn(x)ε∗mn

where Ḡijmn is called the exterior-point Eshelby’s tensor and is defined as

Ḡijmn(x) ≡ −1

2
Cklmn

∫
Ω

[Gik,lj(x − x′) + Gjk,li(x − x′)]dx′, x ∈ D − Ω (7.56)

The stress field outside the matrix (D − Ω) is given by

σij(x) = CijklḠklmn(x)ε∗mn (7.57)

While the exterior Eshelby Tensor is given by:

Ḡijkl(x) = S
(1)
IK(λ) δijδkl + S

(2)
IJ (λ) (δikδjl + δilδjk) + S

(3)
I (λ)δijn̂kn̂l + S

(4)
K (λ)δkln̂in̂j

+ S
(5)
I (λ)(δikn̂jn̂l + δiln̂jn̂k) + S

(6)
J (λ)(δjkn̂in̂l + δjln̂in̂k) + S

(7)
IJKL(λ)n̂in̂jn̂kn̂l

where

S
(1)
IK(λ) = − ν

2(1 − ν)
JI(λ) +

1

4(1 − ν)

[
a2

I

a2
I − a2

K

JI(λ) +
a2

K

a2
K − a2

I

JK(λ)

]

S
(2)
IJ (λ) = −1

4
[JI(λ) + JJ(λ)] +

1

4(1 − ν)

[
a2

I

a2
I − a2

J

JI(λ) +
a2

J

a2
J − a2

I

JK(λ)

]

S
(3)
I (λ) =

ρ3(λ)

2(1 − ν)
[1 − ρ2

I(λ)]

S
(4)
K (λ) =

ρ3(λ)

2(1 − ν)
[1 − 2ν − ρ2

K(λ)]

S
(5)
I (λ) =

ρ3(λ)

2(1 − ν)
[ν − ρ2

I(λ)]

S
(6)
J (λ) =

ρ3(λ)

2(1 − ν)
[ν − ρ2

J(λ)]

and

S
(7)
IJKL(λ) =

ρ3(λ)

2(1 − ν)

[
2[ρ2

I(λ) + ρ2
J(λ) + ρ2

K(λ) + ρ2
L(λ)] + ρm(λ)ρm(λ) − 4ρ2

M(λ)Θm(λ)Θm(λ)

Θ(λ)
− 5

]
(7.58)

andn̂i is the outward unit normal vector at the matrix point on an imaginary ellipsoidal surface
xixi

a2
I+λ

= 1, as: n̂i = xi

(a2
I+λ)

√
Θ(λ)

. In which: Θ(λ) = Θi(λ)Θi(λ), and Θi(λ) = xi

a2
I+λ

.
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Discontinuities in Eshelby’s Tensors over the Interface

The exterior-point Eshelby tensor Ḡ does not generally reduce to the interior point Eshelby
tensor S when the material point x moves across the interface between the inclusion and the
matrix. The difference can be expressed as

Ḡijkl(x)−Sijkl =
1

1 − ν
n̂in̂jn̂kn̂l− ν

1 − ν
δkln̂in̂j − 1

2
(δikn̂jn̂l +δiln̂jn̂k +δjkn̂in̂l +δjln̂in̂k) (7.59)

where n̂k recovers the outward unit normal vector to the inclusion.

Anisotropic inclusions

The Fourier Transform Method

Since explicit expressions for anisotropic Green’s functions are not available, the Fourier
transform method will be used

ui(x) = −(2π)−3 ∂

∂xl

∞∫
−∞

dξ

∞∫
−∞

Cjlmnε
∗
mn(x′)Nij(ξ)D

−1(ξ) exp[iξ · (x − x′)]dx′ (7.60)

After some manipulation, for interior points of an ellipsoid, we have

εij = Sijmnε
∗
mn (7.61)

where

Sijmn = (1/8π)Cpqmn

1∫
−1

dζ̄3

2π∫
0

[Gipjq(ξ̄) + Gjpiq(ξ̄)]dθ (7.62)

The strain fields for interior points of an ellipsoid are constant when the eigenstrain ε∗ij is
uniform. For some special cases, such as spheroid, there are expressions including one fold
integrals. For outside points, the final expression of the displacement gradient takes a complex
form

ui,j(x) =

2π∫
0

dφ

R∫
0

rdr
∫

∂Ω

FdS (7.63)

The Green’s function’s Method (Mura 1987)

The strain field is expressed as

εij(x) = −1

2
Cklmnε

∗
mn

∫
Ω

[Gik,lj(x − x′) + Gjk,li(x − x′)]dx′

= Ḡijmn(x)ε∗mn
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while the Eshelby’s tensor for both interior and exterior points is given by

Ḡijmn(x) ≡ −1

2
Cklmn

∫
Ω

[Gik,lj(x − x′) + Gjk,li(x − x′)]dx′ (7.64)

The final result can be calculated directly by numerical surface integration:

Ḡijmn(x) = −1

2
Cklmn

∫
|Ω|

[Gik,j(x − x′) + Gjk,i(x − x′)]nldS (7.65)

Ellipsoidal Inhomogeneities

When the elastic moduli of an ellipsoidal domain Ω of a material differ from those of the
remainder (matrix), Ω is called an inhomogeneity (see Figure 7.2). Eshelby (1957) first pointed
out that the stress disturbance in an applied stress due to the presence of an inhomogeneity
can be simulated by an eigenstress caused by an inclusion when the eigenstrain is chosen
properly. This equivalency is called the equivalent inclusion method. Consider an infinitely
extended material with the elastic moduli Cijkl, containing an ellipsoidal domain Ω with the
elastic moduli C∗

ijkl. The far-field stress σ0
ij is applied at infinity. The corresponding strain is:

ε0
ij = C−1

ijklσ
0
kl, and the stress disturbance and the strain disturbance are denoted by σij and εij,

respectively. Now, Hooke’s law states:

σ0
ij + σij = C∗

ijkl(ε
0
kl + εkl) in Ω

σ0
ij + σij = Cijkl(ε

0
kl + εkl) in D − Ω

The equivalent eigenstrain ε∗ij is given by

σ0
ij + σij = C∗

ijkl(ε
0
kl + εkl) = Cijkl(ε

0
kl + εkl − ε∗kl) in Ω (7.66)

The disturbing strain εij can be obtained as a function of the eigenstrain ε∗ij when the eigenstrain
problem in the homogeneous material is solved. That is

εkl = Sklmnε
∗
mn (7.67)

where Sklmn is the (interior-point) Eshelby’s tensor, given by

C∗
ijkl(ε

0
kl + Sklmnε∗mn) = Cijkl(ε

0
kl + Sklmnε

∗
mn − ε∗kl) in Ω (7.68)

From which the equivalent eigenstrain ε∗ij is determined as

ε∗ij = −(Sijkl + Aijkl)
−1ε0

kl (7.69)

where the elastic mismatch tensor is: Aijkl = (C∗
ijmn−Cijmn)−1Cmnkl. For an inhomogeneous

inclusion, the inhomogeneity Ω involves its own eigenstrain εp
ij. The stress fields are:

σ0
ij + σij = C∗

ijkl(ε
0
kl + εkl − εp

kl) in Ω

σ0
ij + σij = Cijkl(ε

0
kl + εkl) in D − Ω
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The inhomogeneous inclusion is simulated by an inclusion in the homogeneous material with
an eigenstrain εp

ij plus an equivalent eigenstrain ε∗ij,

σ0
ij + σij = Cijkl(ε

0
kl + εkl − εp

kl − ε∗kl) in Ω

σ0
ij + σij = Cijkl(ε

0
kl + εkl) in D − Ω

The (fictitious) equivalent eigenstrain ε∗ij is given by:

σ0
ij + σij = C∗

ijkl(ε
0
kl + εkl − εp

kl) = Cijkl(ε
0
kl + εkl − εp

kl − ε∗kl) in Ω (7.70)

The disturbing strain εij can be taken as the solution of the inclusion problem with a uniform
eigenstrain εp

ij + ε∗ij, that is

εkl = Sklmn(εp
mn + ε∗mn) ≡ Sklmnε∗∗mn (7.71)

Therefore, the equivalent equation to determine ε∗∗ij becomes

C∗
ijkl(ε

0
kl + Sklmnε∗∗mn − εp

mn) = Cijkl(ε
0
kl + Sklmnε∗∗mn − ε∗∗kl ) (7.72)

from which the equivalent eigenstrain ε∗∗ij is determined as

ε∗∗ij = −(Sijkl + Aijkl)
−1(ε0

kl − Bklmnε
p
mn) (7.73)

where the elastic mismatch tensors are:

Aijkl = (C∗
ijmn − Cijmn)−1Cmnkl, Bijkl = (C∗

ijmn − Cijmn)−1C∗
mnkl (7.74)

The Non-uniform Eigenstrain Problem

Non-uniform Eigenstrain

Assume that the eigenstrain is given in the form of polynomials of coordinates as:

ε∗ij(x) = Bij + Bijkxk + Bijklxkxl + · · · (7.75)

where Bij, Bijk, Bijkl, are symmetric constants tensors. The disturbing strain can be shown to
be given by

εij(x) = Ḡijkl(x)Bkl + Ḡijklm(x)Bklm + Ḡijklmn(x)Bklmn + · · · (7.76)

It is noted here that, if x is inside the domain Ω, then:

Ḡijkl(x) → Sijkl

Ḡijklm(x) → Sijkl,mxm

Ḡijklmn(x) → Sijklmn +
1

2
Sijklmn,pqxpxq (7.77)
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Non-uniform Inhomogeneity

If an applied stress is linear with respect to the coordinates, the equivalent eigenstrain is
also linear. In general, when the applied stress is a polynomial of degree n, the equivalent
eigenstrain is also chosen as a polynomial of degree n. When an applied strain (or stress) is
given as

ε0
ij(x) = Eij + Eijkxk + Eijklxkxl + . · · · (7.78)

The eigenstrain can correspondingly be written as:

ε∗ij(x) = Bij + Bijkxk + Bijklxkxl + · · · (7.79)

The coefficients Bij, Bijk, Bijkl, ... can be determined by comparing coefficients in the power
series from the Eshelby’s equivalent equation:

C∗
ijkl(ε

0
kl + εkl) = Cijkl(ε

0
kl + εkl − ε∗kl) in Ω (7.80)

For a finite region of space, the displacement field satisfies

um(x) =
∫
V

Gim(x,x′)fi(x
′)dV ′

−
∫

∂Ω

[ui(x
′)CijklGkm,l′(x,x′) − Gim(x,x′)σij(x

′)]dS ′
j (7.81)

7.2 Infinite Isotropic Media

In this section, we present a numerical method for determination of a key ingredient in DD
computer simulations; that is the elastic field of topologically complex dislocation ensembles.
The main impetus for the present work is the need to describe the complex 3-D topology of
dislocation loops in the most flexible way. A wide spectrum of dislocation line deformations,
ranging from highly curved to rigid body translations arise within the same computational
simulation. Existing methods are based on differential equations of motion for straight segments,
where the elastic field variables affecting segment motion are computed at its center. When each
segment moves under the influence of the stress field, the connectivity of the segments must be
re-established, resulting in a number of possible complications. The increase in the self-energy
of the dislocation line has to be accounted for(?). Additionally, when we consider forces on
straight segments, we must necessarily deal with singular values of these forces at connectivity
nodes (?). Thus, problems of convergence as the segment length is decreased would naturally
arise, because of the inherent numerical errors of computations. Computations of the self-force
on a straight dislocation segment is also difficult, because of the need to describe local curvature,
even though the segment is straight to begin with(?). A modification of the Brown procedure
(?) has been suggested to deal with this difficulty. Thus, the motivation behind the current
work can be stated as follows:
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1. To reduce the computational burden by providing a high degree of flexibility in the selec-
tion of both length and shape of a dislocation segment.

2. To avoid numerical problems arising from singularities at intersecting straight segments.

3. To calculate the self-force on dislocation segments with a high degree of accuracy.

4. To provide a flexible tool which sheds more light on the physics of close-range interactions
involving in-plane high curvature variations.

5. To effectively deal with the physics of climb and cross-slip, which require out-of-plane
dislocation line curvature.

Although the theoretical foundations of dislocation theory are well-established (e.g. (?),(?),(?)-
(?)), efficient computational methods are still in a state of development (e.g. (?),(?),(?)). Other
than a few cases of perfect symmetry and special conditions ((?),(?),(?),), the elastic field of
3-D dislocations of arbitrary geometry is not analytically available. The field of dislocation en-
sembles is likewise analytically unattainable. We plan, therefore, to present the main elements
of 3-D dislocation theory such that the restrictions and limitations of the present computational
method are clarified. The main steps in deriving equations for all field variables will thus be
given, while the interested reader can find more helpful details in references ((?),(?),(?)).

7.2.1 Dislocation Ensembles in Isotropic Crystals

Elastic Field Variables as Fast Sums

As our main objective is to develop a computational method for numerical simulation of
complex dislocation interactions, we need first to outline relevant theoretical foundations. In
this section, we present a reasonably self-consistent discussion of isotropic elastic theory which
leads to the present fast sum computational implementation. A number of equivalent formula-
tions are available in the literature(?)-(?). However, because the present development is mainly
computational, we follow the tensor index formulation of deWit(?), Kröner(?), and Kroupa(?).
For detailed derivations related to this section and its appendices, the reader may consult
reference(?).

The Displacement Field

The dislocation is formed by cutting over an arbitrary surface S, followed by rigid translation
of the negative side of (S−), while holding the positive side (S+) fixed, as illustrated in FIG.
3. Define the dislocation line vector, t , as the tangent to the dislocation line. The Burgers
vector b is prescribed as the displacement jump condition across the surface (S). The elastic
field is based on Burgers equation (?), which defines the distribution of elastic displacements
around dislocation loops. The strain tensor can be obtained from deformation gradients, while
the stress tensor is readily accessible through linear constitutive relations. Once the stress and
strain tensors are found, elastic self and interaction energies can be obtained. Referring to FIG.
3, we define the dislocation loop by cutting over the surface S, translating the negative side by
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Figure 7.7: Creation of a dislocation by a cut on the surface (S)
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the vector b, while holding the positive side fixed. Along any linking curve Γ, the closed line
integral of the displacement vector is b. Thus:

b =
∮
Γ

du , or bi =
∮
Γ

ui,jdxj (7.82)

For a given force distribution fm (r̂) in the medium, the displacement vector is given by:

uk (r) =
∫

allspace

Ukm (r − r̂) fm (r̂) d3r̂ (7.83)

where Ukm (r − r̂) are the isotropic elastic Green’s functions, given by: Ukm (R) = 1
8πµ

[
δkmR,pp − λ+µ

λ+2µ
R,k

Here µ and λ are Lamé constants. For the volume V̂ , bounded by the surface Ŝ, and upon
utilization of the divergence theorem for any rank tensor T :

∫
V

T,idV =
∫
S

TdSi, we obtain:

um (r) =
∫
V̂

Uim (r − r̂) fi (r̂) dV̂ −
∫
Ŝ

ui (r̂) CijklUkm,l (r − r̂) dŜj +
∫
Ŝ

Uim (r − r̂) σij (r̂) dŜj

(7.84)
The second and third terms in EQUATION7.84 account for displacement and traction boundary
conditions on the surface Ŝ, respectively. Assuming that body forces are absent in the medium,
as well as any zero traction and rigid displacements bi across the surface Ŝ, we obtain:

um (r) = −bi

∫
Ŝ

CijklUkm,l (r − r̂) dSj (7.85)

For an elastic isotropic medium, the fourth rank elastic constants tensor is given in terms of
Lamé’s constants; µ and λ, thus:Cijkl = λδijδkl+µ (δikδjl + δilδjk). Substituting in EQUATION7.85,
and re-arranging terms, the displacement vector is given by:

um(r) =
1

8π

∫
Ŝ

bmR,ppjdŜj +
1

8π

∫
Ŝ

(
blR,ppldŜm − bjR,ppmdŜj

)
+

1

4π

λ + µ

λ + 2µ

∫
Ŝ

(
bjR,ppmdŜj − bkR,kmjdŜj

)
(7.86)

EQUATION 7.86 can be converted to a line integral, if one recalls Stokes Theorem, extended
to any rank tensor T , expressed as:

∫
S
∈ijk Tabc••,idSk =

∮
C

Tabc••dlj. Noting the relationship

between the Kronecker and permutation tensors, i.e. ∈ijk∈klm= δilδjm − δimδjl, allows us to
write Stokes theorem as:

∫
S

(δilδjm − δimδjl) Tabc••,jdSi =
∮
C
∈lmj Tabc••dlj. Using the substitution

property of the Kronecker delta, Stokes’ theorem can also be expressed in the hat coordinates
in the following form: ∫

Ŝ

(
Tabc••,mdŜl − Tabc••,ldŜm

)
=
∮
C

∈klm Tabc••dlk (7.87)
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The first integral in EQUATION 7.86 is the solid angle fraction subtended by the loop times the
burgers vector ( see Appendix ??), while utilization of EQUATION 7.87 can reduce the second
and third terms to their line integral form. Therefore, a convenient form for the displacement
vector components is given by:

ui = −biΩ

4π
+

1

8π

∮
C

[
∈ikl blR,pp +

1

1 − ν
∈kmn bnR,mi

]
dlk (7.88)

EQUATION7.88 determines the displacement field of a single dislocation loop. For a loop
ensemble, one can use the property of linear superposition. Thus, the line integral in EQUA-
TION 7.88 can be converted into a fast numerical sum over the following set: quadrature points
(1 ≤ α ≤ Qmax) associated with weighting factors (wα), loop segments (1 ≤ β ≤ Ns), and num-
ber of ensemble loops (1 ≤ γ ≤ Nloop). Therefore, a computational form for the displacement
vector is:

ui =
1

4π

Nloop∑
γ=1

⎧⎨⎩−biΩ +
1

2

Ns∑
β=1

Qmax∑
α=1

wα

(
∈ikl blR,pp +

∈kmn bnR,mij

1 − ν

)
x̂k,u

⎫⎬⎭ (7.89)

Strain and Stress Fields

Once the displacement field is determined, the strain and stress fields can be readily obtained.
If we denote the deformation gradient tensor by uij, the strain tensor eij in infinitesimal elasticity
is its symmetric decomposition: uij = 1

2
(ui,j + uj,i) + 1

2
(ui,j − uj,i) = eij + ωij, where ωij is the

rotation tensor. Taking the derivatives of EQUATION 7.88 yields the deformation gradient
tensor:

ui,j = −bjΩ,i

4π
+

1

8π

∮
C

[
∈jkl blR,ppi +

1

1 − ν
∈kmn bnR,mij

]
dlk (7.90)

From which the following strain tensor is obtained:

eij = −biΩ,j + bjΩ,i

8π
+

1

8π

∮
C

[
1

2
(∈jkl blR,i+ ∈ikl blR,j),pp +

∈kmn bnR,mij

1 − ν

]
dlk (7.91)

The derivatives of the solid angle Ω are given by EQUATION 6.14 in Appendix ??, which can
now be used to derive the strain tensor components as line integrals.

eij =
1

8π

∮
C

[
−1

2
(∈jkl biR,l+ ∈ikl bjR,l− ∈ikl blR,j− ∈jkl blR,i),pp +

∈kmn bnR,mij

1 − ν

]
dlk (7.92)

Similar to EQUATION 7.89, the fast sum equivalent of EQUATION 7.110 is now given by:

eij =
1

8π

Nloop∑
γ=1

Ns∑
β=1

Qmax∑
α=1

wα

(
−1

2
(∈jkl biR,l+ ∈ikl bjR,l− ∈ikl blR,j− ∈jkl blR,i),pp +

∈kmn bnR,mij

1 − ν

)
x̂k,u

(7.93)
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To deduce the stress tensor, we use the isotropic stress-strain relations of linear elasticity.
First, the dilatation is obtained by letting both i&j = r in EQUATION 7.110 above: err =
− 1

8π
1−2ν
1−ν

∮
C
∈kmn bnR,mrrdlk. Using the stress-strain relations: σij = 2µeij + λerrδij, we can

readily obtain the stress tensor.

σij =
µbn

4π

∮
C

[
1

2
R,mpp (∈jmn dli+ ∈imn dlj) +

1

1 − ν
∈kmn (R,ijm − δijR,ppm) dlk

]
(7.94)

The computational fast sum for the stress tensor is given below in compact form, while explicit
representation are listed in appendix 8.68.

σij =
µ

4π

Nloop∑
γ=1

Ns∑
β=1

Qmax∑
α=1

bnwα

[
1

2
R,mpp (∈jmn x̂i,u+ ∈imn x̂j,u) +

1

1 − ν
∈kmn (R,ijm − δijR,ppm) x̂k,u

]
(7.95)

Stress tensor components

For one loop, explicit fast sum forms of the 3-dimensional stress tensor components are given
below. The inner sum is extended over the number of quadrature points assigned in the interval
−1 ≤ ûl0. Qmax is typically 8-16 for accurate results, although cases with Qmax up to 300 have
been tested. The outer sum is over the number of loop segments, which is typically in the range
10-30. For an arbitrary number of loops of defined parametric geometry, a third sum over the
loop number must additionally be included.

σ11 =
µ

8π

Nloop∑
γ=1

Ns∑
β=1

Qmax∑
α=1

wα

⎧⎪⎪⎨⎪⎪⎩
[
b2

(
−2R,113 + 2ν

1−ν (R,223 +R,333)
)

+ b3

(
2R,112 − 2ν

1−ν (R,222 +R,332)
)]

x̂1,u+[
−b1

2
1−ν (R,223 +R,333) + b3

2
1−ν (R,221 +R,331)

]
x̂2,u+[

+b1
2

1−ν (R,222 +R,332) − b2
2

1−ν (R,221 +R,331)
]
x̂3,u

⎫⎪⎪⎬⎪⎪⎭
α

(7.96)

σ12 =
µ

8π

Nloop∑
γ=1

Ns∑
β=1

Qmax∑
α=1

wα

⎧⎪⎪⎨⎪⎪⎩
[
b1 (R,113 +R,223 +R,333) − b2

(
2

1−ν R,123
)

+ b3

(
1+ν
1−ν R,221 −R,111 −R,331

)]
x̂1,u+[

b1

(
2

1−ν R,123
)
− b2 (R,113 +R,223 +R,333) + b3

(
−1+ν

1−ν R,112 +R,222 +R,332
)]

x̂2,u+
2

1−ν (−b1R,221 +b2R,112) x̂3,u

(7.97)

σ13 =
µ

8π

Nloop∑
γ=1

Ns∑
β=1

Qmax∑
α=1

wα

⎧⎪⎪⎨⎪⎪⎩
[
−b1 (R,112 +R,222 +R,332) + b2

(
R,111 +R,221 −1+ν

1−ν R,331
)

+ b3

(
2

1−ν R,123
)]

x̂1,u+
2

1−ν (b1R,331 −b3R,113) x̂2,u+[
−b1

(
2

1−ν R,123
)
− b2

(
− 1+v

1−ν R,113 +R,223 +R,333
)

+ b3 (R,112 +R,222 +R,332)
]
x̂3,u

(7.98)
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σ22 =
µ

8π

Nloop∑
γ=1

Ns∑
β=1

Qmax∑
α=1

wα

⎧⎪⎪⎨⎪⎪⎩
[
b2

2
1−ν (R,113 +R,333) − b3

2
1−ν (R,112 +R,332)

]
x̂1,u+[

b1

[
− 2ν

1−ν (R,113 +R,333) + 2R,223
]
+ b3

[
2ν

1−ν (R,111 +R,331) − 2R,221
]]

x̂2,u+[
b1

2
1−ν (R,112 +R,332) − b2

2
1−ν (R,111 +R,331)

]
x̂3,u

⎫⎪⎪⎬⎪⎪⎭
α

(7.99)

σ23 =
µ

8π

Nloop∑
γ=1

Ns∑
β=1

Qmax∑
α=1

wα

⎧⎪⎪⎨⎪⎪⎩
[
−b2

2
1−ν R,332 +b3

2
1−ν R,223

]
x̂1,u+[

b1

(
−R,112 −R,222 +1+ν

1−ν R,332
)

+ b2 (R,111 +R,221 +R,331) − b3

(
2

1−ν R,123
)]

x̂2,u+[
b1

(
R,113 +R,333 −1+ν

1−ν R,223
)

+ b2

(
2

1−ν R,123
)
− b3 (R,111 +R,221 +R,331)

]
x̂3,u

(7.100)

σ33 =
µ

8π

Nloop∑
γ=1

Ns∑
β=1

Qmax∑
α=1

wα

⎧⎪⎪⎨⎪⎪⎩
[
+b2

2
1−ν (R,113 +R,223) − b3

2
1−ν (R,112 +R,222)

]
x̂1,u+[

−b1
2

1−ν (R,113 +R,223) + b3
2

1−ν (R,111 +R,221)
]
x̂2,u+[

+b1

[
2ν

1−ν (R,112 +R,222) − 2R,332
]
+ b2

[
− 2ν

1−ν (R,111 +R,221) + 2R,331
]]

x̂3,u

⎫⎪⎪⎬⎪⎪⎭
α

(7.101)

Interaction and Self Energies

The mutual interaction between two dislocation loops can be obtained by a volume integration of
the energy density resulting from the stress field of one loop, acting on the strain field of the other, as
given below.

EI =
∫

V
σ

(1)
ij e

(2)
ij dV (7.102)

where σ
(1)
ij is the elastic stress field from the first dislocation loop and e

(2)
ij is the elastic strain tensor

originating from the second one. After a lengthy derivation, deWit(?) provided a simple double line
integral formulation for the interaction energy as:

EI = −µb
(1)
i b

(2)
j

8π

∮
C(1)

∮
C(2)

[
R,kk

(
dl

(2)
j dl

(1)
i +

2ν
1 − ν

dl
(2)
i dl

(1)
j

)
+

2
1 − ν

(R,ij − δijR,ll) dl
(2)
k dl

(1)
k

]
(7.103)

In EQUATION(7.103), the line integral is carried over the two space curves C (1)&C(2). Thus, the
corresponding fast sum for the interaction energy reads:

EI = −µb
(1)
i b

(2)
j

8π

N
(1)
s∑

β(1)=1

N
(2)
s∑

β(2)=1

Q
(1)
max∑

α(1)=1

Q
(2)
max∑

α(2)=1

wα(1)wα(2)

[
R,kk

(
x̂

(2)
j,ux̂

(1)
i,u +

2ν
1 − ν

x̂
(2)
i,u x̂

(1)
j,u

)
+

2
1 − ν

(R,ij − δijR,ll) x̂
(2)
k,u

(7.104)

The self-energy of a single dislocation loop can be calculated as 1
2 the interaction energy between

two identical dislocation loops separated by a distance r0. The contribution to the self energy from
the dislocation core can be estimated from atomistic calculations, and is usually on the order of 5-10%
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Figure 7.8: Normal stress iso-surface, σ11, in the local loop coordinates, where the 1-axis is
[010]-direction and the 3-axis is the [110]-direction.

of the self energy (?). However, the core contribution can be incorporated by adjusting the value of
r0. In a fairly rough evaluation, we may take the core energy into account by setting r0 = b

2 . (cf. (?))

Results and Method Validation

In this section, we discuss several test cases which both illustrate the utility of the fast sum method,
and validate its accuracy. We will first present results of computations for the elastic field of isolated
circular shear and prismatic dislocation loops. Since some analytical solutions are available for these
cases, we will compare the results of the fast sum method to analytical results. The issues of numeri-
cal convergence and accuracy are also discussed. In the latter part of this section, we present results
of calculations of the elastic field of typical complex-shape loops, representing familiar Frank-Read
dislocation sources in crystalline materials.
Stress Field of Simple Loops

Circular Slip Loop

We consider here the stress distribution in the vicinity of a shear (slip) loop in a BCC crystal. The
circular loop has a radius of 200 |b|. The loop is oriented for primary slip (i.e. (110)/ 1

2{111}). In
the figures shown in this section, all distances are given in units of |b|,while stress values are relative
to µ. In the local coordinates of the (110)-plane, FIG. 4 shows an iso surface for the normal stress
around the dislocation loop. It is clear that the stress surface has an orientational dependence on the
< 111 >-slip direction. On the glide plane itself, the normal stress vanishes, while the stress surface
is symmetric with respect to the loop center. The shear stress components σ12 and σ23 are displayed
in FIGS. 5 and 6. While σ12 shows a characteristic ”lope” structure of the iso-surface, σ23 displays
a crescent shape, where the maximum width is for pure edge, while the stress vanishes for the screw
component of the loop.

The convergence and computational speed of the fast sum method is demonstrated in reference(?).
The dependence of the numerical results on the number of segments, segment spline type, and quadra-
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Figure 7.9: Shear stress iso-surface, σ12, in the local loop coordinates, where the 1-axis is
[010]-direction and the 3-axis is the [110]-direction.

Figure 7.10: Shear stress iso-surface , σ23, in the local loop coordinates, where the 1-axis is
[010]-direction and the 3-axis is the [110]-direction.
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Figure 7.11: A comparison between numerical (current method) and exact analytical (Kroupa)
solutions for the normal stress component σzz of a circular prismatic loop.

ture indicate that the method is numerically convergent, as the number of segments and/or quadrature
integration points is increased (?). The issue of numerical accuracy of the method is addressed next,
by comparison to one of the few available analytical solutions in the literature.

Circular Prismatic Loop

Kroupa(?) derived analytical solution for the stress field of a prismatic circular dislocation loop in
an infinite isotropic medium. His explicit out-of-plane normal stress in the loop plane (i.e., z = 0) σz

reads:

σz
µb

2πR(1−ν)

=
2

1 − ( x
R)2

E(
x

R
) (0 ≤ x

R
< 1), (7.105)

σz
µb

2πR(1−ν)

= 2
R

x

[
K(

R

x
) − 1

1 − (R
x )2

E(
R

x
)

]
(
x

R
> 1) (7.106)

where K and E are the complete elliptic integrals of the first and second kind, respectively, x is the
distance from loop center, and R the loop radius.

In order to evaluate the accuracy of the present fast sum method, a comparison between Kroupa’s
analytical solution for the normal stress component, σzz, of a circular prismatic loop and our numerical
calculations is shown in FIG. 7. It can be seen that the error in the value of the normal stress depends
on the number of segments and on the distance between the field point and the dislocation core.
The normal stress shows the characteristic asymmetric singularity at the dislocation line, where the
stress field decays to zero at large distances from the core, while it remains finite at the loop center.
A more quantitative measure of the error is shown in FIG. 8, where the percent error between the
numerical and analytical solutions is shown as a function of distance along the x-axis on the loop
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Figure 7.12: Dependence of the error between numerical and analytical (Kroupa) normal stress
results on the distance from loop center, for various number of segments.

plane. It is seen that the numerical accuracy is below 4% for only four cubic spline segments, except
very close to the dislocation core. The number of quadrature integration points is kept at 16 for all
cases studied in the figure. The highest error (below 9%) is manifest at distances less than 1.5 |b| from
the dislocation core, when the number of segments is less than 8. However, the maximum error is less
than 0.3% at such close distances, when the number of segments is increased to 16. It is important
to note that such high accuracy is needed in calculations of the self-force via the Brown formula(?),
or its variants(?),(?). When the stress field is averaged at distances of ±ε from the dislocation core,
the singularity is removed and a convergent, finite self-force is obtained. Thus, the accuracy of field
evaluation is apparent.

Interaction and Self Energies

To demonstrate the capability of our fast sum calculation of the interaction energy(EI), we specify
the two dislocations to be pure prismatic coaxial circular loops of equal radius and of the same Burgers
vector. In such case, the exact analytical result is available from (?) as:

EI

2πRµb2
=

κ

2π(1 − ν)
(K(κ) − E(κ)) (7.107)

in which κ =
[

1
1+(d/2R)2

]1/2
and d is the normal distance between the two parallel loop planes. FIG. 9

shows the results of our calculations, as compared with exact analytical results. The interaction energy
is shown as a function of distance between the two loop planes. While the number of quadrature
integration points in these calculations is kept at 128, the interaction energy is convergent as the
number of segments is increased. This is particularly important at close distances, as can be seen from
the figure.

Furthermore, Hirth and Lothe (?) provided an explicit expression for the self-energy of a circular
slip loop as:
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Figure 7.13: A comparison between numerical (current method) and analytical (deWit) results
for the interaction energy between two prismatic loops.

Es

2πRµb2
=

2 − ν

8π(1 − ν)

[
−ln

(
tan

ρ

4R

)
− 2cos

ρ

2R

]
(7.108)

where ρ is the dislocation core size and is taken as 1
2|b| , as suggested by deWit(?). FIG. 10 shows

the dependence of the self-energy on the loop radius, computed numerically, and compared to the
analytical solutions(?). The percent error between the numerical and analytical results is shown in
FIG. 11. It is interesting to note that, even for four cubic spline segments, the error is rather small ( a
few percent), when the loop radius is in the tens-to-hundreds of |b|. However, it is clearly demonstrated
that more spline segments is necessary for larger size loops, and that the error can generally be brought
down below 1%.

Complex Loop Geometries

Single Frank-Read Source

In typical Dislocation Dynamics computer simulations, heavy initial dislocation microstructure is
introduced, and its subsequent evolution is followed by solving appropriate equations of motion. Visu-
alization of the stress field associated with the evolving microstructure requires additional techniques
to mask specific features, otherwise the 3-D computer image is hopelessly complicated to be useful.
Nonetheless, it is instructive to investigate the nature of the elastic field resulting from reasonably
complex loop configurations. In this section, we present results for two common dislocation problems:
an isolated Frank-Read (FR) dislocation loop, and two interacting such sources in a Molybdenum
single crystal. An initial straight edge dislocation segment, lying on the (11̄1)-plane is subjected to an
applied stress. The pinned ends of the segment are located at x = ±100|b| from the plane center of
the crystal. The expansion of the dislocation segment results in the dislocation loop, shown in FIG.
12, before annihilation of the two opposite screw components takes place. The pinned ends of the
source are connected to the crystal surface by two rigid threading dislocations. FIG. 12 shows the nor-
mal stress iso-surface of (186 MPa)associated with the FR loop. The iso-surface shows orientational
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Figure 7.14: A comparison between numerical (current method) and analytical (Hirth and
Lothe) results for the self energy of a slip loop.

Figure 7.15: Dependence of the error between numerical and analytical solutions in FIG. 10
above on the loop radius and number of cubic spline segments.
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Figure 7.16: Normal stress iso-surface (186 MPa), σ11, for a single Frank-Read source in Molyb-
denum

dependence on the Burgers vector, as well as symmetry with respect to the (111)-plane. Note the
”dimples” in the stress surface which result from the deviation of the FR loop from perfect circular
symmetry, as investigated in the earlier section.

So far, we have assumed that the crystal is elastically isotropic and of infinite dimensions. The
solution method relies on the existence of analytic forms for the elastic Greens functions, and those are
not available for finite media. Recently, Cleveringa, Needleman and Van der Giessen(?) have proposed
a superposition method to satisfy the boundary conditions of crystals under external constraints. First,
the surface traction resulting from the interaction of the dislocation loop with the crystal surface are
computed. Once this is achieved, a Finite Element Method (FEM) is used to calculate the stress
field resulting from the same traction, with a reversed sign (so- called image traction, in addition to
other externally applied forces. The case of a free crystal is somewhat special, because only image
traction boundary conditions can be imposed at the surface. Thus, and since a full dislocation loop
is mechanically balanced, only rigid body displacements need to be carefully eliminated. We choose
here to use the threading dislocation arms, which intersect the surface at two points, to eliminate
rigid body rotation and translation. To show the effects of crystal boundaries, we follow the FEM
approach, as suggested by Cleveringa et al. (?). FIG. 13 shows the results of FEM calculations for the
normal stress component on the crystal surface, resulting from image traction. It is clear that the FR
source is pulling on the upper surface, and that additional stress concentrations on the x − z surface
are associated with the rigid arms of the threading dislocation. The image shear stress σ13 is also
shown in FIG. 14, where the surface displacements of the crystal are scaled to show the shape of a free
crystal which contains an FR source. Note the symmetry with respect to the (111)-plane of positive
and negative shear, and the high shear stress around the end points of the threading dislocation.

Interacting FR Dislocation Loops

When FR sources are activated on the same or neighboring slip planes, very complex patterns
can emerge (?). Interaction of FR sources appears to be one of the main mechanisms which control
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Figure 7.17: Normal stress distribution resulting from the interaction of the single FR source
with the surface of a Molybdenum single crystal

Figure 7.18: Shear stress distribution resulting from the interaction of a single FR source with
the surface of a Molybdenum single crystal



154 CHAPTER 7. THREE-DIMENSIONAL ELASTIC FIELDS

Figure 7.19: Normal stress iso-surface(-130 MPa), σ33, for two interacting Frank-Read sources
in Molybdenum

complex dislocation patterns. For this reason, we study the stress field of two such FR sources, which
are both located on the (11̄1)-plane. The length of each initial straight edge segment is taken as 150|b|.
one pinned end of the first FR source is located at x = 225|b|, and at x = −225|b| for the second
source. The other end is located by rotating the initial segment (i.e. length = 150|b| with an angle of
θ = 220o, and θ = 100o for the first and second FR source, respectively.

The normal stress σ33 = −130 MPa is shown in FIG. 15, while the shear stress iso-surface σ13 = 170
MPa is shown in FIG. 16. The normal stress iso-surface shows a split about the (111)-plane, but
because of the initial lack of symmetry of the dislocation loop lines, the stress surface is likewise un
symmetric. However, FIG. 16 shows an interesting mirror-like symmetry of the stress iso-surface and
the original geometry of the FR-sources. This observation is only seen at high levels of stress, where
there is nearly no overlap between the stress fields of various segments of the dislocation microstructure.
In any event, going beyond the configurations presented here would introduce additional complexities,
which are best utilized in computations of Peach-Kohler forces on dislocation segments.

7.2.2 Affine Covariant-contravariant Vector Forms

The displacement vector u, strain ε and stress σ tensor fields of a closed dislocation loop are given by
deWit (1960):

ui = − bi

4π

∮
C

Akdlk +
1
8π

∮
C

[
εiklblR,pp +

1
1 − ν

εkmnbnR,mi

]
dlk (7.109)

εij =
1
8π

∮
C

[
−1

2
(εjklbiR,l + εiklbjR,l − εiklblR,j − εjklblR,i),pp

εkmnbnR,mij

1 − ν

]
dlk (7.110)
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Figure 7.20: Shear stress iso-surface(170 MPa), σ13, for two interacting Frank-Read sources in
Molybdenum

σij =
µ

4π

∮
C

[
1
2
R,mpp (εjmndli + εimndlj) +

1
1 − ν

εkmn (R,ijm − δijR,ppm) dlk

]
(7.111)

Where µ & ν are the shear modulus and Poisson’s ratio, respectively, b is Burgers vector of
Cartesian components bi, and the vector potential Ak(R) = εijkXisj/[R(R + R · s)] satisfies the
differential equation: εpikAk,p(R) = XiR

−3, where s is an arbitrary unit vector. The radius vector R
connects a source point on the loop to a field point, as shown in Fig.9.51, with Cartesian components
Ri, successive partial derivatives R,ijk...., and magnitude R. The line integrals are carried along the
closed contour C defining the dislocation loop, of differential arc length dl of components dlk. Also,
the interaction energy between two closed loops with Burgers vectors b1 and b2, respectively, can be
written as:

EI = −µb1ib2j

8π

∮
C(1)

∮
C(2)

[
R,kk

(
dl2jdl1i +

2ν
1 − ν

dl2idl1j

)
+

2
1 − ν

(R,ij − δijR,ll)dl2kdl1k

]
(7.112)

The higher order derivatives of the radius vector, R,ij & R,ijk are components of second and third
order Cartesian tensors, respectively, which can be cast in the form:

R,ij =
(

δij − Xi

R

Xj

R

)
/R (7.113)

R,ijk =
(

3
Xi

R

Xj

R

Xk

R
−
[
δij

Xk

R
+ δjk

Xi

R
+ δki

Xj

R

])
/R2

Where Xi are Cartesian components of R. Substituting R,ij and R,ijk in Equations7.109-7.112,
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and considering the contributions only due to a differential vector element dl, we obtain the differential
relationships:

dui = −biAkdlk
4π

+
1

8πR(1 − ν)

[
(1 − 2ν)εiklbldlk − 1

R2
εkmnbnXmXidlk

]
(7.114)

dεij =
1
8π

[
1

R3
(εjklbiXl + εiklbjXl) dlk +

3
R5(1 − ν)

εkmnbnXiXjXmdlk

− 1
R3(1 − ν)

εkmnbnXmδijdlk +
ν

R3(1 − ν)
εjklblXidlk +

ν

R3(1 − ν)
εiknbnXjdlk

]
(7.115)

dσij =
µ

4π
1

R3

[
− εjmnXmbndli − εimnXmbndlj

+
1

1 − ν

(
3

R2
εkmnXmbnXiXj − εkjnXibn − εkinXjbn + εkmnXmbnδij

)
dlk

]
(7.116)

Fig.9.51 shows a parametric representation of a general curved dislocation line segment, which can
be described by a parameter ω that varies, for example, from 0 to 1 at end nodes of the segment. The
segment is fully determined as an affine mapping on the scalar interval ∈ [0, 1], if we introduce the
tangent vector T, the unit tangent vector t, the unit radius vector e, and the vector potential A, as
follows:

T =
dl
dω

, t =
T
|T| , e =

R
R

, A =
e × s

R(1 + e · s)

The following relations can be readily verified:

Akdlk = A · Tdω = Tdω(A · t) =
Tdω

R
· (e × s) · t

1 + e · s
εiklbldlkei = −b × t

1
R2

εkmnbnXmXidlkei = − 1
R2

εknmbnXmXidlkei

= −dω

R2
[(T × b) · R] R = −dω[(T × b) · e] e

(εjklbiXl + εiklbjXl)dlkeiej = b ⊗ (Tdω × R) + (Tdω × R) ⊗ b

= RTdω [b ⊗ (t × e) + (t × e) ⊗ b]
εkmnbnXiXjXmdlkeiej = [(Tdω × R) · b] R ⊗ R = R3Tdω[(t × e) · b] e ⊗ e

εkmnbnXmδijdlkeiej = [(Tdω × R) · b] I = RTdω [(t × e) · b] I

Let the Cartesian orthonormal basis set be denoted by 1 ≡ {1x,1y,1z}, I = 1⊗1 as the second order
unit tensor, and ⊗ denotes tensor product. Now define the three vectors (g1 = e, g2 = t, g3 = b/|b|)
as a covariant basis set for the curvilinear segment, and their contravariant reciprocals as: gi ·gj = δi

j ,
where δi

j is the mixed Kronecker delta and V = (g1 × g2) · g3 the volume spanned by the vector basis,
as shown in Fig. 9.51 (Holzapfel 2000). When the previous relationships are substituted back into
Equations 9.23-7.116, with V1 = (s × g1) · g2, and s an arbitrary unit vector, we obtain:
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du
dω

=
|b||T|V

8π(1 − ν)R

{[
(1 − ν)V1/V

1 + s · g1

]
g3 + (1 − 2ν)g1 + g1

}
dε

dω
= − V |T|

8π(1 − ν)R2

{
−ν
(
g1 ⊗ g1 + g1 ⊗ g1

)
+ (1 − ν)

(
g3 ⊗ g3 + g3 ⊗ g3

)
+ (3g1 ⊗ g1 − I)

}
dσ

dω
=

µV |T|
4π(1 − ν)R2

{(
g1 ⊗ g1 + g1 ⊗ g1

)
+ (1 − ν)

(
g2 ⊗ g2 + g2 ⊗ g2

)
− (3g1 ⊗ g1 + I)

}
d2EI

dω1dω2
= −µ|T1||b1||T2||b2|

4π(1 − ν)R

{
(1 − ν)

(
gI

2 · gI
3

) (
gII

2 · gII
3

)
+ 2ν
(
gII

2 · gI
3

) (
gI

2 · gII
3

)
−
(
gI

2 · gII
2

) [(
gI

3 · gII
3

)
+
(
gI

3 · g1

) (
gII

3 · g1

)]}
d2ES

dω1dω2
= −µ|T1||T2||b|2

8πR (1 − ν)

{
(1 + ν)

(
g3 · gI

2

) (
g3 · gII

2

)
−
[
1 + (g3 · g1)

2
] (

gI
2 · gII

2

)}
(7.117)

The superscripts I&II in the energy equations are for loops I&II, respectively, and g1 is the unit
vector along the line connecting two interacting points on the loops. The self energy is obtained by
taking the limit of 1

2 the interaction energy of two identical loops, separated by the core distance. Note
that the interaction energy of prismatic loops would be simple, because g3 ·g2 = 0. The field equations
are affine transformation mappings of the scalar interval neighborhood dω to the vector (du) and second
order tensor (dε, dσ) neighborhoods, respectively, such that du = Udω, dσ = Sdω, dε = Edω. The
maps are given by the covariant, contravariant and mixed vector and tensor functions:

U = uigi + uigi (7.118)
S = sym[tr(Ai

.jgi ⊗ gj)] + A11(3g1 ⊗ g1 − 1 ⊗ 1)

E = sym[tr(Bi
.jgi ⊗ gj)] + B11(3g1 ⊗ g1 + 1 ⊗ 1)

The scalar metric coefficients ui, u
i, Ai

.j , B
i
.j , A

11, B11 are obtained by direct reduction of Equation7.117
into Equation7.118.

Applications

In some simple geometry of Volterra-type dislocations, special relations between b, e and t can
be obtained, and the entire dislocation line can also be described by one single parameter. In such
cases, one can obtain the elastic field by proper choice of the coordinate system, followed by straight-
forward integration. Solution variables for the stress fields of infinitely-long pure and edge dislocations
are given in Table 1, while those for the stress field along the 1z-direction for circular prismatic and
shear loops are shown in Table 2. The corresponding variables are defined in Fig. (7.21) for infinitely
straight dislocations, and Fig. (7.22) for circular dislocation loops. Note that for the case of a pure
screw dislocation, one has to consider the product of V and the contravariant vectors together, since
V = 0. When the parametric equations are integrated over z from (−∞ to +∞) for the straight
dislocations, and over θ from (0 − 2π) for circular dislocations, one obtains the entire stress field in
dyadic notation as:
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Figure 7.21: Geometry and variables for infinitely-long screw and edge dislocations

Figure 7.22: Geometry and variables for circular shear and prismatic loops

1. Infinitely-long screw dislocation:

σ =
µb

2πr
{− sin θ 1x ⊗ 1z + cos θ 1y ⊗ 1z + cos θ 1z ⊗ 1y − sin θ 1z ⊗ 1x} (7.119)

2. Infinitely-long edge dislocation:

σ = − µb

2π(1 − ν)r
{sin θ(2 + cos 2θ)1x ⊗ 1x − (sin θ cos 2θ)1y ⊗ 1y

+ (2ν sin θ)1z ⊗ 1z − (cos θ cos 2θ)(1x ⊗ 1y + 1y ⊗ 1x)} (7.120)

3. Circular shear loop (evaluated on the 1z-axis):

σ =
µbr2

4(1 − ν)(r2 + z2)
5
2

[
(ν − 2)(r2 + z2) + 3z2

]
[1x ⊗ 1z + 1z ⊗ 1x] (7.121)

4. Circular prismatic loop (evaluated on the 1z-axis):
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σ =
µbr2

4(1 − ν)(r2 + z2)
5
2

{
(2(1 − ν)(r2 + z2) − 3r2) [1x ⊗ 1x + 1y ⊗ 1y] − 2(4z2 + r2) [1z ⊗ 1z]

}
(7.122)

Table 7.1: Variables for screw and edge dislocations

screw dislocation edge dislocation

g1
1
R
(r cos θ1x + r sin θ1y + z1z)

1
R
(r cos θ1x + r sin θ1y + z1z)

g2 1z 1z

g3 1z 1x

g1 0 1
V
1y

g2 r
V
√

r2+z2 (− sin θ1x + cos θ1y)
1

V
√

r2+z2 (−z1y + r sin θ1z)

g3 r
V
√

r2+z2 (sin θ1x − cos θ1y)
r

V
√

r2+z2 (sin θ1x − cos θ1y)

T dz
dω

1z
dz
dω

1z

R
√

r2 + z2
√

r2 + z2

V 0 r sin θ√
r2+z2

Table 7.2: Variables for circular shear and prismatic loops

shear loop prismatic loop

g1
1√

r2+z2 (r cos θ1x + r sin θ1y + z1z)
1√

r2+z2 (r cos θ1x + r sin θ1y + z1z)

g2 − sin θ1x + cos θ1y − sin θ1x + cos θ1y

g3 1x 1z

g1 − cos θ
V

1y
1
V

(cos θ1x + sin θ1y)
g2 1

V
√

r2+z2 (−z1y + r sin θ1z)
r

V
√

r2+z2 (− sin θ1x + cos θ1y)

g3 1
V
√

r2+z2 (−z cos θ1x − z sin θ1y + r1z)
1

V
√

r2+z2 (−z cos θ1x − z sin θ1y + r1z)

T −r sin θ dθ
dω

1x + r cos θ dθ
dω

1y −r sin θ dθ
dω

1x + r cos θ dθ
dω

1y

R
√

r2 + z2
√

r2 + z2

V − z cos θ√
r2+z2

r√
r2+z2

As an application of the method in calculations of self- and interaction energy between dislocations,
we consider here two simple cases. First, the interaction energy between two parallel screw disloca-
tions of length L and with a minimum distance ρ between them is obtained by making the following
substitutions in Equation(7.117):

gI
2 = gII

2 = gI
3 = gII

3 = 1z, |T| =
dl

dz
= 1, 1z · g1 =

z2 − z1√
ρ2 + (z2 − z1)2
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Where z1 and z2 are distances along 1z on dislocations 1 and 2, respectively, connected along the
unit vector g1. The resulting scalar differential equation for the interaction energy is:

d2EI

dz1dz2
= − µb2

4π(1 − ν)

{
ν√

ρ2 + (z2 − z1)2
− (z2 − z1)2

[ρ2 + (z2 − z1)2] 3/2

}
(7.123)

Integration of Equation (7.123) over a finite length L yields identical results to those obtained
by DeWit (1960), and by application of the more standard Blin formula (Hirth 1982). Second, the
interaction energy between two coaxial prismatic circular dislocations with equal radius can be easily
obtained by the following substitutions:

gI
3 = gII

3 = 1z, gI
2 = − sinϕ11x + cos ϕ11y, gII

2 = − sinϕ21x + cosϕ21y

1z · gI
2 = 0, R2 = z2 + (2ρ sin

ϕ1 − ϕ2

2
)2, 1z · g1 =

z

R

Integration over the variables ϕ1 & ϕ2 from (0−2π) yields the interaction energy, which can be verified
to be identical to the form obtained by DeWit (1960), and by application of Blin’s formula (Hirth
1982). Details of all integrations in this note can be readily verified, or checked in reference (Walgraef
and Ghoniem 2002).

7.3 Line Integral Forms for Dislocations in Bi-materials

7.3.1 Objectives and Problem Setup

In many problems, boundary conditions of free surfaces and interfaces need to be considered. For these
cases, in direct numerical simulations of dislocation dynamics, the forces acting on the dislocations
have an additional term that come out to satisfy the boundary conditions. These forces are called
images forces from the boundaries. There are different ways to solve the image forces, including finite
element method, boundary element method. However, if there is a direct line integral formulation,
it will be much easier to implement these images force into current dislocation dynamics simulations
without much loss of computation speed. In this report, we try to formulate such a expression of the
image forces in line-integral forms that can be used in our simulations.

Stress field of dislocation line in form of line integral for infinite material:

σ∞
ij (x) =

∮
C

S∞
ijmn(x − x

′
)dlm (7.124)

where
S∞

ijmn = −bncijpqcnsklεsqmGsk,l (7.125)

For bi-material, we want to express the filed in form of line integral too. That is:

σ∞
ij (x) =

∮
C

[
S∞

ijmn(x − x
′
) + SI

ijmn(x,x
′
)
]
dlm (7.126)

To get SI
ijmn, we need to solve the following problem:
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1. Equilibrium equation:

cq
ijklu

q
k,lj(x,x

′
) = 0 (7.127)

where q = 1, 2 for two materials.

2. Displacement boundary condition:

�[u]|x3=0 = u1|x3=0 − u2|x3=0 = 0 (7.128)

where,uq = uq∞ + uqI .

3. Traction boundary condition:

�[Si3]|x3=0 = S1
i3|x3=0 − S2

i3|x3=0 = 0 (7.129)

where Sq
i3 = Sq∞

i3 + SqI
i3 .

For isotropic case, we have:

cijkl = λδijδkl + µ(δikδjl + δilδjk) (7.130)

7.3.2 Fourier Transformation of The Governing Equations

To solve above problem by Fourier transformation.

ũ(ξ, x3, x
′
3) =
∫ ∫

u(x, (0, 0, x
′
3))e

i(ξ1x1+ξ2x2)dx1dx2 (7.131)

The inverse transformation is:

u =
1

4π2

∫ ∫
ũe−i(ξ1x1+ξ2x2)dξ1dξ2 (7.132)

The transformed equilibrium equation is:

ci3k3ũk,33 − iξα(ciαk3 + ci3kα)ũk,3 − ξαξβciαkβũk = 0 (7.133)

where α and β range over 1, 2.

The transformed displacement boundary conditions are:

�[ũ]|x3=0 = ũ1|x3=0 − ũ2|x3=0 = 0 (7.134)

where ũq = ũq∞ + ũqI . And the transformed traction boundary conditions are:

�[S̃i3]|x3=0 = S̃1
i3|x3=0 − S̃2

i3|x3=0 = 0 (7.135)

where S̃q
i3 = S̃q∞

i3 + S̃qI
i3 .

We have the general solution of the transformed equilibrium equation as:

ũ(ξ, x3) =

⎡⎣ η1 η2 η1x3

η2 −η1 η2x3

−i 0 −ix3 + −i
|ξ|

λ+3µ
λ+µ

⎤⎦⎡⎣A1

A2

A3

⎤⎦ e−|ξ|x3 (7.136)

where A1, A2, A3 are unknowns and
η = ξ/|ξ| (7.137)
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7.3.3 Describing Equations

To determine the unknown coefficient in the general solution (Equation (7.136)), we need to satisfy
the boundary conditions (Equation (7.134) and (7.135)). What we need now is the transformed
displacement field and stress field for the infinite media.

Displacement field is:

ui = − bi

4π

∮
C

Akdlk +
1
8π

∮
C

(
εiklblR,pp +

1
1 − ν

εkmnbnR,mi

)
dlk (7.138)

The derivative of the displacement field is:

ui,j =
biΩ,j

4π
+

1
8π

∮
C

[
εiklblR,ppj +

1
1 − ν

εkmnbnR,mij

]
dlk

= − bi

8π

∮
C

εjklR,ppldlk

+
1
8π

∮
C

[
εiklblR,ppj +

1
1 − ν

εkmnbnR,mij

]
dlk

=
1
8π

∮
C

[
−εjklbiR,ppl + εiklblR,ppj +

1
1 − ν

εkmnbnR,mij

]
dlk (7.139)

So, we write:

u∞
i = − bi

4π
Ak +

1
8π

εiklblR,pp +
1
8π

1
1 − ν

εkmnbnR,mi (7.140)

and

u∞
i,j =

1
8π

[
−εjklbiR,ppl + εiklblR,ppj +

1
1 − ν

εkmnbnR,mij

]
(7.141)

Noticing that the first two terms in equation (7.140) are not related to material properties, i.e.,
they are continuous at the boundary, we can eliminate them from the boundary conditions. Define

uR∞
i =

1
8π

1
1 − ν

εkmnbnR,mi (7.142)

and
uNR∞

i = u∞
i − uR∞

i (7.143)

Now, the displacement boundary condition becomes as:

�[uR]|x3=0 = u1R|x3=0 − u2R|x3=0 = 0 (7.144)

where uqR = uqI + uqR∞. In the Fourier space, the B.C. is: The transformed displacement boundary
conditions are:

�[ũR]|x3=0 = ũ1R|x3=0 − ũ2R|x3=0 = 0 (7.145)

where ũqR = ũqR∞ + ũqI .
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Relist the boundary conditions at x3 = 0:

�[ũR] = ũ1R − ũ2R

= ũ1R∞ + ũ1I − ũ2R∞ − ũ2I = 0
�[S̃i3] = S̃1

i3 − S̃2
i3

= S̃1∞
i3 + S̃1I

i3 − S̃2∞
i3 − S̃2I

i3 = 0 (7.146)

i.e.,

ũ1I − ũ2I = ũ2R∞ − ũ1R∞ = �ũR∞

S̃1I
i3 − S̃2I

i3 = S̃2∞
i3 − S̃1∞

i3 = �S̃∞
i3 (7.147)

Stress fourier transformation:

S̃i3 =
∫ ∫

ci3kluk,le
i(ξ1x1+ξ2x2)dx1dx2

= ci3k3ũk,3 − iξ1ci3k1ũk − iξ2ci3k2ũk (7.148)

Substitute the general solution (equation (7.136)) and equation (7.148) into equation (7.147), we
can finally get:

M1 · A = M2 (7.149)

where M1 is a 6 × 6 matrix, A = [A1
1, A

1
2, A

1
3, A

2
1, A

2
2, A

2
3]

T is the unknown, and M2 is 6 × 1 matrix as
[�ũR∞

1 ,�ũR∞
2 ,�ũR∞

3 ,�S̃∞
13 ,�S̃∞

23 ,�S̃∞
33 ]T .

Thus, the solution of unknown is:
A = M−1

1 · M2 (7.150)

So, we can express S̃i
ij by substitute A back to general solution. By applying inverse Fourier

transformation, we can get the image stress field in the normal space.

7.3.4 Fourier Transformation of Infinite Solutions

To solve equation (7.150), we need to know the Fourier transformation of the infinite solution of
displacement and stress fields.

Displacement fourier transformation:

ũR∞
i =

1
8π

1
1 − ν

εkmnbn

∫ ∫
R,mie

i(ξ1x1+ξ2x2)dx1dx2

=
1
8π

1
1 − ν

εkmnbnR̃mi (7.151)

For infinite stress transformation:

S̃∞
i3 =

∫ ∫
ci3kluk,le

i(ξ1x1+ξ2x2)dx1dx2

=
1
8π

∫ ∫
ci3kl (−εlrsbkR,pps
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+εkrsbsR,ppl +
1

1 − ν
εrmnbnR,mkl

)
ei(ξ1x1+ξ2x2)dx1dx2

=
−ci3klεlrsbk

8π

∫ ∫
R,ppse

i(ξ1x1+ξ2x2)dx1dx2 +
ci3klεkrsbs

8π

∫ ∫
R,pple

i(ξ1x1+ξ2x2)dx1dx2

ci3klεrmnbn

8π
1

1 − ν

∫ ∫
R,mkle

i(ξ1x1+ξ2x2)dx1dx2

=
−ci3klεlrsbk

8π
R̃,pps +

ci3klεkrsbs

8π
R̃,ppl +

ci3klεrmnbn

8π
1

1 − ν
R̃,mkl (7.152)

We have the following 3D Fourier transformation:

R =
1
π2

∫
V

1
ξ4

e−iξ·RdVξ

=
1

(2π)3

∫
V

−8π
ξ4

e−iξ·RdVξ

=
1

(2π)3

∫
V

r̃(ξ)e−iξ·RdVξ

R,ij =
1

(2π)3

∫
V
−ξiξj

−8π
ξ4

e−iξ·RdVξ

=
1

(2π)3

∫
V

r̃,ij(ξ)e−iξ·RdVξ

R,ijk =
1

(2π)3

∫
V

ξiξjξk
−8π
ξ4

e−iξ·RdVξ

=
1

(2π)3

∫
V

r̃,ijk(ξ)e−iξ·RdVξ (7.153)

A set of equations of Fourier transformation is needed and can be checked from the appendix. By
integration w.r.t. ξ3, we can get the 2D Fourier transformation of R as:

R̃ =
1
2π

∫ ∞

−∞
r̃(ξ)e−iξ3x3dξ3

R̃,ij =
1
2π

∫ ∞

−∞
r̃ij(ξ)e−iξ3x3dξ3

R̃,ijk =
1
2π

∫ ∞

−∞
r̃ijk(ξ)e−iξ3x3dξ3 (7.154)

By substitution of equation (7.154) into equation (7.151) and (7.152), we can get the Fourier
transformation of the infinite solution of displacement and stress.

The 2D Fourier transformed residue displacement fields are:

ũqR∞
1 =

1
8π

1
1 − νq

εkmnbnR̃,m1

=
1
4

bn

1 − νq
ξ1

[
εk1n · ξ1

[
1 − |ξ|(x3 − x

′
3)
]
· 1
|ξ|2

+εk2n · ξ2

[
1 − |ξ|(x3 − x

′
3)
]
· 1
|ξ|2

+εk3n ·
[
−i(x3 − x

′
3)
]]

· e|ξ|(x3−x
′
3)

|ξ| (7.155)
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ũqR∞
2 =

1
8π

1
1 − νq

εkmnbnR̃,m2

=
1
4

bn

1 − νq
ξ2

[
εk1n · ξ1

[
1 − |ξ|(x3 − x

′
3)
]
· 1
|ξ|2

+εk2n · ξ2

[
1 − |ξ|(x3 − x

′
3)
]
· 1
|ξ|2

+εk3n ·
[
−i(x3 − x

′
3)
]]

· e|ξ|(x3−x
′
3)

|ξ| (7.156)

ũqR∞
3 =

1
8π

1
1 − νq

εkmnbnR̃,m3

=
1
4π

1
1 − νq

bn

[
εk1n · ξ1

[
−i(x3 − x

′
3)
]
+ εk2n · ξ2

[
−i(x3 − x

′
3)
]

+εk3n

[
1 + |ξ|(x3 − x

′
3)
]]

· e|ξ|(x3−x
′
3)

|ξ| (7.157)

At x3 = 0, we have:

ũqR∞
1 (0) =

1
4(1 − νq)

ξ1
e−|ξ|x′

3

|ξ|
[
ξ1(1 + |ξ|x′

3) ·
1
|ξ|2 (b2 − b3)

+ξ2(1 + |ξ|x′
3) ·

1
|ξ|2 (b3 − b1) + x

′
3i(b1 − b2)

]

=
e−|ξ|x′

3

4(1 − νq)
η1

[
η1(

1
|ξ| + x

′
3)(b2 − b3)

+η2(
1
|ξ| + x

′
3)(b3 − b1) + x

′
3i(b1 − b2)

]
(7.158)

ũqR∞
2 (0) =

1
4(1 − νq)

ξ2
e−|ξ|x′

3

|ξ|
[
ξ1(1 + |ξ|x′

3) ·
1
|ξ|2 (b2 − b3)

+ξ2(1 + |ξ|x′
3) ·

1
|ξ|2 (b3 − b1) + x

′
3i(b1 − b2)

]

=
e−|ξ|x′

3

4(1 − νq)
η2

[
η1(

1
|ξ| + x

′
3)(b2 − b3)

+η2(
1
|ξ| + x

′
3)(b3 − b1) + x

′
3i(b1 − b2)

]
(7.159)

ũqR∞
3 (0) =

1
4(1 − νq)

e−|ξ|x′
3

|ξ|[
ξ1x

′
3i(b2 − b3) + ξ2x

′
3i(b3 − b1) + (1 − |ξ|x′

3)(b1 − b2)
]

=
e−|ξ|x′

3

4(1 − νq)

[
η1x

′
3i(b2 − b3) + η2x

′
3i(b3 − b1) + (

1
|ξ| − x

′
3)(b1 − b2)

]
(7.160)

The 2D Fourier transformed stress fields are:

S̃q∞
13 =

1
8π

[
−cq

13klεlrsbkR̃,pps + cq
13klεkrsbsR̃,ppl + cq

13klεrmnbn
1

1 − νq
R̃,mkl

]
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=
µq

8π

{
b2R̃,pp1 + b3R̃,pp2 − b1R̃,pp2 − b2R̃,pp3

+
2bn

1 − νq
(εr1nR̃,131 + εr2nR̃,231 + εr3nR̃,331)

}
(7.161)

S̃q∞
23 =

1
8π

[
−cq

13klεlrsbkR̃,pps + cq
23klεkrsbsR̃,ppl + cq

23klεrmnbn
1

1 − νq
R̃,mkl

]
=

µq

8π

{
b2R̃,pp1 + b1R̃,pp3 − b3R̃,pp1 − b1R̃,pp2

+
2bn

1 − νq
(εr1nR̃,123 + εr2nR̃,223 + εr3nR̃,323)

}
(7.162)

S̃q∞
33 =

1
8π

{
R̃,pp1

[
2(λ + µ)b3 − 2λb2 +

λ

1 − ν
(b2 − b3)

]
+R̃,pp2

[
2λb1 − 2(λ + µ)b3 +

λ

1 − ν
(b3 − b1)

]
+R̃,pp3

[
−2(λ + µ)b1 + 2(λ + µ)b2 +

λ

1 − ν
(b1 − b2)

]
+

2µ
1 − ν

[
R̃,133(b2 − b3) + R̃,233(b3 − b1) + R̃,333(b1 − b2)

]}
(7.163)

At x3 = 0, we have:

S̃q∞
13 (0) =

µq

8π
e−|ξ|x′

3 |ξ|
{

1
|ξ|(−4πib2η1 − 4πib3η2 + 4πib1η2 − 4πb2)

+
2η1

1 − νq

[
2πη2x

′
3(b3 − b1) + 2πη1x

′
3(b2 − b3) − 2πi(

1
|ξ| − x

′
3)(b1 − b2)

]}
(7.164)

S̃q∞
23 (0) =

µq

8π
e−|ξ|x′

3 |ξ|
{

1
|ξ|(−4πib2η1 + 4πb1 + 4πib3η1 + 4πib1η2)

+
2η2

1 − νq

[
2πη1x

′
3(b2 − b3) + 2πη2x

′
3(b3 − b1) − 2πi(

1
|ξ| − x

′
3)(b1 − b2)

]}
(7.165)

S̃q∞
33 (0) =

e−|ξ|x′
3

2
|ξ|
{

1
|ξ|
(
−iη1

[
2(λ + µ)b3 − 2λb2 +

λ

1 − ν
(b2 − b3)

]
−iη2

[
2λb1 − 2(λ + µ)b2 +

λ

1 − ν
(b3 − b1)

]
+
[
−2(λ + µ)b1 + 2(λ + µ)b2 +

λ

1 − ν
(b1 − b2)

])
+

µ

1 − ν

[
−iη1(

1
|ξ| − x

′
3)(b2 − b3) − iη2(

1
|ξ| − x

′
3)(b3 − b1)

+(
2
|ξ| − x

′
3)(b1 − b2)

]}
(7.166)
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Determination of The Unknowns in General Solution

In previous, we have formulated the equation from which we can determine the unknowns in the
general solution. We need two matrix, which are called [M1] and [M2].

By substitute the general solution and the Fourier transformation of the infinite solution into the
boundary conditions, we have following matrix equations from equation (7.150):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η1 η2 0 −η1 −η2 0

η2 −η1 0 −η2 η1 0

−i 0 −iχ1
3 i 0 iχ2

3

−2µ1η1 −µ1η2 −2χ1
1η1

1
|ξ| 2µ2η1 µ2η2 2χ2

1η1
1
|ξ|

−2µ1η2 µ1η1 −2χ1
1η2

1
|ξ| 2µ2η2 −µ2η1 2χ2

1η2
1
|ξ|

2µ1i 0 −2χ1
2i

1
|ξ| −2µ2i 0 2χ2

2i
1
|ξ|

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1
1

A1
2

A1
3

A2
1

A2
2

A2
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆ũ∞R
1 (0)

∆ũ∞R
2 (0)

∆ũ∞R
3 (0)

1
|ξ|∆S̃∞

13(0)

1
|ξ|∆S̃∞

23(0)

1
|ξ|∆S̃∞

33(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.167)

Where super-index means index of material. And χ1, χ2, and χ3 are defined as:

χq
1 =

(µq)2

λq + µq

χq
2 =

2µq (λq + 2µq)
λq + µq

χq
3 =

λq + 3µq

λq + µq
(7.168)

Here, [M1] is the 6×6 matrix, and [M2] is the right-side matrix. We found that [M1] can be written
as the product of two matrixes, one is [M11] which is a function of η1 and η2, i.e., the angle if we use
polar coordinates; and the other is [M12] which is a function of |ξ|. The two matrixes can be expressed
as:

[M11] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η1 η2 0 −η1 −η2 0

η2 −η1 0 −η2 η1 0

−i 0 −iχ1
3 i 0 iχ2

3

−2µ1η1 −µ1η2 −2χ1
1η1 2µ2η1 µ2η2 2χ2

1η1

−2µ1η2 µ1η1 −2χ1
1η2 2µ2η2 −µ2η1 2χ2

1η2

2µ1i 0 −2χ1
2i −2µ2i 0 2χ2

2i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.169)
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And

[M12] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1

|ξ| 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

|ξ|

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(7.170)

Also, we found [M2] can be written as:

[M2] = e−|ξ|x′
3 [M

′
2] (7.171)

Thus,We have:

[A] = [M1]−1[M2] = ([M11] · [M12])
−1 [M2]

= [M12]−1 · [M11]−1 · [M2] (7.172)

We have:

[M12]−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 |ξ| 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 |ξ|

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= [I] +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 |ξ| − 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 |ξ| − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(7.173)

where [I] is the unit matrix. Define

[M
′
12] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(7.174)

We have

[M12]−1 = [I] + (|ξ| − 1)[M
′
12] (7.175)

and we can write [A] as:

[A] = [M1]−1[M2] = [M12]−1[M11]−1[M2] = ([I] + (|ξ| − 1)[M
′
12])[M11]−1[M2]

= [M11]−1[M2] + (|ξ| − 1)[M
′
12][M11]−1[M2]

= e−|ξ|x′
3

{
[M11]−1[M

′
2] + (|ξ| − 1)[M

′
12][M11]−1[M

′
2]
}

(7.176)
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Image Stress in Fourier Space

In the Fourier space, the image stress can be expressed as:

S̃I
ij = Cijklũ

I
k,l

= Cijk1ũ
I
k,1 + Cijk2ũ

I
k,2 + Cijk3ũ

I
k,3

= −iξ1Cijk1ũ
I
k − iξ2Cijk2ũ

I
k + Cijk3ũ

I
k,3

= Cijk3ũ
I
k,3 − (iξ1Cijk1 + iξ2Cijk2)ũI

k

= Cijk3

⎛⎝−|ξ|ũI
k + A3

⎛⎝ η1

η2

−i

⎞⎠ e−|ξ|x3

⎞⎠− (iξ1Cijk1 + iξ2Cijk2)ũI
k

= − (Cijk3|ξ| + iξ1Cijk1 + iξ2Cijk2) ũI
k + Cijk3A3

⎛⎝ η1

η2

−i

⎞⎠ e−|ξ|x3

= − (Cijk3|ξ| + iξ1Cijk1 + iξ2Cijk2)A1

⎛⎝ η1

η2

−i

⎞⎠ e−|ξ|x3

− (Cijk3|ξ| + iξ1Cijk1 + iξ2Cijk2)A2

⎛⎝ η2

−η1

0

⎞⎠ e−|ξ|x3

− (Cijk3|ξ| + iξ1Cijk1 + iξ2Cijk2)A3

⎡⎣⎛⎝ η1

η2

−i

⎞⎠x3 +
1
|ξ|χ3

⎛⎝ 0
0
−i

⎞⎠⎤⎦ e−|ξ|x3

+Cijk3A3

⎛⎝ η1

η2

−i

⎞⎠ e−|ξ|x3 (7.177)

If we define:

Pk = Cijk3|ξ| + iξ1Cijk1 + iξ2Cijk2

= |ξ| (Cijk3 + iη1Cijk1 + iη2Cijk2)
= |ξ|Qk (7.178)

Then:

S̃I
ij = −Pk

⎛⎝ η1

η2

−i

⎞⎠A1e
−|ξ|x3 − Pk

⎛⎝ η2

−η1

0

⎞⎠A2e
−|ξ|x3

−Pk

⎡⎣⎛⎝ η1

η2

i

⎞⎠x3 +
1
|ξ|χ3

⎛⎝ 0
0
−i

⎞⎠⎤⎦A3e
−|ξ|x3 + Cijk3

⎛⎝ η1

η2

−i

⎞⎠A3e
−|ξ|x3

=

⎧⎨⎩−Pk

⎛⎝ η1

η2

−i

⎞⎠A1 − Pk

⎛⎝ η2

−η1

0

⎞⎠A2

−A3

⎡⎣Pk

⎡⎣⎛⎝ η1

η2

−i

⎞⎠x3 +
1
|ξ|χ3

⎛⎝ 0
0
−i

⎞⎠⎤⎦− Cijk3

⎛⎝ η1

η2

−i

⎞⎠⎤⎦⎫⎬⎭ e−|ξ|x3
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= e−|ξ|x3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Pk

⎛⎝ η1

η2

−i

⎞⎠
−Pk

⎛⎝ η2

−η1

0

⎞⎠
− (Pkx3 − Cijk3)

⎛⎝ η1

η2

−i

⎞⎠− χ3Pk
|ξ|

⎛⎝ 0
0
−i

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

⎡⎣A1

A2

A3

⎤⎦

= e−|ξ|x3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Pk

⎛⎝ η1

η2

−i

⎞⎠
−Pk

⎛⎝ η2

−η1

0

⎞⎠
−Pkx3

⎛⎝ η1

η2

−i

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

Cijk3

⎛⎝ η1

η2

−i

⎞⎠− χ3Pk
|ξ|

⎛⎝ 0
0
−i

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎣A1

A2

A3

⎤⎦

= e−|ξ|x3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
|ξ|

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Qk

⎛⎝ η1

η2

−i

⎞⎠
−Qk

⎛⎝ η2

−η1

0

⎞⎠
−Qkx3

⎛⎝ η1

η2

−i

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

Cijk3

⎛⎝ η1

η2

−i

⎞⎠− χ3Qk

⎛⎝ 0
0
−i

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎣A1

A2

A3

⎤⎦

= e−|ξ|x3 (|ξ|[M3] + [M4]) [A] (7.179)

where

[M3] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Qk

⎛⎝ η1

η2

−i

⎞⎠
−Qk

⎛⎝ η2

−η1

0

⎞⎠
−Qkx3

⎛⎝ η1

η2

−i

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(7.180)
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and

[M4] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

Cijk3

⎛⎝ η1

η2

−i

⎞⎠− χ3Qk

⎛⎝ 0
0
−i

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(7.181)

Recall equation (7.176) and substitute it into equation (7.179), we have:

S̃I
ij = e−|ξ|x3 (|ξ|[M3] + [M4]) [A]

= e−|ξ|(x3+x
′
3) (|ξ|[M3] + [M4])

(
[M11]−1[M

′
2] + (|ξ| − 1)[M

′
12][M11]−1[M

′
2]
)

= e−|ξ|(x3+x
′
3)
{
[M3][M11]−1[M

′
2]|ξ| + [M3][M

′
12][M11]−1[M

′
2]|ξ|(|ξ| − 1)

+[M4][M11]−1[M
′
2] + [M4][M

′
12][M11]−1[M

′
2](|ξ| − 1)

}
(7.182)

Image Stress From Inverse Fourier Transformation

In equation (7.182), [M3], [M4], and [M11]−1 are functions of angle related variables(η1 and η2), [M
′
12]

is a constant matrix, [M
′
2] depends on both angle and length (i.e., η1, η2, and |ξ|). Thus we can obtain

the image stress expression by inverse Fourier transformation as:

SI
ij =

1
4π2

∫ ∫
S̃I

ije
−i(ξ1x1+ξ2x2)dξ1dξ2

=
1

4π2

∫ 2π

0

∫ ∞

0
S̃I

ije
−|ξ|(ix1 cos θ+ix2 sin θ)|ξ|d|ξ|dθ

=
1

4π2

∫ 2π

0

∫ ∞

0

{
[M3][M11]−1[M

′
2]|ξ| + [M3][M

′
12][M11]−1[M

′
2]|ξ|(|ξ| − 1)

+[M4][M11]−1[M
′
2] + [M4][M

′
12][M11]−1[M

′
2](|ξ| − 1)

}
e−|ξ|a|ξ|d|ξ|dθ

=
1

4π2

∫ 2π

0

{
[M3][M11]−1

∫ ∞

0
[M

′
2]|ξ|2e−|ξ|ad|ξ|

}
dθ

+
1

4π2

∫ 2π

0

{
[M3][M

′
12][M11]−1

∫ ∞

0
[M

′
2]|ξ|2(|ξ| − 1)e−|ξ|ad|ξ|

}
dθ

+
1

4π2

∫ 2π

0

{
[M4][M11]−1

∫ ∞

0
[M

′
2]|ξ|e−|ξ|ad|ξ|

}
dθ

+
1

4π2

∫ 2π

0

{
[M4][M

′
12][M11]−1

∫ ∞

0
[M

′
2]|ξ|(|ξ| − 1)e−|ξ|ad|ξ|

}
dθ

(7.183)

where a = x3 + x
′
3 + i cos θx1 + i sin θx2, cos θ = η1 = ξ1

|ξ| , and sin θ = η2 = ξ2
|ξ| .
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Thus, by integrating from 0 to ∞ over |ξ| out, we have only one integration left for θ, this integration
can be done by numerical method very easily and it is not time consuming. So, finally, we get a line
integration for the image stresses from the surface.

If we define some new matrixes as:

[M21] =
∫ ∞

0
[M

′
2]|ξ|2e−|ξ|ad|ξ|

[M22] =
∫ ∞

0
[M

′
2]|ξ|2(|ξ| − 1)e−|ξ|ad|ξ|

[M23] =
∫ ∞

0
[M

′
2]|ξ|e−|ξ|ad|ξ|

[M24] =
∫ ∞

0
[M

′
2]|ξ|(|ξ| − 1)e−|ξ|ad|ξ| (7.184)

Then, we can write equation (7.183) as:

SI
ij =

1
4π2

∫ 2π

0

{
[M3][M11]−1[M21]

}
dθ

+
1

4π2

∫ 2π

0

{
[M3][M

′
12][M11]−1[M22]

}
dθ

+
1

4π2

∫ 2π

0

{
[M4][M11]−1[M23]

}
dθ

+
1

4π2

∫ 2π

0

{
[M4][M

′
12][M11]−1[M24]

}
dθ

(7.185)

7.3.5 Determination of Solution Matrices

In above section, we have got the expression of the image stresses. Now the only thing that we need
for the complete final expression is to determine the four new defined matrixes, M21, M22, M23, M24.
Following we will begin to derive the exact forms of these matrixes.

As derived before, we have:
[M2] = e−|ξ|x′

3 [M
′
2] (7.186)

If we define the six elements of matrix [M
′
2] as [M

′
2]1 to [M

′
2]6, we find they are in the form as

following: [
M

′
2

]
1

= δ

(
1

4(1 − ν)

){
η1

[
η1

(
1
|ξ| + x

′
3

)
(b2 − b3)

+η2

(
1
|ξ| + x

′
3

)
(b3 − b1) + x

′
3i(b1 − b2)

]}
[
M

′
2

]
2

= δ

(
1

4(1 − ν)

){
η2

[
η1

(
1
|ξ| + x

′
3

)
(b2 − b3)
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+η2

(
1
|ξ| + x

′
3

)
(b3 − b1) + x

′
3i(b1 − b2)

]}
[
M

′
2

]
3

= δ

(
1

4(1 − ν)

)[
η1x

′
3i(b2 − b3) + η2x

′
3i(b3 − b1) +

(
1
|ξ| − x

′
3

)
(b1 − b2)

]
[
M

′
2

]
4

=
1
2

{
δ(µ)
|ξ| (−ib2η1 − ib3η2 + ib1η2 − b2) + δ

(
µ

1 − ν

)
η1

[
η2x

′
3(b3 − b1)

+η1x
′
3(b2 − b3) − i

(
1
|ξ| − x

′
3

)
(b1 − b2)

]}
[
M

′
2

]
5

=
1
2

{
δ(µ)
|ξ| (−ib2η1 + ib3η1 + ib1η2 + b1) + δ

(
µ

1 − ν

)
η2

[
η2x

′
3(b3 − b1)

+η1x
′
3(b2 − b3) − i

(
1
|ξ| − x

′
3

)
(b1 − b2)

]}
[
M

′
2

]
6

=
1
2

1
|ξ|
{
−iη1

[
δ

(
2ν − 1
1 − ν

λ

)
(b2 − b3) + 2δ (µ) b3

]
−iη2

[
δ

(
2ν − 1
1 − ν

λ

)
(b3 − b1) − 2δ (µ) b3

]
+
[
δ

(
2ν − 1
1 − ν

λ

)
(b1 − b2) + 2δ (µ) (b2 − b1)

]}
− i

2
δ

(
µ

1 − ν

)[
η1

(
1
|ξ| − x

′
3

)
(b2 − b3) + η2

(
1
|ξ| − x

′
3

)
(b3 − b1)

−i

(
2
|ξ| − x

′
3

)
(b1 − b2)

]
(7.187)

where items like δ(µ) means it is a difference value of this item between two materials, defined as
δ(µ) = µ1 − µ2.

As defined in equation (7.184), the integrations we need to perform over |ξ| can be easily done
because they are all in forms like: ∫ ∞

0
|ξ|ne−a|ξ|d|ξ| =

n!
an+1

(7.188)

Thus, we have obtained [M21], [M22], [M23], and [M24] (for exact forms of these matrixes, please see
the appendix). By doing another numerical integration over θ, we finally obtained the line integration
expression for the image stresses from a bi-material interface.

7.3.6 Fourier Transform Details

Lists of Several Fourier Transformations

During the Fourier transformation of infinite solutions in section (7.3.4), we used several of the following
formulations:

1
2π

∫ ∞

−∞
e−iςz

|ξ|2 + ς2
dς =

e|ξ|z

2|ξ| =
e|ξ|(x3−x

′
3)

2|ξ| (7.189)
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1
2π

∫ ∞

−∞
e−iςz

(|ξ|2 + ς2)2
dς = (1 − |ξ|z)

e|ξ|z

4|ξ|3 =
[
1 − |ξ|(x3 − x

′
3)
] e|ξ|(x3−x

′
3)

4|ξ|3 (7.190)

1
2π

∫ ∞

−∞
ςe−iςz

(|ξ|2 + ς2)2
dς = −iz

e|ξ|z

4|ξ| = −i(x3 − x
′
3)

e|ξ|(x3−x
′
3)

4|ξ| (7.191)

1
2π

∫ ∞

−∞
ς2e−iςz

(|ξ|2 + ς2)2
dς = (1 + |ξ|z)

e|ξ|z

4|ξ| =
[
1 + |ξ|(x3 − x

′
3)
] e|ξ|(x3−x

′
3)

4|ξ| (7.192)

1
2π

∫ ∞

−∞
ςe−iςz

|ξ|2 + ς2
dς = i

e|ξ|z

2
= i

e|ξ|(x3−x
′
3)

2
(7.193)

1
2π

∫ ∞

−∞
ς3e−iςz

(|ξ|2 + ς2)2
dς = i

[
1
2

+
|ξ|z
4

]
e|ξ|z = i

[
1
2

+
|ξ|(x3 − x

′
3)

4

]
e|ξ|(x3−x

′
3) (7.194)

Exact forms of Four Matrices

The four integrated out matrixes can be obtained through the method described in above section.
Here we give the exact forms. Define the element of the matrix as [M ]j , where j = 1, 6.

For [M21], we have:

[M21]1 = δ

(
1

4(1 − ν)

){
η1

[
η1

(
1
a2

+ x
′
3

2
a3

)
(b2 − b3)

+η2

(
1
a2

+ x
′
3

2
a3

)
(b3 − b1) + x

′
3i(b1 − b2)

2
a3

]}
[M21]2 = δ

(
1

4(1 − ν)

){
η2

[
η1

(
1
a2

+ x
′
3

2
a3

)
(b2 − b3)

+η2

(
1
a2

+ x
′
3

2
a3

)
(b3 − b1) + x

′
3i(b1 − b2)

2
a3

]}
[M21]3 = δ

(
1

4(1 − ν)

)[
η1x

′
3i(b2 − b3)

2
a3

+ η2x
′
3i(b3 − b1)

2
a3

+
(

1
a2

− x
′
3

2
a3

)
(b1 − b2)

]
[M21]4 =

1
2

{
δ(µ)
a2

(−ib2η1 − ib3η2 + ib1η2 − b2) + δ

(
µ

1 − ν

)
η1

[
η2x

′
3(b3 − b1)

2
a3

+η1x
′
3(b2 − b3)

2
a3

− i

(
1
a2

− x
′
3

2
a3

)
(b1 − b2)

]}
[M21]5 =

1
2

{
δ(µ)
a2

(−ib2η1 + ib3η1 + ib1η2 + b1) + δ

(
µ

1 − ν

)
η2

[
η2x

′
3(b3 − b1)

2
a3

+η1x
′
3(b2 − b3)

2
a3

− i

(
1
a2

− x
′
3

2
a3

)
(b1 − b2)

]}
[M21]6 =

1
2

1
a2

{
−iη1

[
δ

(
2ν − 1
1 − ν

λ

)
(b2 − b3) + 2δ (µ) b3

]
−iη2

[
δ

(
2ν − 1
1 − ν

λ

)
(b3 − b1) − 2δ (µ) b3

]
+
[
δ

(
2ν − 1
1 − ν

λ

)
(b1 − b2) + 2δ (µ) (b2 − b1)

]}
− i

2
δ

(
µ

1 − ν

)[
η1

(
1
a2

− x
′
3

2
a3

)
(b2 − b3) + η2

(
1
a2

− x
′
3

2
a3

)
(b3 − b1)
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−i

(
2
a2

− x
′
3

2
a3

)
(b1 − b2)

]
(7.195)

For [M22], we have:

[M22]1 = δ

(
1

4(1 − ν)

){
η1

[
η1

(
2
a3

− 1
a2

+ x
′
3

6
a4

− x
′
3

2
a3

)
(b2 − b3)

+η2

(
2
a3

− 1
a2

+ x
′
3

6
a4

− x
′
3

2
a3

)
(b3 − b1) + x

′
3i(b1 − b2)

(
6
a4

− 2
a3

)]}
[M22]2 = δ

(
1

4(1 − ν)

){
η2

[
η1

(
2
a3

− 1
a2

+ x
′
3

6
a4

− x
′
3

2
a3

)
(b2 − b3)

+η2
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2
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− 1
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+ x
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3
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a4

− x
′
3
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a3
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(b3 − b1) + x

′
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(
6
a4
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a3

)]}
[M22]3 = δ

(
1

4(1 − ν)

)[
η1x

′
3i(b2 − b3)

(
6
a4

− 2
a3

)
+ η2x

′
3i(b3 − b1)
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)
+
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− 1
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′
3
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a4

+ x
′
3

2
a3
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]
[M22]4 =

1
2

{
δ(µ)
(

2
a3

− 1
a2

)
(−ib2η1 − ib3η2 + ib1η2 − b2)

+δ

(
µ
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η1

[
η2x

′
3(b3 − b1)

(
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a4
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)
+ η1x

′
3(b2 − b3)

(
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− 2
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)
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(
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a3

− 1
a2

− x
′
3

6
a4

+ x
′
3

2
a3

)
(b1 − b2)
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[M22]5 =

1
2

{
δ(µ)
(

2
a3

− 1
a2

)
(−ib2η1 + ib3η1 + ib1η2 + b1)

+δ

(
µ

1 − ν

)
η2

[
η2x

′
3(b3 − b1)

(
6
a4

− 2
a3

)
+ η1x

′
3(b2 − b3)

(
6
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− 2
a3

)
+η1x

′
3(b2 − b3)

(
6
a4

− 2
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)
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(
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a3

− 1
a2

− x
′
3

6
a4

+ x
′
3

2
a3

)
(b1 − b2)
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[M22]6 =

1
2

(
2
a3

− 1
a2
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−iη1

[
δ

(
2ν − 1
1 − ν

λ

)
(b2 − b3) + 2δ (µ) b3

]
−iη2

[
δ

(
2ν − 1
1 − ν

λ

)
(b3 − b1) − 2δ (µ) b3

]
+
[
δ

(
2ν − 1
1 − ν

λ

)
(b1 − b2) + 2δ (µ) (b2 − b1)
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− i
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δ

(
µ

1 − ν

)[
η1

(
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a3

− 1
a2

− x
′
3

6
a4

+ x
′
3
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a3

)
(b2 − b3)

+η2

(
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− 1
a2

− x
′
3
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a4
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3
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(b3 − b1)
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′
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a4
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2
a3
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(b1 − b2)

]
(7.196)

For [M23], we have:

[M23]1 = δ

(
1

4(1 − ν)

){
η1

[
η1

(
1
a

+ x
′
3

1
a2

)
(b2 − b3)
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+η2

(
1
a

+ x
′
3

1
a2

)
(b3 − b1) + x

′
3i(b1 − b2)

1
a2

]}
[M23]2 = δ

(
1

4(1 − ν)

){
η2

[
η1

(
1
a

+ x
′
3

1
a2

)
(b2 − b3)

+η2

(
1
a

+ x
′
3

1
a2

)
(b3 − b1) + x

′
3i(b1 − b2)

1
a2

]}
[M23]3 = δ
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1

4(1 − ν)
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η1x

′
3i(b2 − b3)

1
a2

+ η2x
′
3i(b3 − b1)

1
a2

+
(

1
a
− x

′
3

1
a2

)
(b1 − b2)

]
[M23]4 =

1
2
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δ(µ)

a
(−ib2η1 − ib3η2 + ib1η2 − b2) + δ
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µ

1 − ν
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η1
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′
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− i
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− x

′
3
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]}
[M23]5 =
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δ(µ)

a
(−ib2η1 + ib3η1 + ib1η2 + b1) + δ
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µ

1 − ν
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− x

′
3
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]}
[M23]6 =
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δ
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]
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For [M24], we have:

[M24]1 = δ
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1

4(1 − ν)
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η1
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η1

(
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− 1
a2

+ x
′
3

6
a4
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)
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3
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− x
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3
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)
(b3 − b1) + x
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(
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− 2
a3

)]}
[M24]2 = δ
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1

4(1 − ν)
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[
η1

(
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− 1
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+ x
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3

6
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− x
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)
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)]}
[M24]3 = δ
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η1x

′
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)
+ η2x
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)
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]
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(
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3(b3 − b1)

(
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3(b2 − b3)
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)
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−i
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1
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− 1
a
− x
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+ x
′
3

1
a2

)
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]}
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+δ
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(
2
a3

− 1
a2

)
+η1x

′
3(b2 − b3)
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[M24]6 =
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−iη1
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2ν − 1
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λ

)
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]
−iη2
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]
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)
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2
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(
µ
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1
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− 1
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′
3

2
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+ x
′
3
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a2

)
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+η2

(
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− 1
a
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′
3
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+ x
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7.4 3D Dislocations in Infinite Anisotropic Media

7.4.1 Basic Procedure

n

L

S

n

S
-

S
+

S

Figure 7.23: Schematic diagram of a closed dislocation loop L.

A dislocation can be visualized by imagining that it is made as follows. Make a cut in the material
over a surface S bounded by a closed curve L. The positive direction of the normal n to the surface
S is related to the positive direction of the curve L by the right-hand rule. The displacement u is
considered to change discontinuously by a constant amount b when traversing opposite sides of S. If
the negative side of the surface S, S−, is displaced by b while the positive side S+ is held fixed. Or
alternatively, we could translate the positive side S+ through a distance −b and keep the negative side
S− fixed. Operationally, we may produce the dislocation L by slitting the medium over the surface
S, displacing the slit faces by the constant translation vector b and then welding the faces together
again, adding or removing material as required.
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Consider an infinitely extended materials V which contains an arbitrary shaped dislocation. The
dislocation line L is boundary of a surface S where the displacement ui has a jump b (Burgers vector)
as,

[ui] = ui|S+ − ui|S− = −bi (7.199)

where S+ and S− denote the upper and lower plane of the slip plane S. The outward unit normal on
surface S+ is −n and on S− is n where n is the unit normal to S.

We want to find the displacement solution of a dislocation using Green’s functions. For an infinite
continuous space, with a distribution of point force fm(x′), the corresponding displacement is obtained
as,

ui(x) =
∫

V
Gkm(x,x′)fm(x′)dV ′ (7.200)

For a dislocation field, there is discontinuity on the dislocation surface S, the surface must be
considered. For a finite region of space, we use the divergence theorem for any rank tensor T as,∫

V
T,idV =

∫
S
TdSi

By means of the divergence theorem, we have∫
V

Cijkl[ui(x′)Gkm,l′j′(x′,x) − uk,l′j′(x′)Gim(x′,x)]dV ′

=
∫
V

Cijkl[uk,l′(x′)Gim,j′(x′,x) − ui,j′(x′)Gkm,l′(x′,x)]dV ′

+
∫
S

Cijkl[ui(x′)Gkm,l′(x′,x) − uk,l′(x′)Gim(x′,x)]dS′
j (7.201)

with V,i = ∂V/∂xi, and V,i′ = ∂V/∂xi′ .

Changing the repeated indices and noting that Cijkl = Cklij , we have

Cijkl[uk,l′(x′)Gim,j′(x′,x) − ui,j′(x′)Gkm,l′(x′,x)] = 0

Considering the equilibrium equations

CijklGkm,l′j′(x′,x) = −δimδ(x′,x) , Cijkluk,l′j′(x′) = −fi(x′)

and the traction equation
Cijkluk,l′(x′)nj = σij(x′)nj

Finally, eq.(7.201) gives,

um(x) =
∫
V

Gim(x′,x)fi(x′)dV ′ +
∫
S

Gim(x′,x)σij(x′)dS′
j

−
∫
S

Cijklui(x′)Gkm,l′(x′,x)dS′
j (7.202)
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For the special case of a dislocation loop, the body force is zero (fi = 0), the traction is continuous on
the surface S: (σijnj)|S+ +(σijnj)|S− = 0, and the displacement has a jump on S: ui|S+−ui|S− = −bi,
finally, the displacement induced by a dislocation loop is expressed as,

um(x) = −
∫

S+

Cijklui(x′)Gkm,l′(x′,x)dS′
j −
∫

S−

Cijklui(x′)Gkm,l′(x′,x)dS′
j

= −bi

∫
S−

CijklGkm,l′(x′,x)dS′
j

= −bi

∫
S

CijklGkm,l′(x′,x)dS′
j (7.203)

Since dS′
j = njdS′, it can be rewritten as

ui(x) = −
∫

S
Cjlmn(x)bm

∂

∂x′
l

Gji(x′,x)nn(x′)dS′(x′) (7.204)

where Gji(x′,x) are the Green’s functions at x′ due to a point force applied at x, S is the surface
capping the loop, nn is a unit normal to S and bm is the Burgers vector.

For infinite space, the Green’s functions have the following properties:

Gji(x′,x) = Gji(x′ − x) = Gji(x − x′) = Gij(x − x′)

Gki,j(x′,x) = Gki,j(x′ − x) = −Gki,j(x − x′) = −Gki,j′(x′ − x)

Gki,js(x′,x) = Gki,js(x′ − x) = Gki,js(x − x′) = Gki,j′s′(x′ − x)

The displacement gradient is

ui,j(x) = −
∫

S
Cklmnbm

∂2

∂xj∂x′
l

Gki(x′,x)nn(x′)dS(x′) (7.205)

For infinite homogeneous space

ui,j(x) = Cklmn

∫
S

bm
∂2

∂x′
j∂x′

l

Gki(x′ − x)nn(x′)dS(x′) (7.206)

The equilibrium condition with body force at x′ − x gives:

Cklmn
∂2

∂x′
n∂x′

l

Gki(x′ − x) = 0 (7.207)

Combining eq.(7.206) and (7.207), we have

ui,j(x) = Cklmnbm

∫
S

[
∂2

∂x′
j∂x′

l

Gki(x′ − x)dSn(x′) − ∂2

∂x′
n∂x′

l

Gki(x′ − x)(x′)dSj(x′)
]

(7.208)
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Using Stokes theorem:

∫
S

[
∂T

∂x′
j

dSn(x′) − ∂T

∂x′
n

dSj(x′)

]
= εnjh

∮
L

Tdlh(x′)

with εnjh being the permutation tensor. Finally, the displacement gradient field is expressed as a line
integral along the dislocation loop L as

ui,j(x) = Cklmnbmεnjh

∮
L

∂

∂x′
l

Gki(x′ − x)dlh(x′) = Cklmnbmεjnh

∮
L

Gik,l(x − x′)dlh(x′) (7.209)

where dlh(x′) = νhdl(x′), νh is the unit tangent vector of the dislocation loop line at point x′.

Or written as

ui,j(x) =
∮

L
βjih(x − x′)dlh(x′) (7.210)

with

βjih(x − x′) = CklmnbmεjnhGik,l(x − x′) (7.211)

The stress field produced by the dislocation can be expressed as

σij(x) = Cijkl

∮
L

CpqmnεlnhbmGkp,q(x − x′)dlh(x′) (7.212)

Or written as

σij(x) =
∮

L
Sijh(x − x′)dlh(x′) (7.213)

with

Sijh(x − x′) = CijklCpqmnεlnhbmGkp,q(x − x′) (7.214)

The kernel Sijh(x − x′) can be considered as the ij-stress component at x produced by a line
element of dislocation lying in the h-direction at x’, in an infinite space with Burgers vector b. While
βjih(x − x′) can be considered as the corresponding elastic distortion.

In this Green’s functions method, the elastic field (strain and stress) formulae involve derivatives of
the Green’s functions Gkp,q(x − x′). For general infinite anisotropic solids, analytical expressions are
not available. However, these functions can be expressed in an integral form as (see former chapter):

Gij ,k (x − x′) =
1

8π2|r|2
∮

Ck

[−r̄kNij(k̄)D−1(k̄)

+k̄kClpmq(r̄pk̄q + k̄pr̄q)Nil(k̄)Njm(k̄)D−2(k̄)]dφ (7.215)

where r = x − x′, r̄ = r/|r|, k̄ is the unit vector on the plane normal to r, the integral is taken
around the unit circle Ck on the plane normal to r, Nij(k) and D(k) are the adjoint matrix and the
determinant of the second order tensor Cikjlkkkl, respectively.
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7.4.2 Forces on a dislocation loop

Dislocations will induce strain and stress field in materials. On the other hand, dislocations in stress
fields will undergo forces and moving. The stress fields can be induced by external applied ones, or
internal ones due to other dislocations, inclusions, and the dislocation itself. Under stress field, at a
point such as P on a dislocation line L, the force per unit length on it is obtained by the Peach-Koehler
formula: FA = (b · σA) × t, where σA is the sum of the stress from an applied load and that arising
from internal sources at P , b is the Burgers vector of the dislocation, and t is the unit tangent vector
of the element dl. For the special, yet important case of a planar dislocation loop lying on a glide
plane with unit normal n, the glide force acts along the in-plane normal to L at P : m = n × t. The
glide component F A

g of the external force can be obtained by resolving FA along m as:

FA
g = FA · m = b · σA · n (7.216)

The in-plane self-force at the point P on the loop is also obtained in a manner similar to the
external Peach-Kohler force, with an additional contribution from stretching the dislocation line upon
a virtual infinitesimal motion (Barnett 1976):

FS = κE(t) − b · σ̃S · n (7.217)

where E(t) is the pre-logarithmic energy factor for an infinite straight dislocation parallel to t: E(t) =
1
2b·Σ(t)·n, with Σ(t) being the stress tensor of an infinite straight dislocation along the loop’s tangent
at P. σS is self stress tensor due to the dislocation L, and σ̃ = 1

2 [σS(P + εm) + σS(P − εm)] is the
average self-stress at P, κ is the in-plane curvature at P, and ε = |b|/2.

Barnett (1976) and Gavazza and Barnett (1976) analyzed the structure of the self-force as a sum:

FS = κE(t) − κ[E(t) + E ′′(t)ln(
8
εκ

)] − J(L,P) + Fcore (7.218)

where the second and third terms are line tension contributions, which usually account for the main
part of the self-force, while J(L,P) is a non-local contribution from other parts of the loop, and Fcore

is due to the contribution to the self-energy from the dislocation core. Generally, a dislocation loop is
complex and irregular, there is no analytical expression for the non-local term. So, for exact self-force
evaluation of a general dislocation loop, we can only use the method (7.217). In dislocation dynamics
simulation, we may either ignore the non-local term or express it approximately (such as using a
circular loop instead).

For the calculation of E(t), the dislocation pre-logarithmic energy factor, and it’s derivatives, can
see the reference by Bacon et al. (1980) for details. For convenient, we listed below the formulae
needed here.

E = Bijbibj

with b being the Burger’s vector, and B depending on the dislocation direction t (for curved disloca-
tion, t is the tangent vector at the concerned point).

Choose two orthogonal unit vectors N and M normal to dislocation direction t. N can be the glide
plane direction of the dislocation loop, and M = N× t. In the plane containing M and N, we define
another orthogonal unit vectors m and n by

m = M cos ω + N sinω , n = −M sinω + N cosω.
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ω is an arbitrary angle. B(t) can be obtained by integration, as:

Bij = Bji =
1

4π2

∫ π

0
{(mm)ij − (mn)ir(nn)−1

rk (nm)kj}dω

where (ab)ik is second-rank tensor defined by the contraction operation

(ab)jk = aiCijkmbm

E(t) + E′′(t) can be written as integral

E + E′′ = Ajsir

{
− (2Mjts + tjMs)

∫ π

0
(nn)−1

ir dω + 2
∫ π

0
(Mjns + tjts sin ω) Firdω + tj

∫ π

0
nsHirdω

}
where

Ajsir =
1

4π2
bmbgNnεpjwCngipCwmrs

Frk = Fkr = (nn)−1
rs {(nt)sp + (tn)sp} (nn)−1

pk

Hrk = F ′
rk = −Frs{(nt)sp + (tn)sp}(nn)−1

pk sinω − (nn)−1
rs {(nt)sp + (tn)sp}Fpk sinω

+(nn)−1
rs {(nM)sp + (Mn)sp + 2(tt)sp sinω}(nn)−1

pk .

For isotropic materials, with the x1-axis along t and x3-axis along N,

B11 =
µ

4π
, B22 = B33 =

µ

4π(1 − ν)

So

E =
µb2

4π(1 − ν)
(1 − ν cos2 α)

with α being the angle between the Burgers vector and the tangent direction t as cos α = b1/b = t·b/b.
And

E′′ =
µb2ν

4π(1 − ν)
cos 2α

For a circular loop (with radius R) in isotropic materials, there is analytical solution for the non-local
part of the self-force as

J = − µb2ν

π(1 − ν)R
cos 2α.

7.4.3 Accuracy verification

To validate the accuracy of the present parametric dislocation method, we will present the elastic
stresses of a circular dislocation loop, in the special case of an isotropic material, since analytical
solutions are available (Kroupa 1960). In this example, the elastic constants are C11/C12/C44 =
5 : 3 : 1, and the stresses are normalized (divided) by µb/[R(1 − ν)]. µ, ν, b and R are Young’s
modulus, Possion’s ratio, magnitude of Burger’s vector and the radius of the circular dislocation loop,
respectively.
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Table Stresses in a prismatic circular loop with b = b(0, 0, 1)
σ σ present (relative error)

analytical Ns = 8 Ns = 16 Ns = 24
x/R σzz for points in the z = 0 plane
0.5 0.622810 0.623383 (9×10−4) 0.622843 (5×10−5) 0.622817 (9×10−6)
0.9 1.962962 1.966650 (2×10−3) 1.963345 (2×10−4) 1.963055 (5×10−5)
0.99 16.45096 17.23815 (5×10−2) 16.38179 (4×10−3) 16.43815 (8×10−4)
1.01 -15.38702 -16.17236 (5×10−2) -15.31418 (5×10−3) -15.37140 (1×10−3)
1.1 -1.262697 -1.259719 (2×10−3) -1.262375 (3×10−4) -1.262617 (6×10−5)
2.0 -0.0431096 -0.0430383 (2×10−3) -0.0431056 (9×10−5) -0.0431089 (2×10−5)
z/R σzz& σrr for points along z-axis
0.0 σzz 0.500000 0.500306 (6×10−4) 0.500017 (3×10−5) 0.500003 (6×10−6)
0.0 σrr 0.472222 0.472511 (6×10−4) 0.472238 (3×10−5) 0.472225 (7×10−6)
0.5 σzz 0.572433 0.572783 (6×10−4) 0.572453 (3×10−5) 0.572437 (6×10−6)
0.5 σrr 0.230563 0.230514 (2×10−4) 0.230561 (1×10−5) 0.230563 (2×10−6)

The stresses, calculated by the present method are compared to analytical solutions (Kroupa 1960)
for a prismatic circular loop in the Table. In our calculations, the Guassian quadrature points Nmax

for Gij ,k and the integration of parametric dislocation segments are both 16, and different segment
numbers Ns are used. It can be seen that the accuracy of stress components increases with Ns, and
decreases as the point approaches the dislocation core (x/R → 1).

We have also calculated the stress field of a circular shear loop, and compared the results with
analytical solutions (Kroupa 1960). The accuracy and tendency with Ns are found to be similar to
the case of a prismatic loop.

7.4.4 Numerical results

In the following, the effects of elastic anisotropy on the behavior of dislocations will be examined. To
measure the degree of deviation from elastic isotropy, we use the anisotropy ratio A, defined in the
usual manner: A = 2C44/(C11 − C12) (Hirth and Lothe 1982). For an isotropic crystal, A = 1.

As an example, we consider a circular loop on the (111)-glide plane of an FCC crystal, with radius
R and slip direction along [1̄10], see figure 7.24. A local coordinate is chosen as: the x- and z-axes are
along the [1̄10] and [111] directions, respectively. In the following figures, we will show the stress field
induced by the circular dislocation loop in the slip systemIn the figures presented here, and the stresses
are normalized/divided by 0.5(C11−C12)b/R, the ratio C11/C12/µ = 5 : 3 : 1 is used throughout unless
restated.

Figure 7.25 shows the shear stresses σzx and σxy, along the slip direction x-axis on the slip plane,
for different anisotropy ratios. While the absolute value of the stress increases with A, the effects of
elastic anisotropy are seen to be more salient inside the loop, as compared to the outside region. For
A �= 1, the crystal is not symmetric with respect to the slip direction any more, and there is a shear
stress component σxy along the slip direction on the slip plane, see Figure 7.25-b.

The change in the stress magnitude and symmetry can be seen more clearly from the stress iso-
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surfaces. For different anisotropy ratios A = 1, 4, 0.25, figures 7.26 and 7.27 show the stress iso-
surfaces of σzx and σxx, respectively. The stresses are divided by 0.5(C11 − C12)b/R), the ratio
C11/C12/µ = 5 : 3 : 1, and local coordinate system is used, the length scale is R.

In the following examples, we choose dislocations crystals with real elastic constants. For fcc, we
choose Al (A = 1.21), Cu (A = 3.21) and an isotropic material (with A = 1 and C11, C12 choosing
the same values as Cu). The slip system (111)[1̄10] and coordinates are the same as above. Figures
7.28-7.31 show the iso-surfaces of different stress components σzx, σxx, σyy and σzz, respectively. All
stresses are divided by 1010b/R, and local coordinate system is used.

We give another example, dislocation loops in bcc materials, the slip system is (110)[1̄11], see
figure 7.32. We choose Fe (A = 2.36), Nb (A = 0.51) and an isotropic material (A = 1, with C11

and C12 choosing the values as Nb). The iso-surfaces of σzx, σxx and σzz are shown in fig. 7.33-7.35,
respectively. Stresses are divided by 1010b/R, and local coordinate system is used.

To show the effects of anisotropy on dislocation interactions, we first consider the Peach-Koehler
force (interaction force) on a unit dislocation element of a straight dislocation on the same slip plane
and along the y− direction, induced by the glide circular dislocation loop. The Burgers vectors of
the circular and straight dislocations are both along the slip direction, and their values are b and b2

respectively. Similar to the tendency of stress components, the glide component of the Peach-Koehler
force is shown to increase with A, as can be seen in Figure 7.36-a. It is interesting to note from Figure
7.36-b that, while a climb force is absent in an isotropic crystal (i.e. A = 1), we find that the lack of
stress component symmetry about the glide plane introduces a climb force in anisotropic crystals.

In fig. 7.37, the self-forces along a circular glide loop are shown in materials with different anisotropy
ratios. In the example, the loop radius is R = 100 b. The self-force (divided by 0.5(C11 − C12)b2/R)
is seen to increase with A. For strong elastic anisotropy (e.g. in Cu crystal), the variation of the
self-force along the loop is found to be considerable and non-monotone. These examples clearly show
that strong elastic anisotropy will not only change the magnitude and symmetry of the stress field,
but it will also change interaction and self-forces, sometimes in a dramatic way. In fig. (7.38), we
show the self forces for a circular dislocation loop in different materials, Al, Cu and Ni respectively.
The radius of the loop is R, slip system is (111)[1̄10]. The self force is normalized to b2R−1 × 1010 (to
which the unit magnitude of vector length equals).

7.5 Thin Films and Nanolayers

7.5.1 Introduction

The physics of strength in confined small volumes requires development of accurate methods for deter-
mination of dislocation interaction mechanisms. In particular, the influence of confining surfaces on
dislocation motion, configuration, and force distribution as dislocations approach or cross interfaces
needs precise quantification. Many recent technology applications are based on thin films or coat-
ings that are composed of alternating layers of different materials. Other important systems where
dislocation-interface interaction plays a significant role can be found in sandwiched interphases, nano-
layered materials, quantum dots on substrates and fine precipitate dispersions in alloys. For these
systems, free surfaces and interfaces have important effects on the stress field of dislocations and
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Figure 7.24: A circular dislocation loop on the (111) plane, with b along [1̄10] direction (a)
Global system, (b) Local coordinate system.
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Figure 7.25: Stresses along x-axis (local coordinate system) (a)σzx and (b) σxy. With stresses
divided by 0.5(C11 − C12)b/R, C11/C12/µ = 5 : 3 : 1.
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Figure 7.26: Stress Iso-surface for σzx(=0.08), with (a) A = 1, (b) A = 4 and (c) A = 0.25.
Stresses divided by 0.5(C11 − C12)b/R, C11/C12/µ = 5 : 3 : 1, and local coordinate system is
used.
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Figure 7.27: Stress Iso-surfaces for σxx(=-0.2), with (a) A = 1, (b) A = 4 and (c) A = 0.25.
Stresses divided by 0.5(C11 − C12)b/R, C11/C12/µ = 5 : 3 : 1, and local coordinate system is
used.
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Figure 7.28: Stress Iso-surface for σzx(=0.2), dislocation loop in (a) Al (A = 1.21), (b) Cu
(A = 3.21) and (c) Isotropic material (A = 1, with C11 and C12 choosing the values of Cu).
Stresses divided by 1010b/R, and local coordinate system is used.
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Figure 7.29: Stress Iso-surface for σxx(=-0.2), dislocation loop in (a) Al (A = 1.21), (b) Cu
(A = 3.21) and (c) Isotropic material (A = 1, with C11 and C12 choosing the values of Cu).
Stresses divided by 1010b/R, and local coordinate system is used.
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Figure 7.30: Stress Iso-surface for σyy(=-0.2), dislocation loop in (a) Al (A = 1.21), (b) Cu
(A = 3.21) and (c) Isotropic material (A = 1, with C11 and C12 choosing the values of Cu).
Stresses divided by 1010b/R, and local coordinate system is used.
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Figure 7.31: Stress Iso-surface for σzz(=-0.4), dislocation loop in (a) Al (A = 1.21), (b) Cu
(A = 3.21) and (c) Isotropic material (A = 1, with C11 and C12 choosing the values of Cu).
Stresses divided by 1010b/R, and local coordinate system is used.
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Figure 7.32: A circular dislocation loop on the (110) plane, with b along [1̄11] direction (a)
Global system, (b) Local coordinate system.
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Figure 7.33: Stress Iso-surface for σzx(=0.2), dislocation loop in (a) Fe (A = 2.36), (b) Nb
(A = 0.51) and (c) Isotropic material (A = 1, with C11 and C12 choosing the values of Nb).
Stresses divided by 1010b/R, and local coordinate system is used.



7.5. THIN FILMS AND NANOLAYERS 195

-2

-1

0

1

2

z/
R

-2

-1

0

1

2

x/R

-2

-1

0

1

2

y/R

(a)

-2

-1

0

1

2

z/
R

-2

-1

0

1

2

x/R

-2

-1

0

1

2

y/R

(b)

-2

-1

0

1

2

z/
R

-2

-1

0

1

2

x/R

-2

-1

0

1

2

y/R

(c)

Figure 7.34: Stress Iso-surface for σxx(=-0.4), dislocation loop in (a) Fe (A = 2.36), (b) Nb
(A = 0.51) and (c) Isotropic material (A = 1, with C11 and C12 choosing the values of Nb).
Stresses divided by 1010b/R, and local coordinate system is used.
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Figure 7.35: Stress Iso-surface for σzz(=-0.6), dislocation loop in (a) Fe (A = 2.36), (b) Nb
(A = 0.51) and (c) Isotropic material (A = 1, with C11 and C12 choosing the values of Nb).
Stresses divided by 1010b/R, and local coordinate system is used.
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Figure 7.38: The self-force of a circular dislocation loop in different materials. (A) Al, (B) Cu,
and (C) Ni. The self force is normalized to b2R−1 × 1010.



7.5. THIN FILMS AND NANOLAYERS 199

hence on plastic deformation at the nano- and micro-scales. In nano-scale and micro-scale applica-
tions, the ratio of interface-to-volume becomes very large compared to bulk applications, and hence
interfacial effects are expected to become dominant. Yield and post-yield properties of multi-layer
nano-scale materials deviate from the properties of bulk materials, and cannot be explained by con-
ventional plasticity theory. New mechanisms and relationships between the mechanical properties and
interfacial properties (including structure) in nano-scale multilayer materials need to be explored with
accurate theoretical methods.

The strength of multilayer materials is derived from the resistance of interfaces between layers
to dislocation motion, as dislocations cross them from one layer to another. To design ultra-strong,
yet ductile materials, one needs to understand how dislocations interact with interfaces. Resistance
forces to dislocation motion can result from structural effects and/ or elastic moduli mismatches.
The influence of interface structure is attributed to several sources: lattice constant mismatch that
generates coherency strains, misfit interfacial dislocations in semi-coherent and incoherent interfaces,
stacking fault energy mismatch of the incoming and outgoing slip planes, slip system mismatch that
forces cross-slip of dislocations across the interface, and dislocation core spreading into the interface
(Clemens, Kung and Barnett 1999, Rao and Hazzledine 2000, Anderson and Li 2001). Elastic moduli
mismatch (discontinuity across the interface) induces dislocation image forces, which appear to be the
dominant source of resistance (Clemens et al. 1999, Rao and Hazzledine 2000, Anderson and Li 2001).
We will therefore focus our attention here on dislocation image forces in multilayer materials.

The computational framework of Dislocation Dynamics (DD) has been developed for fundamental
descriptions of plasticity and fracture. The approach relies on direct numerical simulations of the
collective motion of dislocation ensembles without ad hoc assumptions, e.g. (Kubin et al. 1992, Schwarz
1999, Zbib et al. 1998, Ghoniem et al. 2000a). However, most DD applications so far are for the
deformation of bulk, isotropic materials. Very little attention has been paid to finding solutions for
the elastic field of three-dimensional dislocations near interface, and no exact analytical solutions
exist even for the simple case of a straight dislocation segment in two half-space materials. Using
approximate methods or numerical calculations, a few recent studies have attempted to treat the
influence of free surfaces (i.e. image effects) on the dynamics of dislocation systems. These are
summarized as:

1. In the superposition method, combined with the finite element or boundary element methods,
numerical techniques are utilized to satisfy traction equilibrium at free surfaces (Weigrand,
Friedman, Van der Giessen and Needleman 2002, Martinez and Ghoniem 2002);

2. In the surface dislocation method, surface dislocation loop distributions are invoked so as to
approximately satisfy interfacial or free surface traction conditions at specific surface collocation
points (Khraishi, Zbib and de la Rubia 2001);

3. Approximate methods are based on Lothe’s solution (Lothe, Indenbom and Chamrov 1982,
Schwarz 1999), or assume rigid interfaces (Von Blanckenhagen, Gumbsch and Arzt 2001);

4. Elasticity methods for the solution of a dislocation segment near a free surface (Gosling and
Willis 1994, Fivel, Gosling and Canova 1996), or the Boussinisque solution for a point force on
a free surface (Verdier, Five and Groma 1998)

The approaches described above have their limitations. Numerical methods (the finite element
(FEM) or the boundary element (BEM)), suffer from the necessity to re-calculate the super-posed FEM
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or BEM solution every time step. As dislocations approach the surface or interface, the mesh must be
refined, and the solution is not convergent if special care is not exercised with dislocation singularities.
Other methods are limited to the simplest free surface boundary condition, and their extensions to
anisotropic multilayered materials are not readily attainable, without ad hoc approximation. The
numerous interfaces in multi-layer thin films pose particular difficulties for all existing methods. No
solution for 3-D arbitrary shape dislocations in anisotropic multilayer materials is thus available.

The objective of the present work is to develop solutions for the elastic field of dislocation loops
of arbitrary shape in anisotropic multilayer thin films, and to investigate interfacial image forces on
dislocations. Methods for determination of the stress field and interface/free surface interaction forces
will be considered for a number of cases, currently of practical interest:

1. A single thin film layer on a substrate. Here, we consider variations of hard/soft films on a
substrate;

2. A capped thin film on a substrate, with variations of the thickness of the capped layer;

3. A dislocation loop crossing an interface between two adjacent layers.

The selected examples are intended to show features of the stress field and interaction forces of dislo-
cations in anisotropic, multilayer thin films.

We will first utilize the method of Yang and Pan (Yang and Pan 2002a, Yang and Pan 2002b)
to calculate Green’s functions and their derivatives in anisotropic multilayers in Section ??. The
elastic field of dislocations in multilayer thin films is then presented in Section ??, with numerical
applications for infinitesimal and finite dislocation loops. Analysis of the effects of image forces due
to free surfaces and interfaces will be presented for static dislocation loops in Section 9.3.6, where we
consider dislocations in a film-on-substrate, capped film-on-substrate, and a dislocation crossing an
interface. We finally present our conclusions in Section 9.5.5

7.5.2 Infinitesimal Dislocation Loop in Film-on-substrate

Here, we show results for a small (infinitesimal) dislocation loop in a thin film on top of a very thick
substrate, which is approximated as half-space. The film-substrate system is shown in Figures ?? and
7.40, with a thin film (of thickness h) on top of a half-space substrate. The substrate material (z < 0)
is copper, and the thin film is either aluminum or nickel. The materials selected for this example
are all fcc cubic anisotropic crystals, with their crystallographic axes [100],[010] and [001] taken to
coincide with the x, y and z directions, respectively. The elastic constants are taken from reference
(Hirth and Lothe 1982). The anisotropic ratio A = 0.5(C11 −C12)/C44) is 3.21, 1.21 and 2.52 for Cu,
Al and Ni respectively (A = 1 for isotropic materials).

Assuming an infinitesimal dislocation is located at the middle of the thin film (i.e. x′ = (0, 0, 0.5h)),
with its surface area δA lying on the (111) plane, and b along the [1̄10]-direction. Figures 7.41 and
7.42 show contour lines for the out-of-plane stress σ32 and the in-plane stress σ12 on the plane y = 0,
respectively. The stresses are normalized to |b|δAh−3 × 1010 . From these figures, it can be seen
that the out-of-plane stresses are forced to decrease identically to zero at the surface to satisfy free
traction boundary conditions. On the other hand, in-plane stresses are released at the free surface. At



7.5. THIN FILMS AND NANOLAYERS 201

Figure 7.39: Geometry of a multilayered thin film system.

Figure 7.40: Geometry and coordinate system for the film-on-substrate arrangement.

the interface (z = 0), the out-of-plane stress components are continuous, while in-plane components
experience jumps as a result of the discontinuity in the elastic properties. As one approaches the
interface from a softer material to a harder one ( e.g. Al to Cu), the stress fields, especially in-plane
components, are arrested. Once one moves across the interface, in-plane components are released, and
experience a jump. It is also observed that he stress fields usually are more complex for a source in
a material with a high anisotropic ratio (e.g. Ni), while show smoother variations in nearly isotropic
materials ( e.g Al.)

7.5.3 Dislocation Loop in Film-on-substrate

To understand the effects of free surfaces and the interfaces on stress distributions around finite-size
dislocation loops, we present here results for a circular loop. As an example, we choose the same (Al)
film and (Cu) substrate, as shown in Figure ??. The circular shear loop (radius, R = 0.5h) is located in
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the middle of the film (0,0,0.5h), and lies on the (111)-plane, with b along the [1̄10]-direction. Figure
7.43-(a) shows the σ23 = 0.15 iso-surface (normalized to |b|R−1 × 1010). For comparison purposes,
the same iso-surface in an Al infinite space is shown in Figure 7.43-(b). To satisfy the zero traction
boundary condition at the top surface, the out–of-plane stress iso-surface is totally confined below it.
The volume of the same iso-surface expands into the softer material across the interface. This means
that the range of influence of a dislocation loop in a harder layer expands into neighboring softer
layers, as compared to the infinite medium case.

7.5.4 Dislocation-Interface Interaction

So far, we determined the main characteristics of the elastic stress field induced finite size or infinitesi-
mal dislocations in a multilayer material. However, an area of great interest, especially in relationship
to DD simulations, is the distribution of configurational forces on dislocations as they move or change
their shapes. A dislocations will experience a configurational force (so-called Peach-Koehler force), if
it attempts motion or change in shape in a stress field, σ. The force , f, on a dislocation loop segment,
dl, of a 3-D loop, of a burgers vector b, can be determined by the Peach-Koehler formula:

f = σ · b × dl. (7.219)

We will divide the stress field induced by a dislocation into two parts: the full-space solution σ∞

and the image contribution σI . This separation will allow us to consider interface effects on dislocation
forces, and to calculate the dislocation self-force without ambiguities. For a dislocation loop which is
located totally whin a single material layer, the stress separation is clear. σ∞ corresponds to the stress
field induced by the dislocation in a homogeneous, infinite medium with a material that is identical to
the layer where the dislocation is located. The stress field σ∞ of a dislocation in an infinite anisotropic
material can be expressed as a line integral along the dislocation loop by the formula of Mura (Mura
1968). σ∞ will then induce a self-force on the dislocation, which can be obtained by the procedure
of Gavazza and Barnett (1976), for details, see the work of Han et al. (2002). The force induced by
the regular part of the stress field, σI , is usually called image force, and can be calculated directly by
applying the Peach-Koehler formula.

When a dislocation loop does not reside totally in one single layer, but crosses one or more interfaces
and material layers, the separation of self-force from the image force is not so straightforward. In this
case, we distinguish between them in the following way. Consider a point P on the loop, and assume
that the whole loop is in a homogeneous, infinite medium, with a material identical to that in which
the point P is located. This loop will induce a stress field σ∞ and self-force on the unit dislocation
segment where P located. Now, subtract σ∞ from the total stress field to obtain the image stress σI ,
which is regular. We use this part of the stress field to calculate, unambiguously, the image force on
the dislocation segment at P.

In the following, we focus our attention on image forces on dislocations in a variety of representative
surface/interface conditions.



7.5. THIN FILMS AND NANOLAYERS 203

7.5.5 Film-on-substrate

Anisotropic thin films on extended substrates are common in many nano-scale and micro-scale appli-
cations. The distribution of image forces on dislocations in such systems determines how dislocations
approach free surfaces or the interface between the film and substrate. We consider here the same
film-on-substrate system with a representative circular dislocation loop, as in the previous section.
The distribution of image forces on a circular dislocation loop in an Al and Ni film on top of an
extended Cu substrate are shown in Figures 7.44-(a) and 7.44-(b), respectively. The force is per unit
length, and is normalized to |b|2R−1 × 1010. The free surface tends to attract the entire dislocation
line. However, the closer a dislocation segment is to the free surface, and the harder the material is,
the larger the surface image force. When a dislocation segment approaches an interface from a softer
material to a harder one (Al to Cu), the interface tends to block it, while from a harder material to
a softer side, the dislocation is attracted to the interface. It is noted from the figures that the image
force is truly three dimensional, and that the distribution, magnitude and direction cannot be easily
obtained from simple image constructions based only on 2-D analysis. This complexity presents sig-
nificant computational challenges to the development of DD models that faithfully account for surface
and interface effects. The other observation here is that while glide is the dominant component of
surface and interface image forces, there is considerable contributions from climb as well.

7.5.6 Capped Film-on-substrate

A capping layer is often deposited on top of thin films for environmental protection, or to engender
additional and desirable physico-chemical properties. Also, if the thin film is oxidizable, and is used
at ambient conditions, a naturally-grown oxide capping layer will be present. We consider here the
influence of capping layers on the behavior of dislocations confined within thin films. Strong interaction
between the dislocation and a free surface or an interface results in its deformation, such that a large
section of a dislocation loop is straight and parallel to the free surface or interface. We examine
here interaction forces between dislocation loops and multiple interfaces and a free surface. We use
a proto-typical dislocation loop to examine these interaction forces. We choose an Al film (width h)
on a Cu substrate. However, the film here is capped with another thin Cu film, of width hc. An
oblong dislocation loop is located in the middle of the Al thin film. The oblong loop is composed of
two straight segments parallel to the interfaces, and are connected by two half-circular segments, as
shown in Figure 7.45. The length of the straight part, and the width of the oblong section of the loop,
respectively, are L and D, with L = 2D and D = h. The distribution of image forces on the loop
are shown in Figures 7.45-a and 7.45-b, for various thicknesses of the capping layer. Image forces are
normalized to |b|2h−1 × 1010.

Numerical results show that image forces on the straight section of the loop near the capping
layer display strong dependence on the layer thickness. Image forces vary rapidly with increasing the
capping layer thickness, for hc < h. However, the magnitude and direction of forces tend to those for
hc → ∞. These conclusions mean that for thin capping layers (e.g. hc < h ), other nearby interfaces
(e.g. the free surface of the capping layer) have strong coupling effects on force distributions of the
dislocation. Thus, and in this case, the stress field and image force distributions are controlled by
interacting nearby interfaces. For thicker capping layers, however, one may be able to use image
forces resulting from an infinitely extended half-plane. We also consider image force variation, as the
dislocation approaches the Al-Cu interface. When a dislocation segment is very close to an interface,
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and distances to other interfaces are comparatively far, the image force exerted on this dislocation
segment is dominated by the closest interface.

7.5.7 Dislocation loop across an interface

One of the most critical considerations in designing ultra-strong materials is the ability to confine
dislocations in very thin layers, without allowing them to penetrate across interfaces. The strength
of a nano-layered system is greatly enhanced, if interfaces can indeed offer the necessary resistance to
their motion, even if high levels of stresses are applied. The maximum difference between the image
force on a dislocation segment in one material and the corresponding force after the dislocation segment
has crossed the interface into a neighboring material is known as the Koehler barrier (Koehler 1970).
The applied stress must be large enough to overcome this barrier, in addition to other configurational
resistance forces arising from structural effects of the interface itself. As such effects are outside the
scope of the present investigation, and require atomistic simulations, we address here the behavior of
dislocation segments in as much as the Kohler barrier is concerned. It is to be noted here that the
origin of this barrier is the change in the stiffness of the interatomic potential (e.g. the curvature of
the pair part of the potential), as dislocations cross from one material to another. In other words,
sudden changes in the elastic constants across an interface are reflected in a jump in the magnitude of
the image force on a dislocation segment. Since infinitesimal linear elasticity is used here, we would
not expect that the results are rigorously accurate very near the interface, and some approximation is
required. The original concept of Koehler was based on saturating (i.e. truncating) the image force, as
the dislocation comes within a specified minimum distance of a dislocation core width of 2|b| (Koehler
1970). We follow here the same model to deduce the resistance of an interface to dislocations crossing
it. Image forces will be calculated with the methods outlined earlier, and assumed to be valid up
to a cut-off distance of 1-2 atomic layers from the interface. This assumption is also consistent with
evaluations of self-forces, using infinitesimal linear elasticity as well (Ghoniem et al. 2000a)

To examine the nature of the Koehler barrier, we choose here the case of a circular dislocation
loop approaching an interface across two half-spaces. Figures 7.46-(a-c) show the force distributions,
including the self-force and the image-force on the loop, as the loop is brought to closer proximity from
the interface, and then finally cross the interface. In this example, the loop is on the (111)-plane with
[b along [1̄10] and a radius R = 200|b|. The Al-Cu interface is along the [001]-direction. The
image force is very large only on the part of the loop that is close to the interface. The force is
relatively small everywhere else, and decreases rapidly with distance away from the interface,
as can be observed in Figures 7.46-(a-c).

Force variations, for the two points A and B (which are the closest points when the cor-
responding loop segment approaches the interface), are displayed in Figures 7.47-(a)&(b) re-
spectively. Forces are plotted as functions of the distance of the point from the interface, and
they include self and image contributions. They are also separated into glide and climb compo-
nents. The 2D image force approximation (Koehler barrier), estimated for an infinite straight
dislocation near the interface is calculated and shown in the figures as dashed lines (Koehler
1970). It can be seen that when the loop is in one material (not across the interface), only the
glide component of the image force at the leading point (nearest to the interface) is close to the
Koehler estimate. The climb component and other loop configurations show drastic differences
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from the Koehler estimate as a result of the three dimensionality of the problem.

The direction of the in-plane curvature of the loop is chosen as the positive direction for
the self- and glide- forces, while the positive direction of the climb force is defined along the
plane normal to (111). It observed that when the distance between the leading point on the
dislocation and the interface is less than 20|b|, image forces increase sharply and interface
effects become dominant. If linear elasticity is taken as strictly valid, the force is singular at
the interface. Here, however, we assume its validity up to a minimum approach distance on the
order of the dislocation core width of 2|b|. The results displayed in Figures 7.47-(a)&(b) show
the complexity of loop force variations in the close proximity of the interface. First, the jump
in the self force is a result of the sudden change in the elastic constants of the medium, and
the magnitude of the force scales with the stiffness of the material. What is interesting here
to note is that while the climb component of the image force (including the Koehler barrier) is
dominant on the closest segment when the loop crosses from the softer (Al) to the harder (Cu)
material, as seen in Figure 7.47-(a), the situation is reversed when the loop crosses from Cu
into Al (see Figure 7.47-(b)). This unique asymmetry is a result of the fact that the entire loop
geometry determines the split between the climb (fc), and glide (fg) components of the force.
Such detailed behavior can be critical to whether the dislocation segment would prefer to climb
and cross-slip across an interface, or just simply continue gliding on the same glide plane if the
orientation is favorable.

7.5.8 Summary and Conclusions

The interest in the mechanical behavior of ultra-strong materials, prepared by sputter deposi-
tion of multiple nano-layers, and in the reliability and failure of thin films in microelectronic
and other applications, demands thorough understanding of dislocation behavior in such ma-
terial systems. In these applications, interfaces play a prominent role in controlling dislocation
motion, and hence, the strength and deformability. The present investigation provides a com-
putational method by which one can assess forces and interactions amongst dislocations in
anisotropic multi-layer materials. Future developments of DD, including applications in these
systems, rely on understanding accuracy limits of approximate numerical methods. For exam-
ple, the limits of existing methods for incorporation of free surface effects in DD simulations
(e.g. FEM, BEM, surface dislocations, etc.) may be determined by detailed comparisons with
the present method. We have shown here that the elastic field and configurational forces of
dislocation loops of arbitrary geometry, and in any type of anisotropic layered thin film can
be rigorously determined, if the thickness of the film is much less than its in-plane dimensions.
Starting from the point force problem of Green’s functions in a multi-layer thin film, the elas-
tic field of dislocation loops is obtained by a surface integral. The key issue here is that 2D
Fourier transforms can be used, together with the generalized Stroh’s formalism to obtain the
solution first in Fourier space, and then in real space by numerical inversion. To expedite the
computational aspects of these steps, the approach recently proposed by Yang and Pan (2002b)
is adopted.

Elastic field calculations of dislocations in anisotropic multilayer materials can be performed
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with great accuracy, without any limits on the number of material layers, or dislocation shapes.
However, direct implementation of this procedure in DD simulations may still be limited to
systems containing few dislocations at present as a result of the heavy computational cost,
despite efforts to expedite calculations of Fourier inversion integrals. Approximate methods
to develop line rather than surface integrals will benefit from the present investigation, since
numerical errors due to approximations can be readily determined.

Through a systematic numerical study of stress fields and forces induced by dislocations in
multi-layered materials, we draw the following conclusions:

1. Stress fields and image forces on dislocations are greatly influenced by the presence of in-
terfaces. Thus, interface image forces cannot be ignored or simply approximated without
careful considerations. Generally, however, the nearest interface to a dislocation seg-
ment determines the majority of image effects. However, in layered systems where layer
thicknesses are small (e.g. nano-layered materials), several neighboring interfaces (≈ 2-4)
simultaneously participate.

2. If applied forces on dislocations are large, the influence of interfaces on dislocation motion
may be only significant very close to the interface, within less than 10 nm. In such cases,
the closest interface becomes the most dominant.

3. When a dislocation segment is near an interface, the image force usually drives the seg-
ment towards a softer material and away from a harder one. Thus, when we consider
events occurring near an interface, such as dislocation threading, or dislocation nucle-
ation from interfaces, the force induced by the interface becomes very large and local.
As an approximation, one may consider the effect from this interface only, and ignore
interaction effects from other interfaces.

4. Stress fields emanating from dislocations are confined or released by a neighboring harder
layer or softer layer, respectively.

5. Interfacial image forces are inherently 3-dimensional, since they cannot be simply deter-
mined by geometric image constructions, as is customary in some DD simulations. Both
glide and climb components must be considered in the analysis of near-interface processes,
such as nucleation and threading. The barrier to climb may be smaller than that for glide,
and hence screw components may prefer to cross-slip rather than glide across an interface.
Only the glide component of the image force at the leading point (nearest to the inter-
face) is close to the 2-D Koehler estimate, when the loop is totally within one layer. The
climb component and other loop configurations show drastic differences from the Koehler
estimate.

6. Dislocation segments crossing interfaces display irreversibility of motion. When a dislo-
cation crosses from a softer to a harder material, it may prefer to climb. If the same
segment attempts to return from the harder to the softer material, however, its glide
Koehler barrier is smaller, and will hence glide across rather than retrace its previous
path. This mechanism cannot be explained by 2-D approximations, since it is a result of
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the asymmetry created across the interface by the presence of the dislocation loop itself
in two different media.



208 CHAPTER 7. THREE-DIMENSIONAL ELASTIC FIELDS

x/h

z/
h

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8
0

-0.2
-0.4
-0.6
-0.8
-1
-1.2
-1.4
-1.6
-1.8
-2

o

Free surface

Cu half space

Interface

[001]

DislocationAl film

[100]

(a)

x/h

z/
h

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0
-0.2
-0.4
-0.6
-0.8
-1
-1.2
-1.4
-1.6
-1.8
-2

o

Interface

Free surface

Ni film

Dislocation

Cu half space

[100]

[001]

(b)

Figure 7.41: σ32 stress contours on the y = 0 plane due to an infinitesimal dislocation loop at
(0, 0, 0.5h) in (a) Al(film) on a Cu(substrate); (b) Ni(film) on a Cu(substrate).
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Figure 7.42: σ12 stress contours on the y = 0 plane due to an infinitesimal dislocation loop at
(0, 0, 0.5h) in (a) Al(film) on a Cu(substrate; (b) Ni(film) on a Cu(substrate).
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Figure 7.45: Image force of an oblong dislocation loop in an Al film on a Cu substrate. The Al
film is capped by a Cu layer of thickness hc = 0.1h (a), 0.2h (b) and 0.5h.
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Chapter 8

Computational Methods

8.1 2D Dislocation Dynamics - Noronha

8.1.1 Basic Procedure

8.1.2 Multipole expansions

8.1.3 Applications

8.2 Variational Equations of Motion

In DD simulations of plastic deformation, the computational effort per time-step is proportional
to the square of the number of interacting segments, because of the long-range stress field as-
sociated with dislocation lines. The computational requirements for 3-D simulations of plastic
deformation of even single crystals are thus very challenging. It is therefore advantageous to
reduce the total number of Equations Of Motion (EOM) during such calculations. Pioneering
3-D DD simulations of plasticity using straight segments are based on analytical solutions of the
elastic field of pure screw and edge segments (?) -(?), or segments of mixed character (?)-(?).
Zbib, Rhee and Hirth (?) have shown that the length of each straight segment is roughly limited
to ∼ 50 − 200 units of Burgers vector. Longer segments may have substantial force variations,
thus limiting the usefulness of one single equation of motion for the entire segment. While Fig.
8.1 shows a schematic representation for the position of displaced segments, Fig. 9.56 illustrates
force distributions on them. Singular forces and stresses arise at sharp intersection points of
straight segments, which result in divergence of the average force over the straight segment as
the segment length is decreased, as can be seen schematically from Fig. 9.56. When the dislo-
cation loop is discretized to only screw or edge components, which move on a crystallographic
lattice (?) -(?), the accuracy of strong dislocation interactions is compromised because line
curvatures are crudely calculated. In addition, motion of dislocation segments on a fixed lattice
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Figure 8.1: Discretization of a dislocation loop with linear segments leads to loss of connectivity
when the equations of motion are developed only for mid-points.

produces inherent limitations to the accuracy of the overall dislocation dynamics. Recently,
Schwartz (?) -(?) developed an adaptive method to reduce the segment size when dislocation
interactions become strong. Using a modified form of the Brown formula (?) for the self-force
on a segment, the field divergence problem for very short segments was circumvented . For
closely interacting dislocations, substantial curvature and re-configuration of dislocations occur
during the formation of a junction, dipole, or other configuration (?). However, the number of
straight segments required to capture these processes is very large, and the segment size may
have to be on the order of a few Burgers vectors. Most of these difficulties recognized from
FIGS. (8.1) and (9.56) arise from the linear segment approximation, the differential treatment
for their equations of motion, and the required curvature approximation for the self-force.

Dislocation loops in DD computer simulations are treated as dynamical systems, which can
be described by the time dependence of specified coordinates. Obviously, if one attempts to
solve the equations of dynamics for each atom within and surrounding the dislocation core,
the number of equations is prohibitively large. On the other hand, if one knows that certain
modes of motion for groups of atoms are closely-linked, many equations can be adiabatically
eliminated, as is now conventional in the treatment of dynamical systems. Thus, instead of
developing equations for the geometry of each single atom, one can find a much smaller set of
geometric generalized coordinates, which would adequately describe the dynamical behavior of
an entire dislocation loop. In Lagrangian descriptions, a number of generalized coordinates,
qr, is selected, where the subscript r represents a specific Degree of Freedom (DF) for the
dynamical system. In a numerical computer simulation, however, the size of the system depends
on available NDF . Within the context of DD, one would expect that NDF is relatively small
in loops which conform to specific crystallographic or mobility constraints, while NDF can be
somewhat large in situations where strong interactions, cross-slip, or similar processes take
place. In general, it is not of interest to follow every wiggle and bump on dislocation lines,
unless such details develop into full-fledged instabilities. For specific applications, however, we
intend to reduce NDF as much as reasonable for the description of the physical situation at
hand. This will be clarified by a number of examples, where physical constraints are imposed
on dislocation motion.
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Figure 8.2: Force distribution on the straight segment AB from neighboring segments shows
singular behavior at sharp corners. Force averaging over linear segments diverges as its length
is decreased.

Our plan here is to describe the equations of motion for generalized coordinates in much the
same way as in Lagrangian mechanics. Regardless of the dislocation loop shape complexity,
we will develop an integral equation of motion for each curved segment within the loop, such
that only relationships between global thermodynamic variables are obeyed. For concreteness,
we focus the current approach on dislocation line representation by parametric dislocation seg-
ments, similar to the Finite Element Method (FEM). Thus, the equations of motion for the
transport of atoms within the dislocation core should be consistent with the thermodynam-
ics of irreversibility. A challenging prospect in such a description is the enormous topological
complexity of materials containing dislocations. Dislocation lines assume complex shapes, par-
ticularly during heavy deformation and at high temperatures where they execute truly 3-D
motion as a result of combined glide and climb forces. These dislocations can be highly curved
because of their strong mutual interactions, externally applied stress fields, as well as other
thermodynamic forces. It is apparent that whenever large curvature variations are expected,
the accuracy of computing the dynamic shape of dislocation loops becomes critical.

The paper is organized as follows. First, irreversible thermodynamics of dislocation motion
is presented in Sec. 8.2.1, in which we discuss energy components and entropy production
during loop motion. This leads to an integral form of the variation in Gibbs energy in Sec.
8.2.2. A weak form of a variational procedure is pursued to formulate the equations of motion
for the degrees of freedom based on the Galerkin approach. Computational protocols which are
used to handle close-range interactions are then discussed in Sec. 8.2.3. To help illustrate the
computational procedure, a simple example is also given. Applications of the present method to
dislocation motion under physical constraints, and to several problems of loop-loop interaction
and dislocation generation in fcc, bcc and diamond cubic (dc) Si crystals are given in Sec. 8.2.4
. Finally, conclusions and discussions follow in Sec. 9.5.5.
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Figure 8.3: Representation of loop motion in an infinitesimal transition, illustrating thermody-
namic variables

8.2.1 Irreversible Thermodynamics of Dislocation Motion

Consider a body, volume Ω and its boundary S, in thermodynamic equilibrium, containing
a dislocation loop in an initial position (1), as shown in Fig. 8.3. Under the influence of
external mechanical forces (Fe), and thermodynamic internal forces (Fi), the dislocation loop
will undergo a transition from the initial state to a new one designated as (2). Every point on
the dislocation loop line is translated to a new position. In the meantime, material points in
the body will deform elastically. During this transition of states, energy will be exchanged with
the elastic medium, as given by the first law of thermodynamics:

U.
t + δEt = δQt + δCt + δW t (8.1)

where: δU t is the change in internal energy, δEt the change in kinetic energy, δQt the change
in heat energy, δC t the change in chemical energy by atomic diffusion, and δW t the change
in its mechanical energy. The left hand side of Equation (8.1) represents the total change in
the energy of the body. We will ignore here changes in the kinetic energy, and restrict the
applications of the present model to dislocation speeds less than approximately half of the
transverse sound speed (see Refs. (?)-(?) for the effects of kinetic energy on the dynamics).

Now the total internal energy can be written as a volume integral: δU t =
∫
Ω

δUdΩ, where

δU is the specific (per unit volume) change of the internal energy. The mechanical power
is composed of two parts: (1) change in the elastic energy stored in the medium upon loop
motion under the influence of its own stress. This is precisely the change in the loop self-energy
within a time interval δt, (2) the work done on moving the loop as a result of the action of
external and internal stresses, excluding the stress contribution of the loop itself . These two
components constitute the Peach-Koehler work. Thus: δW t =

∫
Ω

σikdεikdΩ. Care must be
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exercised in evaluating the elastic field variables, as will be discussed later. The change in the
total chemical energy can be written as a volume integral of the chemical potential µi, over
the atomic concentration change dni, which is negative for mass transport out of the volume.
Additionally, if loop motion produces geometric defects (e.g. jogs and vacancies), chemical

energy is deposited. Thus: δC t =
∫
Ω

(
dPd −∑

i
µidni

)
dΩ. Finally, the net change in the heat

energy is composed of two parts: (1) heat energy (dH∗) generated by the loop as a result of
atomic damping mechanisms (e.g. phonon and electron damping), and (2) heat transported
across the boundary to the external reservoir, which is negative by convention. Hence, we have:
δQt =

∫
Ω

dH∗dΩ − ∫
S

Q • dS. Here Q is the outgoing heat flux at the boundary. Using the

divergence theorem for boundary integrals, we obtain:∫
Ω

[
(dU − dH∗ − dPd) + (Qk,k +

∑
i

µidni − σikdεik)

]
dΩ = 0 (8.2)

We will denote the enthalpy change dH = dH∗ + dPd, as the energy dissipated in defect
generation and as heat. It is noted that in the special case where there is no heat or mass
transport (i.e. Qi,i = dni = dPd = 0), no loop motion (i.e. δWPK = 0), and under a hydrostatic
stress field (i.e. σik = −Pδik), we get: σikdεik = −Pδikdεik = −Pdεii = −PdV , for a unit initial
volume. Thus, we recover the familiar relationship between enthalpy and internal energy: dU =
dH − PdV . For an isothermal process, the Gibbs energy change is given by: dG = dH − TdS.
Thus:

δGt =
∫
Ω

[
(dU − TdS) + (Qi,i +

∑
i

µidni − σikdεik)

]
dΩ (8.3)

In addition to energy conservation, loop motion must result in a total increase in the en-
tropy of the body and its surroundings. The Clausius-Duhem statement of the second law of
thermodynamics can be phrased as (?): ”the total entropy production rate of the body and its
surroundings must be positive for an irreversible process”. Following Erringen (?), and Malvern
(?), we construct the following entropy production inequality for the solid:

δΦt = δSt − B −
∫
S

Ξ • dS ≥ 0 (8.4)

where δΦt ≡ ∫
Ω

ΦdΩ is the total entropy production during δt, δS t the total change in entropy,

b the local entropy source per unit volume with B ≡ ∫
Ω

bdΩ, and Ξ the entropy influx due to

heat input across the boundary S. Utilizing the divergence theorem again in Equation (8.4),
we obtain the following inequality per unit volume:

Φ = δS − b − Ξk,k ≥ 0 (8.5)

Now, the entropy flux crossing the boundary is: Ξ = Q
T

, and the flux divergence is given by:

Ξk,k =
(

Qk

T

)
,k

=
1

T
Qk(lnT )),k −

1

T
Qk,k (8.6)
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While the local entropy source is given by:

B =
∫
Ω

dH

T
=
∫
Ω

1

T

[
dU + Qk,k − σikdεik +

∑
i

µidni

]
dΩ (8.7)

Substituting Equations (8.6) and (8.7) into Equation (8.4), we obtain:

∫
Ω

{
(dU − TdS) + Qk(lnT ),k − σikdεik +

∑
i

µidni

}
dΩ ≤ 0 (8.8)

Comparing the entropy production inequality (8.8) with Equation (8.3), we can immediately
see that a consequence of irreversibility (i.e. entropy production) is a decrease in Gibbs free
energy. Following arguments similar to Erringen (?), we write the internal energy in terms of
entropy variations as:

δGt =
∫
Ω

[
(
∂U

∂S
− T )δS + Qk(ln(T )),k − σikdεik +

∑
i

µidni

]
dΩ ≤ 0 (8.9)

Since the inequality must be valid for all variations of δS, its coefficient must vanish (?),(?).
Thus, the principle of entropy production results in the following statement:

δGt =
∫
Ω

[
Qk(lnT ),k − σikdεik +

∑
i

µidni

]
dΩ ≤ 0 (8.10)

Under conditions where heat generation during dislocation motion is significant (e.g. high-
speed deformation), additional equations must be solved for the coupled point-defect and heat
conduction. Thus, equations for point-defect conservation, as well as generalized forms of Fick’s
and Fourier laws must be added. These are expressed in the following:

Cγ
,t = Jγ

k,k (8.11)

Jγ
k = −Dγ

ikC,i − Dik

(
Q∗C
kT 2

)
T,i (8.12)

Qα,t = −κikT,i − Q∗DiαC,i (8.13)

where κiα is the thermal conductivity tensor, Dγ
ik the diffusion tensor of defect γ, Q∗ the

corresponding heat of transport, and Qk,t the rate of change of the thermal energy.

We treat here the specific case where thermal effects are small (i.e. the first term in Equa-
tion (8.10) is ignored), and where climb motion of the dislocation loop is a result of point
defect absorption (i.e. the third term in Equation (8.10) is summed over only vacancies and
interstitials). In Equation (8.10), the volume integrals of the elastic term and the chemical
term (osmotic) can be converted to line integrals over the dislocation loop. The stress tensor
acting on any point is decomposed into a contribution resulting from the loop itself (i.e. self-

stress σ
(s)
ik ), and a contribution resulting from other dislocations, defects, Peierls stress, and the
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applied stress field (i.e. external stress σ
(e)
ik ). Thus, when the stress tensor in Equation (8.10)

is written as: σik = σ
(s)
ik + σ

(e)
ik , the elastic term results in two contributions to Gibbs energy,

while the chemical term results in one additional contribution. We outline in the following how
these three contributions can be converted to line integrals over the loop.

Now consider an infinitesimal variation in the position of a dislocation loop, depicted by
the motion of the segments

⋃
(AB,BC,CD, ··) in a time interval δt. During this motion, the

dislocation core line length has changed from L to L + ∆L. The dislocation line vector is
denoted by ds = t | s |, and the change in position for every atom on the dislocation line is
described by the vector δr. For the change in the amount of work done on the dislocation loop
during its transition from state(1) to state(2) in Fig. 8.3 above, we assume that the stress field
is uniformly acting on every surface element dA = b × ds. The associated element of virtual
force is: dF = Σ • dA. During loop motion from state(1) to state(2), the variation in this
Peach-Koehler work (?) obtained by integration along the path Γ is given by:

∫
Ω

[σikdεik]
(e)dΩ = δWPK =

∮
Γ

dF • δr =
∮
Γ

(b × ds • Σ) • δr (8.14)

=
∮
Γ

(b • Σ × t) • δr | ds |

=
∮
Γ

(∈ijk σjmbmtkδri) | ds |

The unit vector t is tangent to the dislocation line, and lies on its glide plane, while ∈ijk is
the permutation tensor. Ghoniem and Sun (?) -(?) showed that the stress tensor of a loop
ensemble can be written as a fast numerical sum, given by:

σij =
µ

4π

Nloop∑
γ=1

Ns∑
β=1

Qmax∑
α=1

bnwα

[
1

2
R,mpp (∈jmn ri,u+ ∈imn rj,u) +

1

1 − ν
∈kmn (R,ijm − δijR,ppm) rk,u

]
(8.15)

In Equation (8.68) above, the fast sum is carried over the number of loops (Nloop), the
number of parametric segments within each loop (Ns), and the number of quadrature points
on each curved segment (Qmax). The third order tensor Rαβγ contains successive derivatives
of the radius vector R connecting a point on the dislocation loop to a field point, and rk,u are
parametric derivatives of the Cartesian components which describe the 3-D dislocation segment
as a function of the parameter (u) ( for details, see references (?) -(?)). The shear modulus is
µ and wα are weight functions at the quadrature point set {α} on the curved segment.

The total self- energy of the dislocation loop is obtained by double integrals along the contour
Γ. Gavazza and Barnett (?) have shown that the first variation in the self- energy of the loop
can be written as a single line integral of the form:
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∫
Ω

[σikdεik]
(s) dΩ =

∮
Γ

([
E(t) − (E(t) + E ′′(t)) ln(

8

εκ
)
]
κ − J(L,P)

)
n•δr |ds|+[δU ]core (8.16)

where n is normal to the dislocation line vector t on the glide plane, and ε =| b/2 | is the
dislocation core radius (?). The first term results from loop stretching during the infinitesimal
motion, the second and third are the line tension contribution, while J(L,P) is a non-local
contribution to the self-energy. The dominant contributions to the self- energy (or force) are
dictated by the local curvature κ, and contain the pre-logarithmic energy term E(t) for a
straight dislocation tangent to the loop at point P, and its second angular derivative E ′′.
[δU ]core is the contribution of the dislocation core to the self-energy. Defining the angle between
the Burgers vector and the tangent as α = cos−1( t•b

|b| ), Gore (?) showed that a convenient

computational form of the self- energy integral for an isotropic elastic medium of ν = 1
3

can be
written as:

∫
Ω

[σikdεik]
(s) dΩ =

∮
Γ

(
−κ [E(α) + E ′′(α)] ln(

8

εκ
) + µb2[κ(

21 + cos2α

64π
) + κ̄(

2 cos2α − 1

2π
)]

)
n•δr |ds|

(8.17)

where the energy pre-factors are given by:

E(α) =
µb2

4π(1 − ν)
(1 − ν cos2α) (8.18)

E ′′(α) =
µb2 ν

2π(1 − ν)
cos 2α (8.19)

Accurate numerical calculations of the self-energy of any complex-shape loop have been
performed by Ghoniem and Sun (?), where the double line integral is converted to a fast sum-
mation over the loop segments and quadrature points. However, a purely numerical method for
evaluation of the self-energy requires intensive computations because of the need to use large
quadrature order for good accuracy (?). Equation (8.17) is an alternate convenient approxima-
tion, in which the contributions of various terms are easily computed. Schwarz (?) conducted
a numerical study to determine the effects of various terms on the self-force, and concluded
that the major contribution results from the first two terms in Equation (8.17), which are the
usual line tension approximation. However, the relative importance of the third term (which
represents contributions from the dislocation core and dislocation line stretching) and fourth
term (which is an approximation to non-local contributions from other parts of the loop) can
be seen by a simple argument. The non-local term is obtained by approximating the loop as a
pure shear loop at an average curvature of κ̄. For a reasonable size loop of approximate radius
in the range 1000 − 10000 | b |, it can be shown that the total contribution of non-local, core
and stretch terms is on the order of less than 18%. The contribution of the non-local term is
about half of this amount for purely edge components. Hence, a computationally efficient and
very accurate method is obtained when all contributions are combined in Equation (8.17).
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Figure 8.4: 3-D motion of a curved dislocation segment involving in-plane glide and out-of-plane
climb.

Absorption of point defects by dislocation segments can be treated by considering the influ-
ence of the chemical term in Equation (8.10) on its motion. Incorporation of atomic defects
into dislocation cores leads to dislocation climb. The thermodynamic force associated with this
motion is referred to as the osmotic force. As illustrated in Fig. 8.4, during climb motion of
atoms within the dislocation core, the number of vacancies (or interstitials) per unit length dnγ

L
,

changes by the amount:
dnγ

L
=

| b | m • δr

Ωγ

(8.20)

where Ωγ is the vacancy (interstitial) volume, and m is a unit vector normal to the glide plane
(see Fig. 8.4). The change in chemical potential per vacancy (interstitial) is given by:

µγ = kT ln (
Cγ

Ceq
γ

) (8.21)

Here Cγ is the non-equilibrium concentration of vacancies (or interstitials), which may result
from quenching, a sudden change in temperature, irradiation or an externally applied stress
(?), and Ceq

γ is the thermodynamic equilibrium concentration of the atomic defect. The cor-
responding contribution from point defect flow to the variation in Gibbs energy for the entire
loop can now be obtained by line integration. Incorporating Equations [8.14,8.17,8.20,8.21] into
inequality (8.10), we obtain:

δGt = −
∮
Γ

(fS + fO + fPK) • δr | ds |≤ 0 (8.22)

where we define the following generalized thermodynamic forces:

• fPK ≡ the Peach-Koehler force per unit length = b • Σ × t

• fS ≡ the self- force per unit length
(
−κ [E(α) + E ′′(α)] ln( 8

εκ
) + µb2[κ(21+cos2α

64π
) + κ̄(2 cos2α−1

2π
)]
)
n
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• fO ≡ the total Osmotic force (?) for defect γ per unit length = −∑
γ

γ kT |b|
Ωγ

ln
(

Cγ

Ceq
γ

)
m

where γ = (−1) for vacancies and(+1) for interstitials

In compact tensor form, Equation(8.22) can be written as:

δGt = −
∮
Γ

f t
kδrk | ds | ≤ 0 (8.23)

where f t
k is the k-component of the total force: f t = fS + fO + fPK , and δrk is the displacement

of core atoms in the k-direction.

8.2.2 Variational Formulation

Governing Integral Equation of Motion

Inequality (8.10) suggests that the components of Gibbs energy can be written as conjugate
pairs, representing the inner products of generalized thermodynamic forces and generalized dis-
placements. The equations of motion can thus be obtained if one defines an appropriate set
of generalized coordinates and conjugate generalized thermodynamic forces, in such a way as
to result in entropy production and a corresponding decrease in δG during a virtual infinites-
imal transition. Let’s assume that atoms within the dislocation core are transported in some
general drift force field, as a consequence of the motion of atomic size defects (e.g. vacancies,
interstitials, kinks and jogs). The drift velocity of each atom is given by Einstein’s mobility
relationship: Vλ = 1

kT
Dfλ, where Vλ is the drift velocity, D is a diffusion tensor, and fλ is a

generalized thermodynamic force representing process λ. Similarly, the flux resulting from a
given process can be related to a corresponding thermodynamic force. We consider here three
thermodynamic forces: (1) forces of mechanical origin (i.e. Peach-Koehler forces), as a result
of variations in virtual work on the dislocation loop and variations in the stored elastic energy
in the medium when the dislocation changes its shape, (2) gradients in point defect concen-
trations within the surrounding medium (i.e. chemical forces), and finally (3) temperature
gradient forces associated with heat flow.

A generalization of the previous analysis can be accomplished if one postulates that near
equilibrium, thermodynamic forces are sufficiently weak that we might expand the flux in a
power series in fλ (?). Let’s denote Jk({fλ} as type-k flux as a result of a generalized ther-
modynamic force λ, {fλ}. Thus, a generalization of Einstein’s phenomenological transport
relationship is given by:

Jk({fλ}) = Jk(0) +
∑
λ

(
∂Jk

∂fλ

)
0

fλ +
1

2

∑
λm

(
∂2Jk

∂fλ∂fm

)
0

fλfm + · · ·· (8.24)

In the linear range of irreversible processes, Equation (8.24) is restricted to only the first two
terms in the expansion. Moreover, at thermodynamic equilibrium in the absence of generalized
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forces, all modes of atom transport vanish, and the first term, J(0), is identically zero. Taking
the velocity of atoms on the dislocation line (i.e. representing the core) to be proportional to
the atomic flux, and defining generalized mobilities via a mobility tensor L with components:
Lij =

(
∂Vi

∂fj

)
0
, the phenomenological relationship (Equation (8.24) ) is simplified to:

Vβ({fλ}) =
∑
λ

Lβλfλ (8.25)

As a consequence of the increase in entropy production Φ, or equivalently the decrease in
Gibbs energyδG, Prigogine (?) showed that: Lβλfβfλ ≥ 0. This relationship gives a positive
definite quadratic form, which imposes restrictions on the matrix of coefficients to be positive.
The generalized mobilities Lij are subject to additional temporal symmetries as a result of the
principle of detailed balance, as shown by Onsager (?) : Lβλ = Lλβ. The mobility matrix
relates the influence of an independent thermodynamic force of the λ-type to the partial flux of
the k-type. In most applications of DD so far, the mobility matrix Lλβ is assumed to be diagonal
and independent of the type of thermodynamic force. However, we will assume that dislocation
mobility is spatially anisotropic, since the speed of screw segments is usually smaller than
edge segments as a consequence of the crystal structure. These simplifications lead to direct
proportionality between the velocity and total force along each independent direction. Thus, we
can denote Bαk as a diagonal resistivity (inverse mobility) matrix, and substitute in Equation
(8.23) to obtain the following equivalent from of the Gibbs energy variation:

δGt = −
∮
Γ

BαkVαδrk | ds | (8.26)

The resistivity matrix can have three independent components (two for glide and one for
climb), depending on the crystal structure and temperature. It is expressed as:

[Bαk] =

⎡⎢⎣B1 0 0
0 B2 0
0 0 B3

⎤⎥⎦ (8.27)

Combining Equation(8.23) with Equation(8.26), we have:∮
Γ

(
f t

k − BαkVα

)
δrk | ds |= 0 (8.28)

The magnitude of the virtual displacement δrk is not specified, and hence can be arbitrary.
This implies that Equation(8.28) is actually a force balance equation on every atom of the
dislocation core, where the acting force component f t

k is balanced by viscous dissipation in the
crystal via the term BαkVk. However, this is not necessarily desirable, because one needs to
reduce the independent degrees of freedom which describe the loop motion, yet still satisfies
the laws of irreversible thermodynamics described here. To meet this end, we develop a general
method, with greatly reduced degrees of freedom for the motion of dislocation core atoms.
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The Galerkin Method

Assume that the dislocation loop is divided into Ns curved segments, as illustrated in Fig. 8.1
. The line integral in Equation (8.28) can be written as a sum over each parametric segment j,
i.e.,

Ns∑
j=1

∫
j
δri(f

t
i − BikVk) | ds |= 0 (8.29)

Note that in Equation (9.3.7), we sum over the number of segments j and follow the standard
rules of 3-D tensor analysis. We now choose a set of generalized coordinates qm at the two ends
of each segment j. Then, the segment can be parametrically described as:

ri =
NDF∑
m=1

Cim(u)qm (8.30)

where Cim(u) are shape functions, dependent on the parameter u (0 ≤ u ≤ 1). Equation (8.30)
is a general parametric representation of the dislocation line for segment j. Possible convenient
parameterization methods are discussed in Refs.(?)-(?). In Sec. 8.2.3 we introduce quintic
splines as flexible and convenient parametric curves for complex dislocation loop geometry,
while the applications in Sec. 8.2.4 illustrate the utilization of several types of parametric
elements on the same loop. It is noted that the index m is assumed to be summed from 1
to NDF , where NDF is the number of total generalized coordinates at two ends of the loop
segment. Accordingly, the three components of displacement vector are given by:

δri =
NDF∑
m=1

Cim(u)δqm (8.31)

On the other hand, we have for the velocity of any point on the dislocation line, within
segment j:

Vk = rk,t =
NDF∑
n=1

Cknqn,t (8.32)

And the arc length differential for segment j is given by:

| ds | = (rl,url,u)
1
2 du =

⎛⎝NDF∑
p,s=1

qpClp,uCls,uqs

⎞⎠ 1
2

du (8.33)

An ensemble of dislocation loops is considered a continuous dynamical system, where every
point on dislocation lines is subject to continuous displacement. The finite element process
in continuum mechanics is based on approximating the continuous displacement field by a
linear combination of piece-wise known shape functions over specified domains. To obtain the
unknown coefficients in the linear combination, an integral form of the governing equation
is formulated, and an element-by-element assembly is extracted. The result is a system of
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equations for standard discrete systems, which can be handled by numerical methods. We will
follow a similar approach here, in which the weight functions in the integral form are the same as
the shape functions of the problem. Minimization of the weighted residuals results in symmetric
matrices, which simplifies integration of the equations of motion. This variational approach is
thus coincident with the Galerkin method as a special case of the method of weighted residuals.
Recently, a number of investigators formulated microstructure evolution problems in a similar
manner (see, for example Refs. (?) - (?)).

At this point, we may substitute Equations (8.31), (8.32), and (8.33) into the governing
Equation (9.3.7), and obtain the following form:

Ns∑
j=1

1∫
0

NDF∑
m=1

δqmCim(u)

⎡⎣f t
i − Bik

NDF∑
n=1

Cknqn,t

⎤⎦⎛⎝NDF∑
p,s=1

qpClp,uCls,uqs

⎞⎠ 1
2

du = 0 (8.34)

Appropriate collection of terms into more convenient functions can reduce the apparent com-
plexity of this form of the equation of motion. We will define here two such functions: an
effective force and an effective resistivity. A generalized force, fm, is defined as:

fm =
∫ 1

0
f t

i Cim(u)

⎛⎝NDF∑
p,s=1

qpNlp,uNls,uqs

⎞⎠ 1
2

du (8.35)

while a resistivity matrix element, γmn, is given by:

γmn =
∫ 1

0
Cim(u)BikCkn(u)

⎛⎝NDF∑
p,s=1

qpClp,uCls,uqs

⎞⎠ 1
2

du (8.36)

It is noted that [γmn] is a symmetric matrix because of the structure of the above definition
and symmetric mobilities. With these two parameters defined above, the variational integral
form of the Gibbs energy equation is readily transformed to a discrete form, given by:

Ns∑
j=1

⎡⎣NDF∑
m=1

δqm(fm −
NDF∑
n=1

γmnqn,t)

⎤⎦ = 0 (8.37)

For the entire dislocation loop, we map all local degrees of freedom q
(j)
i of each segment j onto

a set of global coordinates, such that the global coordinates are equal to the local coordinates
at each beginning node on the segment:

{q(1)
1 , q

(1)
2 , q

(1)
3 , ....., q

(2)
1 , q

(2)
2 , q

(2)
3 , ....} = {Q1, Q2, Q3, ..., QN}T (8.38)

where N is the total number of degrees of freedom of the loop. Similar to the finite element
procedure, the local segment resistivity matrix [γmn] is added into corresponding global locations
in the global resistivity matrix [Γkl], such that:

Ns∑
j=1

NDF∑
m=1

NDF∑
n=1

[δqmγmnqn,t]
(j) =

Ntot∑
k=1

Ntot∑
l=1

δQkΓklQl,t (8.39)
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where Ntot = NsNDF is the total number of degrees of freedom for the loop. The global
resistivity matrix [Γkl] is also symmetric and banded or sparse. The component Γkl is zero if
the degrees of freedom k and l are not connected through a segment. In addition, the global
force vector {Fk} can similarly be represented as

Ns∑
j=1

NDF∑
m=1

[δqmfm](j) =
Ntot∑
k=1

δQkFk (8.40)

Therefore, Equation (8.37) can be expressed as:

Ntot∑
k=1

δQk

(
Fk −

Ntot∑
l=1

ΓklQl,t

)
= 0 (8.41)

Since the virtual displacements in the generalized coordinates are totally arbitrary, the pre-
vious equation can only be satisfied if:

Fk =
Ntot∑
l=1

ΓklQl,t (8.42)

Equation (9.60) represents a set of time-dependent ordinary differential equations which de-
scribe the motion of dislocation loops as an evolutionary dynamical system. Similar microstruc-
ture evolution equations have been derived by Suo (?) in connection with grain and void growth
phenomena. Furthermore, the above spatially resolved equations can be discretized in time by
the so-called generalized trapezoidal family of methods (?) as:

Ntot∑
l=1

Γ
(n+α)
kl Q

(n+1)
l =

Ntot∑
l=1

Γ
(n+α)
kl Q

(n)
l + ∆tF (n+α)

k (8.43)

where ∆t is the time-step and n is the time-step index. In addition, α is a parameter, which
determines explicit or implicit time-integration, taken to be in the interval [0,1] such that:

α = 0 –for forward difference integration (Euler) ;

α = 1/2 – for midpoint or trapezoidal integration;

α = 2/3 – for Galerkin integration, and ;

α = 1 –for backward difference (Euler) integration.

8.2.3 Computational Geometry of Dislocation Loops

Curved Spline Parametrization

A dislocation loop is divided into a set of curved segments connected at their end nodes, with
each segment represented as an independent parametric space curve with parameter u varying
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in the range 0 to 1. A general vector form of the dislocation line equation for segment (j) can
be expressed as:

r(j)(u) =
n∑

i=0

A
(j)
i ui (8.44)

where n is a polynomial order and Ai represent the associated vector coefficients. The value
of n determines the segment type. Thus, when n = 1 the segment is a straight line, when
n = 3 the segment is a cubic polynomial and when n = 5 , the segment is a fifth-order (quintic)
polynomial. The coefficients Ai are determined by boundary conditions imposed on beginning
and end nodes. These boundary conditions can be described in terms of specified geometric
properties, such as the nodal position, tangent, curvature, or torsion. To solve for the six
coefficients A0 to A5 of a quintic spline segment, we have to assign six independent vectors, to
be determined by six boundary conditions r(j)(0), r(j)(1), r(j)

,u (0), r(j)
,u (1), r(j)

,uu(0), and r(j)
,uu(1),

where r(j)
,u = dr(j)/du and r(j)

,uu = d2r(j)/du2. Geometrically, r(j)(0) and r(j)(1) are the position

vectors of nodes j and j + 1, i.e., P(j) and P(j+1). The vectors r(j)
,u (0) and r(j)

,u (1) are the

tangent vectors of nodes j and j + 1, i.e., T
(j)
E t(j) and T

(j+1)
B t(j+1), respectively, where T

(j)
E and

T
(j+1)
B are magnitudes of tangent vectors at the end (E) and beginning (B) of each segment,

while the unit vectors t(j) and t(j+1) are the dislocation sense vectors at nodes j and j + 1,
respectively. The vectors r(j)

,uu(0) and r(j)
,uu(1) are linear combinations of the tangent and normal

vectors because they lie on the plane spanned by them. Because the resultant loop profile is a
composite curve, dislocation line continuity may not be maintained at each node if boundary
conditions on segments are arbitrarily assigned . In general, C0(position) and C1(tangent)
continuity can be easily satisfied if we assign the same position and tangent vectors at each
node. However, since self-forces on dislocation segments are proportional to the local curvature
(see Equation (8.17), C2 continuity will ensure the continuity of self-forces at segment nodes as
well. The curvature of a general point on segment j can be expressed as

κ =
‖r(j)

,u (u) × r(j)
,uu(u)‖

‖r(j)
,u (u)‖3 (8.45)

To maintain C2 continuity at each node, we let the curvature of the end point of segment j be
equal to the curvature at the beginning node of curved segment j + 1.

‖r(j)
,u (1) × r(j)

,uu(1)‖
‖r(j)

,u (1)‖3 =
‖r(j+1)

,u (0) × r(j+1)
,uu (0)‖

‖r(j+1)
,u (0)‖3 (8.46)

From Equation (8.46), and the fact that r(j)
,uu is a linear combination of T&N, the tangent

component of vector r(j)
,uu does not influence the line curvature. Therefore, we can just assign

the normal vectors N
(j)
E n(j) and N

(j+1)
B n(j+1) for r(j)

,uu(1) and r(j+1)
,uu (0), respectively, where N j

E and

N
(j+1)
B represent magnitudes associated with the unit vectors n(j) and n(j+1). After substituting

all boundary conditions into Equation (8.44) and rearranging terms, we obtain:

r(j)(u) = C1P
(j) + C2P

(j+1) + C3T
(j)
E t(j) + C4T

(j+1)
B t(j+1) + C5N

(j)
E n(j) + C6N

(j+1)
B n(j+1) (8.47)
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Note that the superscript on the LHS of Equation (8.47) refers to segment j, while on the RHS,
it is associated with nodes j and j + 1 on the same segment. The coefficients C1 to C6 are
invariant shape functions, and can be expressed in terms of parameter (0 ≤ u ≤ 1) as:

C1 = −6u5 + 15u4 − 10u3 + 1

C2 = 6u5 − 15u4 + 10u3

C3 = −3u5 + 8u4 − 6u3 + u

C4 = −3u5 + 7u4 − 4u3

C5 = −0.5u5 + 1.5u4 − 1.5u3 + 0.5u2

C6 = 0.5u5 − u4 + 0.5u3

We can cast the parametric Equation (8.47) into a convenient matrix form for a single
parametric quintic spline of a segment, if we re-organize the generalized coordinates qm as:

{qm} = {q1, q2, q3, ..., q18}T (8.48)

where the first nine components are for the beginning node of the segment; with q1 − q3 being
three components of position, q4 − q6 three components of the tangent vector, and q7 − q9 three
components of the normal vector. Correspondingly, q10 to q18 indicate all coordinates at the end
of a segment. The shape functions for the quintic spline can also be organized in the following
matrix form:

[Cim] =

⎡⎢⎣ C1 0 0 C3 0 0 C5 0 0 C2 0 0 C4 0 0 C6 0 0
0 C1 0 0 C3 0 0 C5 0 0 C2 0 0 C4 0 0 C6 0
0 0 C1 0 0 C3 0 0 C5 0 0 C2 0 0 C4 0 0 C6

⎤⎥⎦
(8.49)

With this notation, Equation (8.47) can be cast in the computational form of Equation
(8.30). The total number of available degrees of freedom for a quintic spline segment is thus
equal to the number of components in the Cartesian vector qm, i.e. NDF = 6 × 3 = 18.
However, because of geometric and physical restrictions on dislocation motion, NDF can be
greatly reduced, as we will discuss next.

Constrained Glide Motion and Reduced Degrees of Freedom

It is apparent that general dislocation motion would involve many degrees of freedom NDF in
the most general case. Fortunately, however, NDF is small in practice. As a result of segment
connectivity at common nodes, only half of the total DF’s are required per segment, and
NDF = 9 for general 3-d motion, and NDF = 6 for motion on a glide plane. The Peach-Koehler
force on the glide plane imposes an additional constraints. As can be seen from Equations (8.14)
and (8.17) , both external and self-forces on a dislocation node are along the normal direction
n. Also, because n • t = 0, NDF is reduced further from 6 to 4 for 2-d glide motion; that is
one for the displacement magnitude, two for the tangent vector, and one for the magnitude of
the normal. Furthermore, we introduce here two additional conditions, which simplify the loop
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profile calculations even further. A smoothness condition is invoked such that rapid variations
of curvature are avoided when two segments of vastly different lengths are connected via a
composite spline. If the magnitude of the tangent is not related to nodal positions, undesirable
cusps may develop on the dislocation line. Thus, we take the magnitude of the tangent vector
to be estimated from the arc length between previous nodal positions on the segment. This
criterion is exact when the parameter u = s, where s is the arc length itself. On the other
hand, the line curvature can be independently computed from the dislocation configuration
and nodal loading in a simple manner. If the forces at the node are not near equilibrium (i.e.
the acting forces are much larger than the self-force), the curvature is determined from three
neighboring nodes on the dislocation line. On the other hand, near equilibrium, the curvature
of a node is readily computed from Equation (8.17), once the local external force is known.
These approximations can lead to an additional reduction of two degrees of freedom, and we
are left with solving for only two equations per node. These constraints can be relaxed, if one
is interested in more complex details of dislocation motion. We will show later in Sec. 8.2.4
that dislocation glide motion can be adequately described in most cases with only two degree
of freedom per node.

We derive here the constrained discrete equations of motion, when dislocation lines are con-
fined to their glide plane. In this special case, there is six independent unknowns: ∆Px, ∆Py, ∆Tx, ∆Ty, ∆
These correspond to incremental displacements, tangents, and normals in the x- and y-directions,
respectively. Let us first consider the geometric constraints. Because the normal is always per-
pendicular to the tangent at the node, we have:

(T(i) + ∆T) • (N(i) + ∆N) = 0(8.50)

or, ∆Tx∆Nx + ∆Ty∆Ny + N (i)
x ∆Tx + T (i)

x ∆Nx + N (i)
y ∆Ty + T (i)

x ∆Ny + T (i)
x N (i)

x + T (i)
y N (i)

y = 0(8.51)

where the symbols with superscript (i) refer to a previous time-step of known values (i.e.
T(i+1) = T(i) + ∆T). Furthermore, from a geometric point of view, the curvature of the loop
at a current time-step is related to the normal and tangent vectors as:

κ =
||N||
||T||2 (8.52)

where the curvature is assumed to be determined by local forces or nodal positions, as discussed
earlier. The norm (magnitude) of the current tangent vector is proportional to the previous arc
length of a segment. That is:

||T|| = η (8.53)

where η is determined by the arc length of the previous time-step. Finally, the displacement
vector is perpendicular to the tangent direction of the considered node.

∆Py

∆Px

= −T (i)
x

T
(i)
y

= γ (8.54)

where γ is a constant determined by previous tangent components. Thus, by introducing an
angle θ, which is the angle between the tangent vector and the x-direction, the six independent
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unknowns can be reduced to only two: ∆Px and θ, such that all constraints are automatically
satisfied:

∆Px = ∆Px

∆Py = γ∆Px

∆Tx = ηcosθ − T (i)
x

∆Ty = ηsinθ − T (i)
y

∆Nx = −κη2sinθ − N (i)
x

∆Ny = κη2cosθ − N (i)
y

Moreover, a linearization technique can be used to approximate sine and cosine functions in
terms of ∆θ, as long as the time-step is small, and hence the tangent angle variation is small
between time-steps. Based on the above constraints, Equation (8.31) may finally be simplified
with a reduced set of shape functions C̃ as:

{δxi} =
[
C̃im(u)

]
{δqm} (8.55)

where:

{δri} =
{

δx
δy

}
(8.56)

{δqm} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δPxB

δθB

δPyE

δθE

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (8.57)

[
C̃im(u)

]
=
[ C1 D1 C2 D2

γC1 D3 γC2 D4

]
(8.58)

and

D1 = −ηLC3sinθB − κBη2
BC5cosθB

D2 = −ηEC4sinθE − κEη2
EC6cosθE

D3 = ηLC3cosθB − κBη2
BC5sinθB

D4 = ηEC4cosθE − κEη2
EC6sinθE

It is noted that the subscripts B and E refer to Beginning and End nodes of one segment of
the dislocation loop.

Adaptive Protocols for Node and Time-step Assignments

Because of the evolving nature of dislocation line geometry as a result of strong interactions,
it is highly desirable to develop adaptive methods which capture essential physics without
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excessive computations. Control of the magnitude of the computational time-step, and nodal
positions on each segment has a direct influence on the final accuracy of DD simulations. For
node redistribution, we first compute a reference curvature κ̄ for the entire loop, which is
normally taken as the average curvature of all nodes. Then, we compare the curvature κi of
each node with κ̄, and classify nodes into high curvature groups (κi > κ̄) and low curvature
groups (κi < κ̄). Finally, we increase the number of nodes for each high curvature group
and decrease the number of nodes for each low curvature group. After adding or removing
nodes, we redistribute the nodes evenly for that group. To prevent the number of nodes from
increasing or decreasing too fast, we only add or remove one node at a time. If the number of
nodes for a low curvature group is less than a specified minimum, we keep the current nodes
because a prescribed minimum number of nodes is required to maintain the loop geometry.
After redistributing nodes on each segment, we calculate the displacement and tangent angle
of each new node based on the current loop geometry. The radius of curvature of each new
node is determined by a linear interpolation from old nodes for open loops, or by circular arc
approximations for closed loops. The highest curvature occurs always at fixed nodes or in the
close proximity of other dislocations. In regions of high curvature, large self-forces occur and the
curvature at the segment will be near its equilibrium value. Thus, the curvature in these special
locations can be determined directly from the equilibrium condition on the segment. The entire
geometry of the loop is finally determined by using Equation (8.47) at next time-step.

Time-step selection is determined by dislocation segment velocity and its adjacency to other
segments. The time-step is selected such that, on average, dislocation-dislocation interaction is
resolved within about 100 steps. If the dislocation density is ρ, the average distance between
segments is on the order of ρ−1/2 ∼ 10−5 − 10−6 m. In fcc crystals, the dislocation resistivity is
on the order of 5×10−5 Pa s, while it is about 8 orders of magnitude higher for screw segments in
bcc crystals (?). These considerations lead to a time-step of ∼ 1ns for fcc crystals and ∼ 0.1s for
bcc crystals at low temperatures. When two loop segments approach each other, a short-range
reaction occurs, and the time-step must be reduced to determine whether the reaction will lead
to annihilation or junction formation. In case of annihilation, two loops join together and form
different new loops as a mode of plastic recovery. On the other hand, junction formation leads
to hardening and stabilization of dislocation patterns. In either case, the minimum distance
between segments on the loop itself, or on two adjacent loops is determined by calculating all
local minimum distances from each node to a curved segment. By scanning all possible nodes of
on a loop, we obtain the minimum distance dmin between two loops or between two segments on
the loop itself. If this value is less than two times the maximum displacement, i.e. 2dmax, then
the time-step is adjusted to 0.25dmin/dmax. This procedure is repeated until loop annihilation
or junction formation is completed. After annihilation or junction formation is completed, the
time-step is gradually increased to its maximum assigned value, as discussed above. During
short-range encounters, local dislocation segment velocity can approach the sound speed, and
inertial effects may have to be accounted for, if one is interested in the exact details of the
short-range reaction (see (?)).

If new loops are generated during the short-range reaction, all nodes on the loop are rear-
ranged. For loop junction formation, new loops are not generated, and the nodes are ordered
to allow formation of straight junction segments. However, five possible cases for generating
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new loops are considered during segment annihilation. On the glide plane, a full dislocation
loop may be totally closed, or may have closure on other glide plane via sessile threading arms.
Thus, we may have one of the following possibilities:(1) annihilation of two segments on the
same open loop to produce one new open loop and one new closed loop; (2) annihilation of
two segments on the same closed loop to produce two new closed loops; (3) annihilation of two
segments on two different open-loops to produce two new open loops; (4) annihilation of two
segments, one an open loop and the other on a closed one to produce one new open loop; (5)
annihilation of two segments on two different closed loops to produce one new closed loop. In
each case, the nodes on generated loops are reordered.

8.2.4 Applications of Parametric Dislocation Dynamics

Illustrative Example: Initial Bow-out of a Pinned Dislocation

To illustrate the computational procedure involved in the present method, we consider here a
very simple example, where the equations of motion can be solved analytically for one time-step.
Our purpose here is to highlight the essential features of the present computational method.
More complex examples, which require extensive computations will be given in the next section.
Assume that we are interested in determining the shape of a dislocation line, pinned at two
ends and under the influence of pure shear loading on its glide plane. The glide mobility is
assumed to be isotropic and constant, and the segments will be taken as linear for illustrative
purp[oses only. The dislocation line is pinned at points L and R, with only two linear and
equal segments connected at point A, as shown in Fig. 8.96. We will compute the shape of
the line, advancing it from its initial straight configuration to a curved position. Under these
simplifications, the variation in Gibbs free energy, δG for any one of the two segments is given
by:

δG = −B

1∫
0

V δr | ds |= −
1∫

0

f tδr | ds | (8.59)

Now, we expand the virtual displacement and velocity in only two shape functions: C1 =
u, C2 = 1 − u. Thus:

δrk = δqikCi (8.60)

Vk = qik,tCi (8.61)

Since we allow the displacement to be only in a direction normal to the dislocation line (y-
direction), we drop the subscript k as well. For arbitrary variations of δqik, the following
equation is applicable to any of the two segments (LA,AR).

−
1∫

0

∆t × (fPK + fS)Ci | ds |= −B

1∫
0

∆qmCmCi | ds | (8.62)

Equation (8.62) can be explicitly integrated over a short time interval ∆t. The resistivity

matrix elements are defined by: γim ≡ B
1∫
0
CiCm | ds |, and the force vector elements by:
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fi ≡
1∫
0
Ci × (fPK + fS) | ds |. With these definitions, we have the following (2 × 2) algebraic

system for each of the two elements:

∆qmγim = fi × ∆t (8.63)

For any one linear element, the line equation can be determined by:

[
x
y

]
=
[
u 0
0 (1 − u)

]⎧⎪⎨⎪⎩
q1

q2

⎫⎪⎬⎪⎭ (8.64)

And the resistivity matrix can the be simplified as:

[γmn] =
Bl

6

[
2 1
1 2

]
(8.65)

Furthermore, as a result of the shear stress τ and the absence of self-forces during the first
time-step only, the distributed applied force vector reads:

{fm} =
τbl

2

⎧⎪⎨⎪⎩
1

1

⎫⎪⎬⎪⎭ (8.66)

Since the dislocation line is divided into two equal segments, we can now assmble the force
vector, stiffness matrix and displacement vector in the global coordinates, and arrive at following
equation for the global nodal displacements ∆Qi:

Bl

12

⎡⎢⎣ 2 1 0
1 4 1
0 1 2

⎤⎥⎦
⎧⎪⎨⎪⎩

∆Q1

∆Q2

∆Q3

⎫⎪⎬⎪⎭ =
τbl∆t

4

⎧⎪⎨⎪⎩
1
2
1

⎫⎪⎬⎪⎭+ ∆t

⎧⎪⎨⎪⎩
F1

0
F3

⎫⎪⎬⎪⎭ (8.67)

An important point to note here is that at the two fixed ends, we know the boundary
conditions, but the reaction forces needed to satisfy overall equilibrium are unknown. These
reactions act on the the fixed obstacles at L&R, and are important in determining the overall
stability of the configuration (e.g. if they exceed a critical value, the obstacle is destroyed, and
the line is released). If ∆Q1 = ∆Q3 = 0 at both fixed ends, we can easily solve for the nodal
displacement ∆Q2 = 3

2
τb∆t

B
and for the unknown reaction forces at the two ends: F1 = F3 =

−1
8
τbl. If we divide the dislocation line into more equal segments, the size of the matrix equation

expands, but nodal displacements and reaction forces can be calculated similarly. Results of
analytical solutions for successively larger number of nodes on the dislocation segment are
shown in Fig. 8.96.
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3-nodes
4-nodes
5-nodes

1.5τbδt/B
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Figure 8.5: Nodal displacements for the first time-step of an initially straight segment.

Figure 8.6: Operation of the Frank-Read source for isotropic dislocation mobility on the glide
plane.

Dislocation Loop Generation

Generation of new dislocation loops is an important process in determining the rate of hardening
in materials under deformation. The basic mechanism involves the propagation of a dislocation
segment from two immobile (fixed) ends under the action of applied stress. If the applied
stress exceeds the resistance offered by the self-force, lattice friction, and additional forces from
nearby dislocations, the segment length will increase. In fcc metals, the Peierls ( friction) stress
is very small, on the order of 10−5µ, and is thus lower than typical applied stresses of 10−3µ.
Dislocation mobility is isotropic at all relevant temperatures because of the low value of Peierls
stress in comparison to applied and self stresses on dislocation segments. Thus, the influence
of the underlying crystal structure on dislocation generation is not pronounced. On the other
hand, high anisotropic Peierls stresses in both fcc and diamond cubic (dc) materials (e.g. Si)
imposes constraints on the shapes of generated dislocation loops in these systems, as discussed
next.

Isotropic Mobility of Screw and Edge Segments

Fig. 8.7 shows the results of shape computations for the Frank-Read source in a bcc crystal at
high temperature, where the dislocation segment mobility can be assumed to be isotropic on the
< 110 > glide plane. In this simulation, we use composite quintic spline segments to construct
the loop after each time-step computation of the nodal displacement and tangent angle. The
loop starts from an edge line segment with two fixed ends normal to the < 111̄ >-direction,
for which we assign only three nodes at the first time-step. The tangent vectors at the two
end nodes are those of circular arcs constructed from three adjacent nodes. When the loop
expands, more nodes are added around the two fixed end nodes (high curvature regions), while
the number of nodes is automatically reduced in the low curvature region of the loop. After
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(a)

(b)

Figure 8.7: Operation of the Frank-Read source for isotropic dislocation mobility on the glide
plane. (a) 3-d , (b) projection on the glide plane
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Figure 8.8: Details of nodal arrangements before annihilation of opposite-character segments.

each time-step, the minimum distance between loop segments is calculated. If the minimum
distance is detected to be less than 6|b|, and cos−1(t1 • t2) = (1.±0.05)π, the two segments are
annihilated. Here, t1&t2 are the tangent vectors for segments 1 and 2, respectively. The value
of 6|b| for the critical annihilation distance in fcc is taken from experimental measurements
on Cu (?) and Ni (?). Results of calculations are shown in Fig. 8.7, where nodal positions
are indicated on each loop. Details of node rearrangement before and after an annihilation
reaction between two curved segments on the Frank-Read source are shown in Fig. 8.8. The
influence of the self-force on dislocation motion is significant, especially during short-range
interaction of dislocation segments. In Fig.8.9, the angular distribution of the self-force on the
glide dislocation loop, immediately after its formation by annihilation of opposite segments
on the original dislocation line is shown. It is clear that the distribution of the self-force is
negative everywhere on the loop, except for the small range of angles surrounding the newly
formed dislocation segment. In this region, the self-force is positive, and thus it will assist the
applied stress in expanding this curved region faster than others on subsequent time-steps. The
action of applied and self-forces tend to even out curvature variations on the entire loop, once
the short-range reaction is completed. The self-force is seen to be higher for the screw segments
at θ = 90o&270o, as compared to segments with a pure edge character.

Fig. 8.10 illustrates the operation of a single Frank-Read source on the < 111 >-plane in
an fcc metal, where discrete barriers to dislocation motion are successively overcome by the
expanding loop. The computational proptocol detects the existence of random barriers, such
as other dislocations piercing the plane or defect clusters, and the loop is divided into two
segments anchored at each barrier as a new node. The barrier strength is determined by a
critical angle between the tangent to the dislocation and the normal to the node at the bottom



8.2. VARIATIONAL EQUATIONS OF MOTION 239

Figure 8.9: Angular variation of the self force (units of σ
µa

) in copper for the Frank-Read source
after segment annihilation. The angle θ is defined in the insert. All distances on the figure are
in units of the lattice constant.

of the barrier. This critical angle has been determined to be ∼ 70o for dislocation intersections
in Cu by MD simulations (?).

BCC metals at low temperature

In bcc metals, the primary slip system is {110} < 111 >, although slip on secondary {112}&{123}
planes are possible (?). Slip trace analysis at low temperature (?), (?) indicates that the main
slip planes are {110}, and that dislocations are either of the screw or edge type. At tempera-
tures below Ta ∼ 0.15Tm, dislocations in bcc metals tend to move as straight lines, indicating
that the mobility of the edge component is extremely high (?). The mobility of screw segments
is controlled by double kink nucleation below the athermal temperature, Ta. Peierls lattice
friction stress on screw components is very high, and the corresponding mobility is low. As the
temperature increases, the influence of lattice friction on screw component mobility is reduced,
and the mobility of screw and edge dislocations become comparable. It is expected, therefore,
that dislocations become very straight at low temperatures, and that significant curvatures de-
velop at higher temperatures. To adequately represent this physical picture, we use composite
cubic spline curves joined with linear segments when necessary, and still maintain C2 continuity
at all nodes. In this case, the tangent directions of each curved segment are pre-determined by
crystallography (i.e. < 111 >-directions for screw components), and only the magnitude of the
tangent vector needs to be calculated from the condition of continuity. Additionally, nodes on
expanding loops in this case are not re-distributed, but are selected to ensure construction of
polygonal loop shapes, as is experimentally observed at low-temperature (?). The construction
procedure of polygonal loop geometry is described as follows.
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Figure 8.10: Interaction between a Frank-Read source and discrete barriers in fcc metals.

Figure 8.11: Double-ended Frank-Read source in bcc metals. The straight segments are either
screw or edge, while the curved corners are of mixed type.
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Figure 8.12: Dislocation loop generation by the Frank-Read mechanism for anisotropic mobility
of screw and edge components.

First, straight linear segments are assigned parallel to specific crystallographic directions (i.e.
< 111 >) for screw components. The displacement is computed for the entire linear segment
in the normal edge direction. Then, two adjacent nodes at each corner of a the resulting
rectangle are assigned, such that the distance of each node from the corner is proportional to
the magnitude of the displacement, which is determined by the anisotropic mobility. Finally,
after nodes are generated, the tangent direction of each node is aligned with the side of the
polygon or is assigned a prescribed angle with the polygonal direction as an additional degree
of freedom. For example, if the temperature is increased in bcc crystals, slight curvatures
can be expected, and the tangent magnitudes can be solved for by applying the condition of
C2 continuity (Equation (8.46) ). It is noted that at very low-temperatures in bcc metals,
the mobility of edge components (kinks) is much higher than that of screw segments, and
thus dislocation lines will be predominantly of the screw type. These features of adaptive
shape computations are illustrated in Fig. 8.11 for low-temperature and Fig. 8.12 for higher
temperatures.

Dislocation Sources in Si

Motion of dislocations on the glide plane of dc crystals, such as Si, occurs by breaking and re-
construction of strong covalent bonds. Thus, the resistance of the lattice to dislocation motion
is significant up to very high temperatures (e.g 1200 K in Si). The dislocation must overcome a
large energy barrier in the direction of maximum bond strength (i.e. the three < 110 > close-
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Figure 8.13: Dislocation generation in covalently-bonded silicon. The directions of the hexagon
sides are along < 111 >-orientations for screw segments, and ±60o for mixed ones.

Figure 8.14: Coplanar dislocation loop interaction

packed directions on the {111}-family of slip planes), and a smaller one in directions ±60o to
those primary ones. Dislocation segment mobility in Si is rather low, which leads to a time-step
on the order of 0.01s, similar to the situation in bcc metals (?).

When general cubic spline segments are used, we must solve for tangent vectors at each
node, in addition to nodal displacements in order to generate the dislocation loop geometry at
successive time-steps. However, for special polygonal loop geometries, additional constraints
are needed to maintain accurate loop profiles. For this purpose, we use two types of segments:
linear ones for the sides, and curved segments for polygonal corners. The curvature of all
nodes is thus constrained to be zero, which guarantees the alignment of polygonal sides to
crystallographic directions, as can be seen in Fig. 8.13. The procedure outlined above produces
hexagonal loops with rounded corners, in agreement with the experimental observations on
dislocation sources in Si by Dash (?).

Dislocation Loop Interactions

In this section, we illustrate the application of the present parametric method and its associated
computational protocols to several problems involving the interaction of dislocation loops. In
Fig. 8.14, two initial screw segments of equal length are assumed to be collinear, and of the
same initial length on the [110]-slip plane of a bcc crystal at high temperature, and a high
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Figure 8.15: Formation of a dislocation junction in bcc metals

shear stress is applied on the slip plane. Bowing of the two segments is tracked with nodal
displacements and tangent vector direction, and the loops are reconstructed by quintic spline
segments after each time-step. The process is repeated till any two curved segments on the
same loop, or on the two different loops, approach each other. The annihilation criterion is
applied, leading to the loop profiles shown in Fig. 8.14. The applied stress is higher than
the maximum value of the self energy after the two loops join one another, because the nodal
curvatures are much smaller than corresponding values near the fixed ends of the each loop.
Hence, further nodal displacements are not influenced as much with nodal curvatures, once
the two loops join together as a single loop. Another illustration of loop-loop interaction is
shown in Fig. 8.15, where two glide loops on different {111}-planes interact and form a sessile
junction at the intersection between the two glide planes. In this case, the Burgers vector of
the resulting junction does not lie on any of the two slip planes.

Figure (8.16) shows the results of computer simulations for the interaction between a slip
dislocation on the < 111 >-glide plane in copper, after it is emitted from two fixed ends of a
Frank-Read source with small defect clusters (Stacking Fault Tetrahedra (SFT)) in irradiated
copper single crystals. The dislocation lines represent successive advancement stages under an
applied shear stress. The corresponding values of the critical applied shear stress are: 93, 123,
154, and 185 MPa, respectively. A random distribution of SFT is introduced on the glide plane
at an average spacing of 20nm. The dislocation line seeks the nearest SFT and bends around it
to a critical angle of ∼ 80o before the obstacle is overcome. This critical angle is higher than the
value attributed to dislocation-dislocation intersection in Cu, because the SFT is considered a



244 CHAPTER 8. COMPUTATIONAL METHODS

Figure 8.16: Computer simulation of forest hardening in Cu.

weak obstacle.

8.3 Numerical Accuracy & Convergence

The wide range of spatial and temporal scales involved in understanding the plastic deformation
of materials at the nano-, micro-, single crystal, and polycrystalline levels necessitates the
development of simulation methods of commensurate resolution and accuracy. While the details
of dislocation configurations are relevant to resolving plasticity at the nano and micro-scales,
they may not be of great impact at higher length scales. In addition, many physical mechanisms
related to dislocations are inherently either stable or unstable. For example, above a critical
applied stress value, it is known that the configuration of a Frank-Read source dislocation has
no equilibrium solution. Most dislocation reactions have this dynamic feature, where junctions,
dipoles, pileups, can all be either stable or unstable, depending on some critical stress level. It
is therefore important to develop an understanding of the numerical accuracy, convergence and
stability, so that one can actually resolve such critical reactions, without the effects of numerical
artifacts. We plan to provide here an exposition of the numerical features of the PDD method
when applied to the most significant dislocation interaction mechanisms.

The PDD methodology is based on two main principles that are often employed in modern
numerical methods of continuum mechanics (e.g. the Finite Element Method FEM). The first is
an energy-based variational principle, which allows derivation of the equations of motion (EOM)
for a reduced set of Degrees Of Freedom (DOF). The second principle is a kinematic assumption
regarding how the displacement or strain field varies in a specified region of the continuum.
Thus, minimization of the Gibbs free energy of a single loop upon its virtual motion in the
external and internal field results in the EOM, while assumed spline functions between fixed
nodes on the dislocation loop corresponds to the kinematic assumption of continuum mechanics.
The variational principle guarantees that the global energy is a minimum, but does not give
specific information on the accuracy of dislocation configurations at every instant. Thus, the
deviation of an assumed spline shape form (i.e. kinematic constraint), may actually lead to an
erroneous configuration if that configuration is close to a critical state (e.g. Orowan stress, flow
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stress for unlocking dislocations from cluster atmospheres, dipole and junction stability, etc.).
The basic question here is, therefore, how crude can one be in imposing the kinematic shape
constraint for a specified level of temporal or spatial resolution? It is fairly obvious that the
answer will depend on the mechanism at hand, and the level of detail for our description of
such mechanism.

The main objective of the present work is to determine the general limits of numerical accu-
racy and convergence of the PDD. This will be accomplished by analyzing specific dislocation
mechanisms, and by determining the computational cost associated with desired levels of accu-
racy. Future large-scale computer simulations will be based on information generated from the
present study, where the nodal densities and desired accuracy can be tailored for load balancing
on parallel computational clusters. We plan to present systematic studies of two broad cate-
gories of dislocation mechanisms: generation (including Frank-Read (FR) sources, and pileups),
and hardening (including finite size dipoles and junctions).

In section 8.3.1, we present a concise description of the PDD in a new dimensionless form.
The temporal and spatial resolution of the PDD in a number of significant dislocation mech-
anisms will then be analyzed in section 8.3.2, for both generation in subsection 8.3.2, and
hardening in subsection ??. Finally, a discussion of these results and conclusions are given in
section 9.5.5.

8.3.1 Dimensionless Equations of Motion for PDD

The method of PDD is described in sufficient detail in references (?)-(?), and we will attempt
here to give only a brief description for completeness. The first step is to calculate the stress
field of curved parametric segments. Let the Cartesian orthonormal basis set be denoted by
1 ≡ {1x,1y,1z}, I = 1⊗ 1 as the second order unit tensor, and ⊗ denotes out tensor product.
Now define the three vectors (g1 = e, g2 = t, g3 = b/|b|) as a covariant basis set for the
curvilinear segment, and their contravariant reciprocals as (?): gi · gj = δi

j, where δi
j is the

mixed Kronecker delta and V = (g1×g2) ·g3 the volume spanned by the vector basis, as shown
in Figure 9.51 . The parametric representation of a general curved dislocation line segment,
shown in the figure, can be described by a parameter ω that varies from 0 to 1 at end nodes.
The segment is fully determined as an affine mapping on the scalar interval {ω ∈ [0, 1]}, if
we introduce the tangent vector T, the unit tangent vector t, and the unit radius vector e as
follows:

T =
dl

dω
, t =

T

|T| , e =
r

r

Ghoniem, Huang and Wang (?) have shown that the elastic field of such a parametric
segment can be obtained as an affine mapping transformation of the scalar parameter ω, and
that the stress filed differential dσ introduced by a parametric differential dω are related as:
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dσ

dω
=

µV |T|
4π(1 − ν)R2

{(
g1 ⊗ g1 + g1 ⊗ g1

)
+ (1 − ν)

(
g2 ⊗ g2 + g2 ⊗ g2

)
− (3g1 ⊗ g1 + I)

}
(8.68)

Once the parametric curve for the dislocation segment is mapped onto the scalar interval
{ω ∈ [0, 1]}, the stress field everywhere is obtained as a fast numerical quadrature sum from
Equation 8.68 (?). To simplify the problem, let us define the following dimensionless parameters:

r∗ =
r

a
, f∗ =

F

µa
, t∗ =

µt

B

Here, a is lattice constant, F is resultant force which may consist of Peach-Koehler force (?) FPK

(generated by the sum of the external and internal stress fields), the self-force Fs generated by
local curvature at the point of interest. µ is the shear modulus, t is time, and B is the isotropic
dislocation mobility. Following (Ghoniem, Singh, Sun and Diaz de la Rubia 2000b), a closed
dislocation loop can be divided into Ns segments. In each segment j, we can choose a set of
generalized coordinates qm at the two ends, thus allowing parametrization of the form:

r∗ = CQ (8.69)

Here, C =
[
C1(ω) 0 C2(ω) 0

0 C1(ω) 0 C2(ω)
· · · Cm(ω) 0

0 Cm(ω)

]
, Ci(ω), (i = 1, 2, ...m) are

shape functions dependent on the parameter (0 ≤ ω ≤ 1), and Q = [q1, q2, ..., qm]	, qi are
a set of generalized coordinates. Substitute all these to the variational form of the governing
equation of motion of a single dislocation loop (Ghoniem et al. 2000b), we obtain:

Ns∑
j=1

∫
Γj

δQ	
(
C	f∗ − C	C

dQ

dt∗

)
|ds| = 0 (8.70)

Let,

fj =
∫
Γj

C	f∗ |ds| , kj =
∫
Γj

C	C |ds|

Following a similar procedure to the FEM, we assemble the EOM for all contiguous segments
in global matrices and vectors, as:

F =
Ns∑
j=1

fj, K =
Ns∑
j=1

kj

then, from EQN 8.70 we get,

K
dQ

dt∗
= F (8.71)

Equation 9.64 represents a set of ordinary differential equations, which describe the motion of
an ensemble of dislocation loops as an evolutionary dynamical system. Generally, two numerical
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time integration methods are available for solving this set of equations: the implicit and the
explicit classes of procedures. We will later discuss the accuracy and stability issues associated
with each scheme.

In the applications presented here, we specifically use cubic splines as shape functions, and
confine dislocation motion to be on its glide plane(i.e. the climb speed is negligible). Thus, we
end up with only 8 DOF for each segment with each node associated with 4 independent DOF.
These cubic spline shape functions are given by:

C1 = 2ω3 − 3ω2 + 1

C2 = ω3 − 2ω2 + ω

C3 = −2ω3 + 3ω2

C4 = ω3 − ω2

Q = [P1,T1,P2,T2]
	

Here, Pi and Ti (i = 1, 2) correspond to the position and tangent vectors, respectively. In
the following, we present results of studies for some of the main dislocation mechanisms to
determine the effects of space and time discretization on the physical nature of the mechanism.

8.3.2 Spatial and Temporal Resolution of Dislocation Mechanisms

Dislocation Generation

F-R Source Symmetry and Stability

The Frank-Read mechanism of dislocation generation has been established as one of the
primary processes which contribute to the increase in plastic strain upon application of a me-
chanical load. The main features of the mechanism have been documented in textbooks by hand
sketches ( e.g. references [(?)-(?)]). More recently, details of its evolution have been utilized as
implicit test beds to validate the numerical procedures of 3-D DD [(?)-(?)]. Because of the exis-
tence of these extensive studies, we will apply the PDD to analyze the evolution of F-R sources,
and show new aspects that are relevant to understanding the limitations of the PDD method
in resolving spatial and temporal details. We examine in this section the following aspects of
the F-R source evolution: symmetry of stable and unstable sources, stable/ unstable transition,
shape accuracy as it depends on the number of segments (spatial resolution), solution stability
(temporal resolution) and its dependence on time integration, adaptive nodal re-distribution
techniques, and the accuracy of resolving dislocation annihilation and reconfiguration.

The influence of the Burgers vector direction on the evolution of F-R sources from an initially
straight segment is determined in Figure ??. A straight dislocation segment is pinned at two
points ((-800,0) and (800, 0)) in the local coordinate system of the (111) glide plane of an
FCC metal, and is divided into 20 cubic spline segments. Although the results can all be
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given in dimensionless forms, it is instructive to use the properties of Cu for physical values.
These are: a = 0.36 nm, B = 10−4Pa · s, µ ≈ 50 GPa, and ν = 0.31. These values show
that when the dimensionless time is 1000, the physical time is 2 ps. The segment is subjected
to a sudden uniaxial stress σ11(corresponding to a critical resolved shear stress (CRSS) τ/µ).
σ11 is represented by a step function in time. In Figure ??, the initially screw segment has a
Burgers vector of b = 1

2
[1̄10], the edge has b =

√
6

3
[1̄1̄1], while the initially mixed dislocation

has b = 1
2
[1̄01].

At the beginning, the curvature is almost zero everywhere and thus the effects of the self-
forces are negligible. However, as the dislocation line bows out, the local curvature increases
gradually, and then reaches its maximum value. In Figure??-a, the applied stress is relatively
low (σ11 = 80 MPa , or τ/µ = 0.065%), thus the increase in the curvature everywhere eventually
allows the self-force to balance the applied force and the F-R source achieves an equilibrium
shape. It is noted that the shape of the F-R source is symmetric with respect to axis normal
to its initial mid-point, for the initially pure screw and edge type of segments. The energy
per unit length of a screw segment is lower than that for an edge segment. As a consequence,
screw components tend to have higher self-forces (i.e. stiffer) than edge components. Figure
?? illustrates these features, where bowing out of initially screw dislocations is less pronounced
than edge, both for the stable (Figure ??-a) and unstable (Figure ??-b) configurations. It is also
noted that the F-R source stretches along the Burgers vector direction for the mixed character
case, as it tries to minimize its total elastic energy by increasing the length of its line along the
screw (Burgers vector) direction.

Since the overall curvature of the F-R source increases as it bows out, the applied stress
must be increased to maintain successive equilibrium shapes. However, because the F-R source
is pinned at the two ends only, other configurations of lower curvature are possible, and can
pass through the same two fixed points. As a consequence, the average curvature of the F-
R source reaches a maximum at a critical stress value (the Orowan stress), above which an
unstable configuration of lower average curvature is reached. The transition from a stable F-R
configuration to an unstable one is illustrated in Figure ??-b, where the applied stress is high
[σ11 = 200 MPa(τ/µ = 0.16%)], and the maximum self force cannot balance the external driving
force. The dislocation will then continue expanding, which causes the curvature to decrease
even further.

Resolution Limits of the F-R Shape

For large-scale computer simulations, there is an obvious need to reduce the computational
burden without sacrificing the quality of the physical results. The smallest number of spline
segments with the largest time step increment for integration of the EOM is a desirable goal.
However, one must clearly identify the limits of this approach. We study here the influence
of the nodal density on the dislocation line and the time integration scheme on the ability to
satisfactorily resolve the shape of a dynamic F-R source. In order to estimate the error for
different case, we define the absolute and relative errors, εa and εr, respectively, as follows:

εa = max ∆ri, i = 1, 2, ..., n
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Figure 8.17: Effects of gradually increasing the applied stress on the evolution of an F-R source
with b = 1

2
[1̄01]. When the Orowan stress is reached, the source is unstable

εr =

{
1

n

n∑
i=1

(
∆ri

ri

)2
}1/2

(8.72)

Here, ∆ri = ri − Ri is the error (difference) between the current position vector ri at a
sampling point i and a reference position vector at the same point, and n is the total number of
sampling points on the dislocation line. The reference position vector Ri is that of a converged
state (i.e. the highest resolution), since analytical solutions are not available.

In Figure 8.18, the dislocation line is divided into different number of segments, and the F-R
source is evolved by numerical integration. Various levels of applied external stress are applied to
the dislocation. Figure 8.18-a corresponds to low applied stress σ11 = 80 MPa(τ/µ = 0.065%),
resulting in a final stable configuration. It is shown that one can achieve very high precision

Table 8.1: Error Estimation for the stable state of a Frank-Read source.

No. of Segments Absolute Error εa Relative Error εr CPU-time(sec)
2 6.06 0.17% 0.12
6 6.01 0.15% 0.42
15 1.32 0.018% 1.53
30 0 0 5.77
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Figure 8.18: The influence of number of segments on the shape convergence of an F-R source
with Burgers vector 1

2
[1̄01] at different stress levels: (a) stable state (σ11 = 80 MPa, τ/µ =

0.064% ), (b)unstable state - same time: (σ11 = 200 MPa, τ/µ = 0.16%).
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Table 8.2: Error Estimation for an unstable Frank-Read source at t∗ = 5 × 106.

No. of Segments Absolute Error εa Relative Error εr CPU-time(sec)
2 1408.8 20.15% 0.02
6 191.1 5.04% 0.20
15 133.8 3.24% 2.53
30 142.0 2.93% 24.14
40 0 0 27.57

Table 8.3: Error Estimation for Different Integration Schemes. The implicit scheme is chosen
as the reference configuration.

Integration Scheme Absolute Error εa Relative Error εr CPU-time(sec)
Explicit (∆t∗ = 3000) 168.4 6.11% 0.92
Explicit (∆t∗ = 1500) 141.5 5.40% 1.82
Explicit (∆t∗ = 1000) 56.90 2.34% 2.76
Explicit (∆t∗ = 500) 0.06 0.003% 5.68
Implicit Integration 0 0 1.52

in describing the stable F-R shape with a very small number of segments. The dependence
of the error on the number of segments is shown in Table 8.1. The reference configuration is
chosen as that with 30 segments (thus the relative and absolute error is set to zero). It is found
that as the number of segments increase, both the relative and absolute errors decrease sharply,
while the CPU time (on a Pentium-III at 600 MHz) increases significantly. It is interesting
to note that with only 2 segments, one can achieve almost the same resolution as that of 30
segments, with a relative error of less than 0.2%, while the CPU time is trivial compared
with the case of 30 segments. However, when the F-R source becomes unstable, the variation of
curvature is considerable between its middle section and the sections close to the pinning points.
Figure8.18-b and Table 8.2 show the configuration and corresponding absolute error, relative
error and CPU time, respectively, at higher applied stress σ11 = 200MPa (τ/µ = 0.16%).
The dependence of the error on the number of segments is shown in Table 8.2 (the reference
configuration in this case is chosen to be at 40 segments). It is found that with only 2 segments,
poor shape accuracy is achieved, and a larger number of segments is needed for better accuracy.
The curvature in this case is much higher near the fixed points. It is shown in Table 8.2 that
with the increasing the number of segments, the accuracy is greatly increased, at the expense
of a substantial increase in the CPU time.

The influence of the time integration method on the shape convergence of the F-R source
is studied in Figure 8.19 and its corresponding error estimation at Table 8.3. The results of
shape evolution for the explicit integration with different time steps are compared to those
obtained with an implicit scheme. An one-step Euler forward integration explicit scheme is
utilized. In the explicit scheme, it is noted that when the time step is larger than ≈ 3000,



252 CHAPTER 8. COMPUTATIONAL METHODS

a numerical shape instability sets in. For the parameters chosen here, this corresponds to a
physical time step of ≈ 6 ps. The shape tends to diverge more along segments oriented near
the screw direction. For a time step on the order of 1000 (i.e. ∆t ≈ 2 ps), the F-R shape is
numerically stable, but not accurate. Finally, the F-R source shape converges (i.e. accurate
and stable), when the explicit time step is less than 500 (i.e. ∆t ≈ 1 ps). Such small limit
on the time step for high mobility crystals (e.g. FCC metals) can result in severe restrictions
on the ability of current day computers to simulate plastic deformation of large volumes to
realistic experimental times. An implicit integration method developed by C.W. Gear (?) is
also used to test the same problem. The method is designed for the numerical integration of
stiff, ordinary differential equations, with a variable time step that is automatically determined
on the basis of the fastest variation of any of the DOF. A level of relative accuracy of 10−6 is
selected as a convergence constraint. Since the time step is automatically adjusted to capture
the specified level of accuracy, the overall scheme is stable and convergent. From Table 8.3,
it is noted that the overall CPU time for explicit integration is much less than that for the
explicit integration scheme to give comparable accuracy. This results from the ability to adjust
the time step during explicit integration according to the stiffness of the equations, while the
explicit Euler method has a fixed small time step to achieve the same level of accuracy.

Figure 8.19: The influence of the time integration scheme on the shape convergence of an F-R
source. Same conditions as in FIG. 8.18 .

Adaptive Node Redistribution

In small scale processes, such as the interaction between a dislocation and an atomic size
defect cluster, or during the annihilation reaction between two dislocation segments of the same
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Burgers vector and of opposite tangent vector direction, large variations of the local dislocation
line curvature would be expected. To effectively resolve such mechanisms, we develop here a
protocol for adaptively re-distributing the density of nodes on the dislocation line according
to local curvature variation. The resolution level of this protocol is demonstrated by a study
of the mechanism of dislocation segment annihilation during the expansion of an F-R source
and the subsequent generation of a fresh dislocation loop. Figure 8.21 shows the details of the
annihilation mechanism and the ensuing recovery process of a fresh closed loop, generated from
an asymmetric F-R source. The simulation conditions are the same as in Figure 8.18, except
that the applied stress σ11 = 140 MPa (τ/µ = 0.112%), and the Burgers vector of the loop is
b = 1

2
[01̄1].

The minimum distance between any two segments on the loop of opposite tangent vector
directions is used to fully resolve the annihilation event. When this distance is less than a
prescribed limit (e.g. 100), the time step is reduced and the integration proceeds further till
the two segments are within a distance of 1-2 apart. The nodes are then re-distributed in the
immediate region, resulting in two separate loops, as can be seen in Figure 8.21. After the
annihilation event takes place, both new loops generate cusp regions, where the curvature is
extremely high. To resolve such physical phenomena with sufficient accuracy, we develop here
an adaptive node redistribution method.

Figure 8.20: Expansion of an F-R source from an initially pure screw dislocation subjected to
a step function stress σ11 = 120 MPa(τ/µ = 0.096%). The glide plane in Cu is (1 1 1), and
the Burgers vector is b = 1

2
[01̄1]. At the instant of annihilation the time is reset to t∗1 = 0.

Subsequent dimensionless times are: t∗2 = 1.0×106, t∗3 = 1.5×106, t∗4 = 2.0×106, t∗5 = 3.0×106.
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Figure 8.21: Expansion of an initially mixed dislocation segment in an F-R source under the
step function stress of σ22 = 140 MPa(τ/µ = 0.112%). The F-R source is on the (1 1 1)-plane
of a Cu crystal with Burgers vector b = 1

2
[01̄1]. The time interval between different contours

is ∆t∗ = 5 × 105.
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Figure 8.22: The effects of a rigid grain boundary in Cu on the evolution of a closed dislocation
loop emanating from an F-R source. Conditions are the same as in FIG. 8.20, the time interval
between successive positions ∆t∗ = 1.5 × 106.
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In the present algorithm, nodal redistribution is invoked at prescribed time intervals. Each
cubic spline segment is divided into several sub-segments with equal arc length, and new ghost
nodes are assigned. Thus, the entire loop is now filled with ghost nodes of equal nodal density
per unit line length. The total number of DOF for the loop is not changed up till this point.
The average loop curvature κavg is determined simply as the mean value of the maximum κmax,
and minimum κmin curvatures of all ghost nodes. We then start from one end of the loop at
a node of curvature κ (say CW), and skip a number of ghost nodes Nskip determined by the
relation:

Nskip = C(κavg/κ) (8.73)

where C is an adjustable constant. Thus, more nodes are added to high curvature zones, while
in low curvature zones less nodes are introduced. In Figure 8.21, node re-distribution is shown
in each closed loop. The total number of nodes in each loop at a given time is generally kept
under 25.

Dislocation pileups

Dislocation generation by the F-R mechanism leads to an increase in the dislocation density,
and hence the total strain. This process is however limited by dislocation interaction with
various obstacles. Grain boundaries represent strong obstacles to dislocation motion, and have
important effects on the subsequent dynamics of dislocation loops emitted from F-R sources.
Strong grain boundaries can confine dislocations within the grain where they are emitted. If
the F-R source continues to emit dislocations, new loops will interact with the immobilized
leading dislocation, and as a result will form a dislocation pileup. In the following study, a
single crystal is represented by a cube, 30000 ( or 10 µm) in length. One F-R source of an
initially mixed dislocation character, with Burger’s vector 1

2
[01̄1], under an applied uniaxial

stress σ22 = 140 MPa (τ/µ = 0.112%), is situated within the crystal to emit dislocation loops.
For a rigid grain boundary, the leading loop nodes are assigned zero displacement condition
once they reach the boundary. Figure 8.23 shows the formation of a 3-loop pileup from the
same F-R source. The same nodal re-distribution strategy is used for each generated closed
loop for higher accuracy.

8.4 O(N) Algorithms

8.4.1 Multipole Representation of Dislocation Fields

Although DD has been successfully applied to a wide range of physical problems, especially for
problems involving length scales in the nano-to-micro range(?, ?), the extension of the approach
to larger length scales (e.g. for application in polycrystalline material deformation) is still a
daunting task. The main impediment in this direction is the lack of methods for systematic
and rigorous ”coarse-graining” of discrete dislocation processes. Notable recent developments
in this area have been advanced by LeSar and Rickman(?).

The main objective of the present work is to develop a ”coarse-graining” approach for eval-
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Figure 8.23: The effects of a rigid grain boundary of triangular cross-section in Cu on the
evolution of a closed dislocation loop emanating from an F-R source. Conditions are the same
as in FIG. 8.22.



258 CHAPTER 8. COMPUTATIONAL METHODS

uation of the elastic field of large dislocation loop ensembles of arbitrary geometric complexity.
The method is an extension of the Lesar-Rickman multipole expansion of the elastic energy of
dislocation ensembles(?). The broad ”coarse-graining” objective of the present work is associ-
ated with a number of motivating reasons for this development, as given below.

1. To access the physics of plasticity through direct large-scale computer simulations of
dislocation microstructure evolution. This is enabled by a substantial reduction of the
speed of computation.

2. To remove the ”cut-off” distance limitation in dislocation-dislocation interactions, and
hence facilitate our understanding of microstructure evolution sensitivity to such compu-
tational limitation.

3. To allow efficient determination of the ”effective” influence of dislocation arrays (e.g. in
some representation of grain boundaries), or complex dislocation blocks (e.g. in disloca-
tion walls and tangles) on the interaction with approaching dislocations.

4. To enable embedding into well established, O(N), computational procedures for particle
systems of long-range interactive force fields(?).

5. To shed more light on the connection between discrete dislocation dynamics, the Kröner-
Kosevich continuum theory of dislocations(?), and moments of a basic local tensor that
characterize the spatial distribution of dislocations.

In the following, we present the multipole expansion method (MEM) formulation in section
??. In O(N) methods for calculation of the effective fields in particle systems with long range
interaction force fields, moments evaluated for smaller volumes are usually transferred or com-
bined with moments defined in other volumes. This issue will be explained in section 8.4.2.
Results for the far-field expansion of the stress field and interaction forces are given in section
8.4.2, while applications of the method to dislocation arrays in special boundaries or dislocation
walls are presented in section 8.4.3. Finally conclusions of this work are presented in section
??.

The stress field at any point from a single closed dislocation loop can be written as(Ghoniem,
Huang and Wang 2002a):

σij =
µbn

8π

∮
[R,mpp(εjmndli + εimndlj) +

2

1 − ν
εkmn(R,ijm − δijR,ppm)dlk] (8.74)

where R = Q − P is the vector connecting field point Q and source point P at dislocations
(Figure 9.51 (a)). The stress field per unit volume of an ensemble of dislocation loops in a
volume Ω, some of them may not be closed within Ω, is given by:

σij =
µ

8πΩ

⎧⎨⎩
NSSD

L∑
ξ=1

∮
ξ
[R,mpp(εjmndli + εimndlj) +

2

1 − ν
εkmn(R,ijm − δijR,ppm)dlk]

+
NL∑

ξ=NSSD
L +1

∫
ξ
[R,mpp(εjmndli + εimndlj) +

2

1 − ν
εkmn(R,ijm − δijR,ppm)dlk]

⎫⎪⎬⎪⎭(8.75)
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where NSSD
L is the number of statistically stored dislocation(SSD) loops, which are closed within

the volume Ω, NGND
L is the number of geometrically necessary dislocation(GND) loops, which

intersect the surfaces of the volume Ω, NL = NSSD
L + NGND

L is the total number of dislocation
loops in the volume Ω.
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Figure 8.24: Illustration of the geometries of (a) a single volume with center O containing
dislocations, (b) a single volume (center O

′
) containing many small volumes with centers Om.

Suppose that the distance between point P on a dislocation and a field point Q is relatively
larger than the size h of a certain volume that contains the dislocation loop, as shown in Figure
9.51. Point O is the center of the volume. Let us write the Taylor series expansion of the
derivatives of vector R at point O as follows:

R,ijm = Ro
,ijm + Ro

,ijmkrk +
1

2!
Ro

,ijmklrkrl +
1

3!
Ro

,ijmklnrkrlrn + ... (8.76)

where r = O − P and Ro = Q − O.

Substituting these expansions in equation (8.75), and recognizing that Ro
,mpp, Ro

,ijm, Ro
,ppm

and their higher order derivatives depend only on Ro, we find:

σij =
µ

8π

{[
Ro

,mpp(εjmnαni + εimnαnj) + Ro
,mppq(εjmnβniq + εimnβnjq)

+
1

2!
Ro

,mppqs(εjmnγniqs + εimnγnjqs)

+
1

3!
Ro

,mppqst(εjmnψniqst + εimnψnjqst) + ...
]

+
2

1 − ν
εkmn

[
Ro

,ijmαnk + Ro
,ijmqβnkq
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+
1

2!
Ro

,ijmqsγnkqs +
1

3!
Ro

,ijmqsψnkqst + ...
]

− 2

1 − ν
δijεkmn

[
Ro

,ppmαnk + Ro
,ppmqβnkq

+
1

2!
Ro

,ppmqsγnkqs +
1

3!
Ro

,ppmqstψnkqst + ...
]}

(8.77)

where we define the dislocation moments of zeroth order within the volume Ω as:

αij =
1

Ω

NSSD
L∑
ξ=1

∮
ξ
Eξ

ijdl +
1

Ω

NL∑
ξ=NSSD

L +1

∫
ξ
Eξ

ijdl

=
1

Ω

NL∑
ξ=NSSD

L +1

∫
ξ
Eξ

ijdl (8.78)

where dl = |dl| is an infinitesimal line length along the unit tangent t. The Eshelby rational
tensor Eij, defined as Eξ

ij = bξ
i t

ξ
j(P), is a local tensor because it is defined at point P on a loop

ξ, where tξi is the tangent vector at position P and bξ is the Burgers vector of the loop. It is
clear that the only contribution to the tensor αij is from GNDs (i.e. the second term), since
the contribution of SSDs is identically zero by virtue of the closed loop property. Equation 8.78
gives Nye’s dislocation density tensor αij(?, ?). This tensor is directly related to the lattice
curvature tensor κ by(?):

κ =
1

2
Tr(α)I − α (8.79)

where I is the second-order unit tensor. Higher-order tensors β, γ, ψ, . . ., correspond to
higher-order moments of the Eshelby rational tensor, and are defined as:

βijk =
1

Ω

NL∑
ξ=1

∫
ξ
rkEijdl

γijkl =
1

Ω

NL∑
ξ=1

∫
ξ
rkrlEijdl

ψijklq =
1

Ω

NL∑
ξ=1

∫
ξ
rkrlrqEijdl

ζijklq...p =
1

Ω

NL∑
ξ=1

∫
ξ
rkrlrq . . . rpEijdl (8.80)

We can write the stress field resulting from a dislocation ensemble within the volume Ω as:

σij =
µΩ

8π

∞∑
t=0

1

t!

[
Ro

,mppa1...at
(εjmn〈ζnia1...at〉 + εimn〈ζnja1...at〉)

+
2

1 − ν
εkmnRo

,ijma1...at
〈ζnka1...at〉 −

2

1 − ν
δijεkmnRo

,ppma1...at
〈ζnka1...at〉

]
(8.81)
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where 〈ζijk...〉 represent the moments defined above of different orders, as αij, βijk, γijkl, etc.
These moments depend only on the selected center point O and the distribution of the disloca-
tion microstructure within the volume. They can be evaluated for each volume independently.
After the moments are determined, the stress field and interaction forces on other dislocations
that are sufficiently well separated from the volume Ω are easily obtained.

8.4.2 Rules for Combination of Moments

For a fixed field point, if the distance of a volume to this point is larger than its characteristic
size, we can utilize moments obtained from smaller sub-volumes to generate moments for the
total volume. This procedure is similar to the ”parallel axis theorem” for shifting moments
of inertia for mass distributions in mechanics. Suppose that this large volume is composed of
several sub-volumes and we have multipole expansions for each sub-volume, we develop here a
procedure to obtain multipole expansion for the large volume from those for the sub-volumes
instead of doing the calculations again for each dislocation loop. This idea is very suitable
for hierarchical tree algorithms, such as the Greengard-Rokhlin method(?). We will describe
formulations for combination of multipole expansions in this section.

Assume that a large material volume Ω centered at O
′
contains M small sub-volumes centered

at Om, with their volumes as Ωm, where m is an index(Figure 9.51 (b)). Here, rm is the vector
connecting Om and O

′
. The new vector connecting the center O

′
and a point on a dislocation

is r
′
= r + rm, where rm = O

′ −Om. With the dislocation moments for the mth small material
volume as αm

ij , βm
ijk, . . . , we can write the moments of dislocations in the mth sub-volume in the

large volume as follows:

αm′
ij =

1

Ω

Nm
L∑

ξ=NSSDm
L +1

∫
ξ
Eξ

ijdl = fmαm
ij

βm′
ijk =

1

Ω

Nm
L∑

ξ=1

∫
ξ
r
′
kE

ξ
ijdl

=
1

Ω

Nm
L∑

ξ=1

∫
ξ
(rk + rm

k )Eξ
ijdl

=
1

Ω

Nm
L∑

ξ=1

∫
ξ
rkE

ξ
ijdl +

1

Ω

Nm
L∑

ξ=1

∫
ξ
rm
k Eξ

ijdl

= fm(βm
ijk + rm

k αm
ij )

γm′
ijkl =

1

Ω

Nm
L∑

ξ=1

∫
ξ
r
′
kr

′
lE

ξ
ijdl

= fm(γm
ijkl + rm

k βm
ijl + rm

l βm
ijk + rm

k rm
l αm

ij )

. . . (8.82)

where fm = Ωm

Ω
, Nm

L and NSSDm

L are volume fraction, the number of total dislocation loops,
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and SSDs in the mth volume, respectively.

Then, the total moments of dislocation loop distributions within the large volume are given
by:

αij =
M∑

m=1

αm′
ij =

M∑
m=1

fmαm
ij

βijk =
M∑

m=1

βm′
ijk =

M∑
m=1

fm
(
βm

ijk + rm
k αm

ij

)

γijkl =
M∑

m=1

γm′
ijkl =

M∑
m=1

fm
(
γm

ijkl + rm
k βm

ijl + rm
l βm

ijk + rm
k rm

l αm
ij

)
. . . (8.83)

Equation (8.83) can be written in a compact form as:

ζija1...an =
M∑

m=1

fm

⎧⎨⎩
n∑

p=0

⎡⎣ Cp
n∑

q=1

[(
rm
t1

rm
t2

. . . rm
tp

)
〈ζm

ijtp+1...tn〉
]⎤⎦⎫⎬⎭ (8.84)

where n = 0, 1, 2, . . . is the order of the moment. Here,
Cp

n∑
q=1

means that rm’s sub-index group

of t1 . . . tp are selected from the n index group of an in a permutational manner, and group of
indices tp+1 . . . tn are the corresponding n − p indices of an after the selection.

Numerical Results

Based on the equations developed in the previous sections, we numerically implement here
the multipole expansion for the stress field of a dislocation ensemble, expressed by equation
(8.81). We consider here the results of the full calculation based on equation (8.75) as reference,
and calculate relative errors from the MEM as |σMEM − σref |/σref . Tests are performed on a
volume with h=10 µm for different expansion orders and different values of R/h. Dislocations
are generated randomly inside the volume and with a density of 5 × 108 cm/cm3. Numerical
results are shown in figure (8.25). From these results, it is clear that the approximate moment
solutions converge fast. For different values of R/h, the second order expansion gives a relative
error less than 1%, while the fourth order expansion gives a relative error less than 0.05%.

8.4.3 Applications to dislocation boundaries and walls

Dislocation Interaction with A Tilt Boundary

An important consequence of heavy plastic deformation is the re-arrangement of dislocations
into well-separated tangles or periodic arrays. Dislocation tangles evolve into walls that can act
as sources of new dislocations, or stop approaching glide dislocations from neighboring volumes.
On the other hand, some grain boundaries can be represented by dislocation arrays. The elastic
field generated by grain boundaries in compatibility can thus be determined from the dislocation
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Figure 8.25: Relative error of the MEM vs (a) the expansion order, (b) the R/h value for a
simulation volume with an edge length of 10 µm.

array representing its structure. Such dislocation microstructures have profound effect on the
deformation characteristics of materials, and more often, some ”effective” properties are needed.
In this section, we investigate the feasibility of ”effective” elastic representation of periodic
dislocation arrays and dislocation walls utilizing the MEM derived earlier. We will first analyze
the effective influence of a tilt boundary on the deformation of a dislocation emitted from a
near-by Frank-Read source. We will then investigate the nature of the Peach-Koehler force on
dislocations approaching a dense entanglement of dislocations within a dislocation wall. The
following examples are for single crystal Cu, with the following parameters: shear modulus
µ = 50 GPa, lattice constant a = 3.615 × 10−10 m, Poisson’s Ratio ν = 0.31.

Figure 8.26 shows the geometry of a 1◦ tilt boundary containing 35 dislocations with 1
2
[1̄01]

Burgers vector. A Frank-Read(FR) source is located 1 µm away from the tilt boundary. The
source, which lies on the [111] glide plane, and emits dislocations with [1̄21̄] tangent vector and
1
2
[1̄01] Burgers vector as well. The initial length of the F-R source dislocation between pinned

ends is 700 a. A constant uniaxial stress of 25 MPa is applied in the [100]-direction.

Dislocation motion under the influence of the externally applied stress and the internal stress
generated by the tilt boundary is determined using the method of Parametric Dislocation Dy-
namics(PDD)(Ghoniem et al. 2000b, Ghoniem et al. 2002a). Interaction forces between the
tilt boundary and the F-R source dislocation are calculated by two methods:(1) the fast sum
method(?), which adds up the contributions of every dislocation segment within the boundary;
(2) the current MEM up to second-order quadropole term. Dislocation configurations at differ-
ent time steps are shown in figure 8.27(a). The relative error in the MEM in the position of the
dislocation (at its closest point to the tilt boundary) is shown in Figure 8.27(b). The results of
the simulation show that the MEM is highly accurate (error on the order of 0.4%), and that
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the overall dislocation configuration is indistinguishable when evaluated by the two methods.
However, the MEM is found to be 22 times faster than the full field calculation.

1µm

0.5µm

b t

F-R source

1o tilt bounday
(35 dislocations)

Glide plane
[111]

Figure 8.26: Illustration of a tilt boundary. A single dislocation from an F-R source lies on the
[111] glide plane with Burgers vector 1

2
[1̄01] interacts with the tilt boundary.

Dislocation Interaction with a Dense Dislocation Wall

The physical role of dislocation walls in material deformation is recognized to be significant
because they control the free path of mobile dislocations within subgrains(?). Dislocation
walls generally contain high dislocation densities. Therefor, explicit large-scale simulation of
the interaction between these walls and approaching dislocations can present computational
difficulties. If the nature of decay of the elastic field away from the wall is determined, this
would be helpful in studies of dislocation interaction with such walls without the excessive
details.

A special algorithm was designed to implement the MEM in dense dislocation walls. The
wall was divided into many small volumes, and a hierarchical tree structure was constructed
on the bases of these small volumes. Each level of the hierarchical tree contains one or several
nodes that correspond to specific volumes of the wall. Larger volumes correspond to higher
levels of the tree. For each volume, we determine the properties: center, size, dislocation
distribution and various moments. Dislocation moments for the lowest level volumes are first
calculated. Then, by using Equation (8.84), dislocation moments for upper tree levels can be
easily determined.

The procedure for calculations of the Peach-Koehler force on an approaching dislocation at
point P is as follows:

1. The distance between the volume center and the point P is first evaluated. If the distance
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Figure 8.27: (a)Dislocation configurations at different simulation time steps: t1=0 ns, t2=0.31
ns, t3=0.62 ns, t4=1.23 ns, (b)Relative error of the dislocation position along the line X in (a).

is larger than the volume’s size, MEM is used.

2. If the distance is smaller than the volume size and the volume does not have sub-volumes,
the P-K force is determined by full calculation.

3. If the distance is smaller than the volume’s size and the volume has sub-volumes, the
algorithm checks on the distance between P and the center of each sub-volume, and the
above procedures are repeated.

Figure 8.28 shows a dislocation wall structure with a density of 5 × 1010 cm/cm3. The wall
dimensions are 5 µm×5 µm×0.2 µm. The P-K force on a small dislocation segment, located
at various positions along the center line X, with Burgers vector 1

2
[101̄] was evaluated by both

MEM and full calculations. The results of the P-K force and the relative errors are plotted in
figure 8.29.

While the relative error using MEM of order 2 is very small (see Figure 8.29(b)), a great ad-
vantage in computational speed is gained. The results show that the CPU time (on a Pentium-4
CPU, 2.26GHz) increases almost linearly from 416 seconds to 3712 seconds for the full calcu-
lation, when the number of dislocations in the wall increases from 250 to 2200. However, the
CPU time does not change much for the MEM (varying from 39 seconds to 40 seconds) for
the same increase in the number of dislocations. For the case of 2200 dislocations within the
wall, a speedup factor of almost 100 is achieved for the MEM. Recognizing that the CPU time
for the MEM is almost constant and mostly dependent on the hierarchical tree structure, it
is concluded that the method is very suitable for large scale simulations, which involve high
dislocation densities.
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Figure 8.28: Dislocation wall structure with dislocation density 5 × 1010 cm/cm3. A small
dislocation segment S with Burgers vector 1

2
[101̄] lies along x.
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It is of interest to determine the decay nature of the elastic field emanating from dislocation
walls. Figure 8.29(a) shows a comparison between various forms of the spatial decay of the P-K
force as a function of the distance R away from the wall, normalized to the force at R0 = 0.59
µm. It is seen that the force decays faster than R−2, and it can be simply represented by an
exponential function of the form:

F (R) = F (R0)e
−α(R−R0) (8.85)

where α = 1.48 µm−1. Such simple exponential representation is a result of the self-shielding
of the dislocations within the wall.

Conclusions

The MEM presented here shows a number of features that facilitate investigation into the
physical and computational aspects of large dislocation ensembles in materials undergoing plas-
tic deformation. The following conclusions are drawn from the present work:

(1) By re-expressing the elastic field of dislocation ensembles as a series solution of moments,
the relative contributions of GNDs, dipoles, quadropoles, etc are easily separated out.

(2) The method results in significant computational advantages as compared to calculations
performed in most dislocation dynamics simulation method. First, vast computational speed-up
is achieved, especially in simulations of dense dislocation interactions. Second, the method offers
a simple algebraic procedure for transfer of moments from one volume to another, in a manner
similar to the parallel axis theorem for moments of inertia in the mechanics of distributed
masses. This property is well-suited to algorithms based on hierarchical tree methods that are
now efficiently used in O(N) calculations.

(3) The zeroth order term in the MEM expansion is the Nye’s dislocation density tensor,
which is a direct measure of lattice curvature, and is affected only by GNDs within the ensemble.
Diagonal components of this tensor describe screw dislocations, while off-diagonal components
represent edge dislocations. On the other hand, higher order moments of the Eshelby tensor
are associated with definite length-scale measures that may be useful in connections between
discrete dislocation simulations and the continuum theory of dislocations.

(4) The analysis of dense dislocation walls indicates that the Peach-Koehler force has an
exponential decay character as a result of mutual shielding effects of multipole dislocations
within random ensemble constituting the walls.

8.4.4 R and Its Derivatives

R is the vector connecting field point Q and another point P on the dislocation or O, center
of the volume (see Figure 9.51). R and its derivatives are used in expressions of displacements,
strains, stresses and energies of dislocations(Ghoniem et al. 2002a). Here, we define a way to
express R and its derivatives in compact tensor forms.
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Define

R = {xi} and g =
{

xi

R

}
(8.86)

where R = |R|. Thus,

R,i =
xi

R
= gi (8.87)

R,ij =
δij

R
− xixj

R3
= − 1

R
(−δij + gigj) (8.88)

R,ijk = −δjkxi + δikxj + δijxk

R3
+

3xixjxk

R5

=
1

R2
[− (δjkgi + δikgj + δijgk) + 3gigjgk] (8.89)

R,ijkl = −δijδkl + δikδjl + δilδjk

R3

+
3(δjkxixl + δikxjxl + δijxkxl + δklxixj + δjlxixk + δilxjxk)

R5

−3 · 5xixjxkxl

R7

= − 1

R3
[(δijδkl + . . .) − 3 (δjkgigl + . . .) + 3 · 5gigjgkgl] (8.90)

. . . (8.91)

Based on the above derivations and after careful analysis, we can write these derivatives as:

R,a1a2...an =
(−1

R

)n−1 |n
2
|∑

m=0

{(−1)m(2n − 3 − 2m)!!

C2m
n (2m−1)!!∑ (

δt1t2δt3t4 . . . δt2m−1t2m · gt2m+1gt2m+2 . . . gtn

)
} (8.92)

where t1, t2, . . ., t2m are a group of indices selected from an in a permutation manner, and

t2m+1, . . ., tn are the other group of an after such a selection. The summation
C2m

n (2m−1)!!∑
means

taking sum over all combinations.

By defining

1 = {ei} (8.93)

and,

R(n) = {R,a1a2...an} (8.94)

we can write equation (8.92) as:

R(n) =
(−1

R

)n−1 |n
2
|∑

m=0

⎧⎨⎩(−1)m(2n − 3 − 2m)!!
C2m

n C2
2m∑ [

(�⊗n−2m g)(�⊗2m 1)
]⎫⎬⎭ (8.95)
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In this equation, m is the number of δ
′
s and is from 0 to |n

2
| which indicates the largest

integer not larger than n/2. The symbol �⊗n indicates that there are a number of n items

of g or 1 with the operation ⊗. The second summation
C2m

n C2
2m∑

means doing summing in a
permutation and combination manner, with the number of items 1 as 2m and the number of
items g as n − 2m. For example, with m = 1 and n = 4, we have:

C2m
n (2m−1)!!∑ [

(�⊗n−2m g)(�⊗2m 1)
]

=
C2

4∑[
(�⊗2 g)(�⊗2 1)

]
= 1 ⊗ 1 ⊗ g ⊗ g + 1 ⊗ g ⊗ 1 ⊗ g + 1 ⊗ g ⊗ g ⊗ 1

+g ⊗ 1 ⊗ 1 ⊗ g + g ⊗ 1 ⊗ g ⊗ 1 + g ⊗ g ⊗ 1 ⊗ 1 (8.96)

8.5 Coupling between the DD and FEM Computational

Procedures

In the following, a uniaxial tensile stress is imposed on a cubic single crystal and its effect on the
dislocation loop forces is calculated through the use of the Peach-Kohler formula. To evaluate
image stresses due to crystal surfaces, first the elastic stress field in an infinite medium resulting
from the dislocation loop is computed. The tractions that result at the surfaces of the finite
crystal from this stress field are then determined, reversed, and placed on the FEM model as
boundary conditions. The FEM model is then used to calculate the image stress field. From
this stress field, the Peach- Kohler formula can again be used to detrmine image forces on the
dislocation loop. This procedure follows the approach of Van der Giessen and Needleman (?),
and extends it to 3-D DD applications.

Having described the general idea behind the coupled FEM-DD approach to the solution of
the problem of a single dislocation loop in a finite crystal with external boundary conditions,
we will now turn our attention to the details of the calculational method. The elastic field
developed by the dislocation loop is evaluated at crystal spatial nodal positions defined by the
FEM model of the ANSYS computer program. For the bulk of the present analyses, 10 divi-
sions per cube side were employed for the FEM model. This resulted in 1,331 nodes and 3,990
degrees of freedom. Some analyses were run with a finer mesh generated by using 20 divisions
per cube side, thus resulting in 9,261 nodes and 27,780 degrees of freedom. These FEM models
have one node in the center of the crystal model with all degrees of freedom constrained to
prevent rigid body motion. Once the ANSYS model is created, the coordinates of the nodes
and the associated unit normals are introduced into UC-MICROPLASTICITY. Tractions are
then calculated, with the unit normal vectors at the surface of the cell. The tractions, with
their directions reversed, are then imported into the ANSYS computer program. After the
FEM analysis is run and the stress field in the crystal interior computed to an intermediate file,
which is then re-written into a format usable by UC-MICROPLASTICITY. The Peach-Kohler
formula is then used to calculate the image forces on the loop nodes. Because the FEM anal-
ysis only calculates the stress field at specific positions, the stress on the loop nodes has to be
estimated by a three-dimensional linear interpolation algorithm (?). To this end, a number of
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subroutines were developed to perform the linear interpolation of the stress tensor components
from FEM nodal positions to loop nodal positions. These subroutines determine the FEM field
nodes that are closest to a specific loop node, and estimate the stress on the loop node by using
a linear interpolation method described below.

8.5.1 Loop Node Stress Tensor Estimation

To estimate the stress on a specific loop node, the stress on the nearest FEM field points
surrounding the loop node must be found. These field node values are found by comparing
the FEM field node coordinate values to the loop node in question. The eight field nodes in
a quadrilateral brick element closest to the loop node are thus selected. Another subroutine
organizes the stress values and position coordinates so that the loop nodal stresses can be
determined by appropriate weighting factors. The procedure used for estimating the stress on
loop nodes from the stress that was calculated at the field nodes is taken from an extension
of the quadratic quadrilateral used in finite element analysis, into three dimensions (?). The
shape functions are given below.

N1 = [(a − x)(b − y)(c − z)]/8Ve (8.97)

N2 = [(a + x)(b − y)(c − z)]/8Ve (8.98)

N3 = [(a − x)(b + y)(c − z)]/8Ve (8.99)

N4 = [(a + x)(b + y)(c − z)]/8Ve (8.100)

N5 = [(a − x)(b − y)(c + z)]/8Ve (8.101)

N6 = [(a + x)(b − y)(c + z)]/8Ve (8.102)

N7 = [(a − x)(b + y)(c + z)]/8Ve (8.103)

N8 = [(a + x)(b + y)(c + z)]/8Ve (8.104)

In Eqns. (12.6-8.104), a, b and c are equal to half the length of a quadrilateral brick element,
and Ve is the element volume. The variables x, y and z are the coordinates of the loop node
with respect to element’s local origin. The stress on the loop node is estimated through the
following summation:

σloopnode =
8∑

i =1

Ni σi (8.105)

Here, Ni is the shape functions and σi is the stress on the particular field node. Once the
stress on the loop node is established, the image force is calculated using the Peach-Kohler
equation. The applied stress is calculated in a similar fashion to that of the image force, and is
then entered into UC-MICROPLASTICITY.



8.5. COUPLING BETWEEN THE DD AND FEM COMPUTATIONAL PROCEDURES271

8.5.2 Peierls Forces

The applied resolved shear stress required to overcome the lattice resistance to movement by a
dislocation loop is referred to as the Peierls-Nabarro stress. This stress is a consequence of the
inter-atomic forces/displacement interaction between the dislocation loop and the surrounding
crystal. This resistance to dislocation movement is due to the periodic variation in the misfit
energy of atomic half planes above and below the slip plane with the dislocation loop. For high
dislocation densities, the influence of the Peierls stress on the dynamics of the dislocation loop
is comparable to the long-range interactions between the dislocation loops themselves. For low
dislocation densities however, the contribution of the Peierls stress is significant. It is generally
accepted that the Peierls stress is a dominant controlling factor in the plastic slip of BCC metals
at low temperatures (?). Peierls and Nabarro calculated the dislocation energy per unit length
as a function of position. This energy was found to oscillate with period |b|/2, where b is the
Burgers vector. This maximum value for the energy is given in the following equation.

Ep =
µb2

π(1 − ν)
exp
(−2πw

b

)
(8.106)

The Peierls stress is the critical stress required to move a dislocation through the crystal. This
is the maximum slope of the energy versus distance curve, divided by the Burgers vector.

τp =
2µ

(1 − ν)
exp
(−2πw

b

)
(8.107)

In Eqns. (8.106) and (8.107), and w is the distance between the atoms immediately below the
dislocation.

Values for Ep and τp are sensitive to the details of interatomic bonding. τp varies between
(10−6 to 10−5µ) for FCC metals, (10−2 µ) for covalent crystals, and is somewhere in between
for BCC metals. The Peierls stress decreases with increasing temperature and with increasing
dislocation width. It is also lower for edge dislocations as compared to screw dislocations (?).
Based on the Peierls stress, the corresponding Peierls force can be found through the inner
product of the Peierls stress with the Burgers vector.

The ratio of edge-to-screw velocities in Fe is estimated to be ≈ 2. By assuming that the
ratio of Peierls forces associated with edge and screw dislocations are inversely proportional to
the velocity ratio, the Peierls force in the direction of the Burgers vector was taken as 1

2
that

in the direction normal to the burgers vector. Other ratios were also explored to determine
the variability in the deformed geometry with respect to this variable. The calculation of the
Peierls force is given by the following formula.

F

L
= τp

(
1 + sin(cos−1{ b · u

|b| |u|}
)

u

|u| (8.108)

The stress threshold value, τp is taken as (10−3 µ) for Fe, u is the displacement vector, and
b is the Burgers vector.
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8.5.3 A Shear Loop in a Finite Crystal

The displacement field for a shear dislocation loop with a radius of 4000 a is shown in the
vector plot of Fig. 8.30. It is interesting to note that as a result of shearing the top plane with
respect to the bottom along the dislocation line, a vortex-type displacement field is generated.
Knowledge of this displacement field is important for Molecular Dynamics (MD) simulations,
where the atomic positions around the shear loop can be determined. The stress field of the loop
in an infinite crystal was calculated first by UC-MICROPLASTICITY, and the corresponding
reversed tractions necessary for solving the FEM boundary value problem determined, as can
be seen in Fig. 8.31. The stress iso-surfaces formed by the σxx stress component of the elastic
stress field is added to the stress field formed by surface image stresses, and the results are
shown in Fig. 8.32. The superposition of the image stress field onto the elastic stress field of
the dislocation loop results in a total stress field with no normal components at the (x = 10,000
a) surface, as can be clearly seen in Fig. 8.32. The stress iso-surface appears to be repelled
from the surface. These results, along with similar results for the shear components, show that
the free surface boundary condition has been satisfied.

Force Distributions

Force distributions on a 4000 a-radius shear loop in the (101)- [111] slip system of an Fe
single crystal with an applied load of 100 MPa were calculated. The applied, image, Peierls,
self and resultant force distributions are all shown Fig. 8.33 below. The image, self and Peierls
force distributions are all on the shear plane, while the applied and resultant force distributions
are characterized by large out-of-plane components. The distribution of the applied force on
the circular shear loop is similar to that proposed by Kroupa (?). Self forces seek to increase
the length of screw components and decrease the length of edge components as a consequence
of total energy minimization for the loop. The screw orientation has a lower energy per unit
length as compared to the edge component, and hence is ”stiffer” in opposing applied forces.
Peierls forces are larger in the direction perpendicular to the Burgers vector, resulting in low
mobility of the screw component as opposed to the edge component of the loop. Dislocation
loops in BCC metals thus tend to have long, straight screw components, especially at lower
temperatures.

Equilibrium of Shear Loops Near Crystal Surfaces

To complete the analysis of the influence of free crystal surfaces, a single dislocation loop was
placed at different positions within the single crystal model, and the force distributions were
calculated. In addition to loop position, other variables were evaluated including loop diameter,
applied stress magnitude, and the number of FEM degrees of freedom. For all analyses, the
material modelled is BCC Fe (µ = 36.4 GPa, ν = 0.25, and a = 0.285 nm). An analysis was
conducted with a fine mesh of 20 divisions per side and 60 nodes per loop. The loop is placed
at 250 a from the crystal edge. The results of this analysis are illustrated in Fig. 8.34. As
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the loop approaches the crystal corner, image forces increase, and on the portion of the loop
closest to the boundary, they are characterized by attractive in-plane and attractive out-of-plane
components. A deformation analysis was also conducted on this loop/boundary configuration.
The results are displayed in Fig. 8.35. These results indicate that the loop advances away from
the corner in the direction of the Burgers vector. It must however be noted that the motion
of the loop is limited to the slip plane in the present numerical model. It is also obvious from
Fig. 8.35 that large out-of-plane forces can induce cross-slip.

To better understand the qualitative relationship between the position of the shear loop and
the crystal boundary forces, a loop with a radius of 2000 a was placed at different positions
with respect to the top crystal surface. As the loop arrives at the surface, the magnitudes of
image forces become very large. For a loop very close to the boundary, this force distribution
becomes repulsive when projected onto the slip plane, and is characterized by large out-of-plane
forces on the portion of the loop closest to the boundary. These forces should promote cross-slip
toward the free surface for the screw components. Fig. 8.36 shows that forces on loop nodes
not near the boundary evolve from a radial outward distribution at 250 a from the boundary, to
a downward normal (from the slip plane) distribution at a distance of 10 a from the boundary.
These results indicate that image force distributions are heavily dependent on the proximity
of the loop to the the top crystal surface. Having established the distribution of forces, the
deformed shape of the loop under an applied stress of 50 MPa was calculated (see Fig. 8.37).
As predicted by the nodal force distribution, the loop is repelled by the surface due to the
influence of image forces, as a result of constraining loop motion to be only on the glide plane.
A final equilibrium loop geometry is achieved at a distance of 212 a from the free surface. If the
model allowed for motion out of the slip plane, the loop would advance toward the boundary
through cross-slip of its screw components. To understand why surface image forces become
repulsive at close proximity to the boundary, the surface tractions were compared for this same
configuration at 250 a and 10 a from the boundary. These tractions show that there are large
shear forces acting on the surface of the crystal, and that these forces grow very large as the
loop comes close to the boundary. Thus, the tendency of the loop to move out of its glide plane
is driven by surface shear forces.

8.5.4 The Influence of Crystal Surfaces on the Deformation of Frank
Reed Sources

Friedel concluded that a dislocation is attracted towards its image, and that it should arrive
perpendicular to the free surface in order to achieve the most stable configuration (?). However,
a dislocation in a medium that is separated from a free surface by a thin film of thickness h
and shear modulus µ′ behaves quite differently. A screw dislocation at a depth L from the
interface will be drawn toward the free surface if µ′ < µ. It will be repelled however, if
µ′ > µ and L << h. For µ′ > µ, and L >> h, the dislocation will be attracted toward the
surface. This implies that there is an equilibrium position from the surface on the order of
the film thickness h from the interface. In ionic crystals such as potassium chloride, evidence
supports the conclusion that image forces repel dislocations from breaking the surface. Nabarro
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also states that the image forces may induce cross slip (?). Gilman and coworkers conducted
experimental studies involving the measurement of dislocation velocities in LiF single crystals
(?), and proposed a mechanism of dislocation motion under the influence of surface forces in
a single crystal. A variation on Gilman’s model is illustrated schematically in Fig. 8.38. In
this figure, an expanding Frank-Read (FR) source lies in the glide plane, which is at an angle
θ with respect to the free surface. The fast-moving edge component of the loop intersects
the surface first, as shown in Fig. 8.38-b. Through cross-slip of the screw component (which
is readily achieved through out-of-plane forces), the screw segment bends to become normal
to the crystal surface (?). This mechanism of cross-slip was assumed by Gilman to be the
result of energy minimization through the reduction in the length of the dislocation along the
slip plane. With the image force distribution observed in Fig. 8.37, it is obvious that this
effect is the result of the large surface shear forces uncovered by the present analysis. Thus,
we anticipate the creation of surface steps following the penetration of the edge component
through the surface, as illustrated in the present extension of Gilman’s mechanism.

The deformed geometry of a Frank Reed (FR) source in BCC Fe under the influence of an
applied stress was then computed to determine the influence of surface image forces on the
shape of the FR-source. In Fig. 8.39, a stress of 125 MPa was applied to a crystal containing a
single FR source . The FR source is located on the slip plane with origin at(7500,5000,7500).
The local coordinates of the fixed points on the FR-source are (-2000, 3000) and (2000,3000).
The equilibrium shape of the FR-source is evolved, as it approaches the free crystal surface.
The equilibrium position of the source is approximately 163 a from the surface of the crystal
model, as can be seen in Fig. 8.39.

To study the effects of anisotropic Peierls forces on the deformation of FR-sources, the ratio
of edge to screw Peierls forces were varied. Fig. 8.40 shows the deformation of an FR-source
in a finite crystal with a screw to edge Peierls force ratio of 2 to 1, and a Peierls threshold
shear stress of 1 × 10−6µ, and an applied stress of 200 MPa. This case may be representative
of a crystal with a ”low” screw to edge Peierls force ratio, such as an FCC crystal. The results
depicted in Fig. 8.40 also show the deformation of an FR-source in a crystal with a screw to
edge Peierls force ratio of 10 to 1, and Peierls shear stress threshold of 10−3µ, typical of a BCC
crystal and an applied stress of 700 MPa. Both cases indicate that the deformation for the high
ratio case evolves with significantly less curvature than for the low ratio case, consistent with
the observations of dislocation loop curvatures in FCC and BCC crystals, respectively.

8.5.5 Conclusions

The computer modelling and numerical results presented in this paper seek to determine the
influence of free surfaces on dislocation motion in metallic single crystals. Much of the work in
Dislocation Dynamics that is presented in the literature testifies to the importance of surface
effects. However, little if any modelling has been completed which describes the precise nature
of force distributions in 3-D geometry induced by the proximity of dislocation loops to crystal
surfaces with specified boundary conditions. Based on the results of computer simulations for
the elastic fields around static and dynamic dislocation loops and FR-sources in single crystals,



8.5. COUPLING BETWEEN THE DD AND FEM COMPUTATIONAL PROCEDURES275

and the corresponding forces and deformation of these loops, the following conclusions can be
drawn.

1. Imposed surface traction boundary conditions can be achieved through the use of a hybrid
finite element method (FEM), coupled with Dislocation Dynamics (DD). Peierls and self-
forces cause the loop to deform preferentially (stretch) in the direction of the Burgers
vector, while surface image forces act to either attract or repel the loop, depending on
its distance from the boundary, and the orientation of the slip plane with respect to the
nearest free surface. For slip planes at an oblique angle to a free surface, the image forces
on the closest screw-component portions of the loop are characterized by a large out-of-
plane component, which acts to pull the loop toward the surface through the mechanism
of cross-slip. For example, for loop model geometry characterized by 20 nodes, and 10
mesh divisions per side in the FEM model, the out of plane component became dominant
at approximately 500 lattice constants.

2. For slip planes that are normal to the free surface, image force distributions on dislocation
loops have negligible out-of-plane components. These image forces are directed along the
slip plane regardless of the distance of the loop from the boundary. Furthermore, these
image forces can either attract or repel portions of the loop closest to boundary depending
on the distance between the loop and the boundary. For a 4000 lattice parameter diameter
loop characterized by a 60 node geometry, and an FEM model with 20 mesh divisions
per side, calculated image forces are attractive for a loop/free surface separation of 250
lattice parameters. For the same model, but with a separation of 10 lattice parameters
between the loop and the free surface, the image forces are repulsive to the loop segment
nearest to the surface.

3. Image forces dominate the resultant force distribution for orientations of the shear loop
closest to the free surface. The distance from the boundary at which image forces become
significant can be estimated based on the image force/self force ratio. This distance varies
with respect to the loop radius. Loops with large radii are affected by image forces deeper
into the single crystal than are loops with small radii. For small loops, self forces dominate
and cause contraction. Thus, the expansion or contraction of the loop is dependent on a
critical applied stress, radius of curvature, and proximity from the boundary.

4. Shear dislocation loops and FR-sources in similar slip systems under similar loading con-
figurations close to the surface deform and evolve into similar geometric shapes. A dislo-
cation loop (radius=2000 a, σxx = 50 MPa, initial loop surface separation of 10 a) and an
FR-source of initial length= 4000 a, σxx = 150 MPa, initial separation from boundary =
535 a in the ”oblique” orientation deform into similar shapes. The loop evolves into an
equilibrium position 212 a from the surface, while the FR-source evolves to an equilibrium
position approximately 163 a from the free surface.

5. Analysis and comparison of modelling results for FR-source deformation under the in-
fluence of an applied stress indicates that dislocation loops in BCC crystals deform into
geometry with significantly less curvature than in FCC crystals under the same conditions.
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Figure 8.30: Two views of the displacement field induced by a 4000 a-radius shear loop in the
(101)-[111] slip system. Burgers vectors are represented at loop nodes.
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Figure 8.31: Vector plot for the tractions produced by the elastic stress field of a 4000 a radius
shear loop
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Figure 8.32: σxx = 2000 MPa stress iso-surface for the total dislocation plus image elastic field
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Figure 8.33: Force distributions on a 4000 a radius shear loop in the (101)-[111] slip system in
Fe, applied stress σxx = 100 MPa. Vectors to scale except self and image with scale factors of
2 and 10, respectively
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Figure 8.34: Two views of the image force distribution on a loop in the corner of the unit cell.
The loop is 250 a from the edge of the cell. The Burgers vector direction is also represented.
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Figure 8.35: The 500 a radius loop and the deformation that results under an applied stress of
350 MPa.
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Figure 8.36: Image force distributions on a 2000 a radius shear loop in the (101)-[111] slip
system, (A)1000 a, and (B) 10 a from z=10000 a surface. Vector scale factors: (A)100,(B) 1 .
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Figure 8.37: Deformation of a 2000 a radius shear loop in the (101) -[111] slip system. The
loop is initially 10 a from the surface with applied stress: σxx = 50 MPa.
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(a)

(b)

(c)

Figure 8.38: Schematic of cross-slip of a screw dislocation adjacent to a surface in a crystal.(a)
Initial configuration of an expanding F-R source, (b) emergence of an incipient surface step
by penetration of the edge component through the surface, and (c) the deformation of the
dislocation line following cross-slip .
(after (?))
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Figure 8.39: Isometric view of a crystal containing an FR-source, and a 2-d view of the deformed
geometry as viewed normal to the (101)-plane. (1) Initial geometry, (2) Intermediate, and (3)
Equilibrium. The applied stress σxx = 125 MPa.
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Figure 8.40: Isometric (A), and 2-d (B, C, and D) views of the evolution of an FR-source near
a crystal surface. View C depicts the ”low screw/edge force” ratio case, while D depicts the
”high” ratio case. 4000 time steps.



Chapter 9

Applications

9.1 Fundamental Mechanisms

9.1.1 Finite-Size Dipole Formation and Destruction

In all previous applications of the PDD, strong interactions between different loops is not a
major factor that determines the final outcome of each mechanism, although in the case of a
dislocation pileup, moderate loop reconfiguration takes place as a result of loop-loop interaction.
For large-scale computer simulations of dislocation ensembles(?), loop-loop and loop-obstacle
interactions determine the rate of strain hardening or softening(Ghoniem et al. 2000b). We
consider here several interaction mechanisms that are dominant in various stages of strain
hardening. These are: dipole formation and breakup, dislocation unlocking from defect clusters,
and the formation and destruction of dislocation junctions.

It has been pointed out(?) that the destruction of dislocation dipoles plays a significant role
in the evolution of Persistent Slip Bands(PSB) under fatigue loading conditions. Dislocation
dipoles play significant roles in a host of hardening mechanisms, and thus conditions for their
formation and destruction must be worked out. The stability of very long dipoles has been
determined from static equilibrium considerations, and the shear stress necessary to destabilize
a dipole of a given width, h, is given by(?):

τc =
µb

8π(1 − ν)

1

h
(9.1)

The more general dynamic stability conditions of infinite length dipoles have been determined
by Huang et al.(?). Here, we focus on the resolution of the dynamics of formation and breakup
of finite-size dipoles in FCC metals. Figure 9.1 shows a 2-D projection on the (111)-plane of the
dynamic process finite-size dipole formation. Two initially straight dislocation segments with
the same Burgers vector 1

2
[1̄01], but of opposite line directions are allowed to glide on nearby

parallel {111}-planes without the application of an external stress. The two lines attract one

287
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another, thus causing the two loop segments to move and finally reach an equilibrium state
of a finite-size dipole. The two parallel dislocations are pined at both ends, the upper loop
glides on the ”upper” plane, while the ”lower” one glides on the ”lower” plane as shown in
Figure 9.1. The mutual attraction between the two dislocations becomes significant enough to
simultaneously reconfigure both of them only during the latter stages of the process. Because
the two dislocations start with a mixed character, a straight and tilted middle section of the
dipole forms. The length of this middle section, which we may simply ascribe as the dipole
length, is only determined by the balance between the attractive forces on the middle straight
section, and the self-forces on the two end sections close to the pinning points. The separation
of the two planes is 25

√
3, which is approximately 60 |b|

Such finite-size dipoles will be stable on their own, so long as no perturbing external or
internal stress field is present. It is immediately obvious from Figure 9.1 that the dipole con-
figuration is symmetric with respect to the direction of an applied shear stress parallel to the
two glide planes. Calculations of dipole dynamics under the influence of an externally applied
stress show that it is much easier to unzip the dipole in the reverse direction than to destroy it
in the forward direction. Figure 9.2 summarizes the relationship between the unzipping stress
and the inverse of the inter-planar distance 1/h∗. A comparison is also made in the same figure
with stress values needed to destabilize an infinite dipole calculated by Equation 9.61, and the
values needed to destroy it in the forward direction.

As a result of the self-forces generated by the curvature of the two end sections of the dipole,
the unzipping strength is a factor of 2 smaller than the strength of an infinite dipole. In the
forward destruction case, however, the self-forces tend to hold both dislocations back, thus a
higher external stress is needed to break up the dipole . The present results are calculated for
an initial horizontal separation of 350 for the two straight segments before the dipole forms.
Increasing this distance results in smaller effects of the curved sections of the dipole, and hence
both unzipping and forward destruction stresses approach the infinite dipole values. It is to be
noted here that all these results are for static dipoles, or for initial dislocation velocities smaller
than 1

2
the transverse sound speed. The stability of the dynamic infinite dipole is treated in

reference [(?)].

9.1.2 Dislocation interaction with defect clusters

Dislocation motion is effectively impeded by the elastic field of small defect clusters of vari-
ous types, which can be generated during particle irradiation(?), rapid temperature changes
(quenching), high speed deformation and cyclic fatigue conditions(?). Defect clusters are either
glissile or sessile. One particular type of such clusters that is produced by particle irradiation
is composed of a collection of self-interstitials, and its elastic field can be represented by a
small prismatic dislocation loop. Experiments have shown that most dislocations in irradiated
materials are decorated by sessile Self-Interstitial Atom (SIA) clusters. On this basis, a ”Cas-
cade Induced Source Hardening”(CISH) model has been proposed (?) to explain yield drop
phenomena and the level of radiation hardening in irradiated materials. We present here results
of PDD simulations for the problem of dislocation loop penetration through the elastic field of
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Figure 9.1: Two F-R source dislocations with the same Burgers vector(b = 1
2
[1̄01]) but opposite

tangent vectors gliding on two parallel (111)-planes (distance h = 25
√

3a apart) form a short
dipole in an unstressed state. The view is projected on the (111)-plane. Time intervals are: (1)
2.5 × 105, (2) 4.75 × 105, (3) 5 × 105 , (4) Equilibrium state
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Figure 9.2: The relative shear stress(τ/µ) to break up a finite size dipole as a function of the
relative inverse separation1/h∗, h∗ = h/a. h is the distance between the two parallel planes.
The distance between the pinning points of the two F-R sources L = 1600a, and they are
originally separated by 350a horizontally.
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sessile SIA clusters. SIA clusters are modelled as rigid, sessile prismatic loops, and their elastic
field is computed from Kroupa’s infinitesimal loop approximation(?).

First, we will use Kroupa’s theory to obtain analytical estimates for the magnitude of the
maximum stress required to free a rigid, straight dislocation of infinite length from the elastic
field of a row of SIA clusters sitting above (or below) the glide plane. The average cluster
diameter is d, and the inter-cluster distance is l. Consider the case when the Burgers vectors
of all clusters are of the same magnitude and direction as that of the glide dislocation, as
shown in Figure9.3-a. The glide dislocation is of an edge character and lies along the x3

direction. The normal to the cluster habit plane is parallel to its Burgers vector. Utilizing the
Peach-Koehler formula (Equation ??) for the cluster force on the dislocation, and Kroupa’s
infinitesimal loop approximation(?), the force component on the glide plane that one cluster
exerts on the dislocation per unit length is obtained.

For the particular case of Cu, with ν = 0.31, the maximum value of the glide force per unit
length can be easily shown to be:

Fmax
glide/µ = 0.0723

(
bd

y

)2 (
1

y

)
(9.2)

When the cluster Burgers vector is orthogonal to that of the glide dislocation as shown in
Figure9.3-b, this peak value is:

Fmax
glide/µ = 0.0258

(
bd

y

)2 (
1

y

)
(9.3)

It is clear that the maximum force for the parallel case is greater than that for the orthogonal
case by the factor 1/(1−ν) ≈ 2.8. Since the dislocation is assumed to be rigid in this analytical
approach, the dislocation will unlock from the collective cluster field when the external force
integrated over the inter-cluster distance l just exceeds the force generated by a single cluster,
integrated over the same distance. Ignoring the fact that the cluster force varies over the
inter-cluster distance l, one obtains for the critical unlocking shear stress (CRSS) for Cu:

(CRSS)‖/µ ≈ 0.0723

(
d

y

)2 (
b

y

)
, (CRSS)⊥/µ ≈ 0.0258

(
d

y

)2 (
b

y

)
(9.4)

By calculating the interaction energy between a cluster covering a a rigid dislocation segment
l, Trinkaus, Singh and Forman(?) determined the critical stress to unlock a dislocation from a
cluster atmosphere of parallel Burgers vectors as:

(CRSS)‖/µ ≈ 0.1

(
d

y

)2 (
b

l

)
(9.5)

Apart from the discrepancy in the numerical factor, Equations 9.4 and 9.5 show different scaling
with the stand-off distance y. Agreement between the two equations is obtained if one considers
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Figure 9.3: Geometry representation of the relationship between one cluster and a dislocation

on its glide plane. (a) Burgers vector of the cluster is parallel to that of the F-R source. (b)

the two Burgers vectors are normal to each other.
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that the dislocation may break away from the cluster field at its weakest spot, mid-way between
two clusters. If this is satisfied by assuming that the stand-off distance is on the order of the
inter-cluster distance l, the ( b

l
) term in Equation 9.5 roughly replaces the ( b

y
) term in Equation

9.4.

Through numerical simulations, it will be shown next that dislocation reconfiguration by
changing its curvature during the interaction process plays a major role in its ability to unlock
from the stress field of defect cluster atmospheres. The analytical theory presented above
is not suitable for analysis of the detailed mechanisms of dislocation unlocking from cluster
atmospheres, because it neglects dislocation shape changes as it passes close to the cluster.
Figure 9.4 shows the effects of a single cluster placed at different stand-off distances on the
motion of a glide dislocation. A dislocation loop, pinned at the end points as shown in the
figure (b = 1

2
[101̄]) interacts with one SIA cluster (bc = 1

2
[111]). An external applied stress

σ11 = 120 MPa(CRSS/µ = 0.096%) is imposed as a step function in time. When the stand-off
distance between the cluster and the glide plane y is 120, the stress field of the cluster is very
weak. However, the dislocation line is very flexible, curving as it approaches the cluster, even
though its field is very weak, as shown in Figure 9.4. At a normalized time of 4.0 × 106, the
dislocation totally breaks through the influence of the cluster elastic field. In this case, the effect
of the cluster is just to temporarily distort the dislocation configuration . After the dislocation
breaks away from the cluster field, it can totally recover from this distortion as a result of the
stabilizing effects of its self-force. However, when the same cluster is moved closer to the glide
plane at a normalized distance of 80, the effect of the cluster elastic field is much stronger, and
the dislocation is totally trapped. A permanent cusp distortion is generated near the cluster,
and the dislocation splits into two portions, each achieving equilibrium with the applied field
by its own self-force.

Now we will consider PDD numerical simulations for the interaction of an F-R source with a
row a SIA clusters. As the glide dislocation comes close to the influence of the collective cluster
filed, each segment will be subject to localized forces that quickly change from attractive to
repulsive. The combined effects of cluster forces, the local self-force and the externally applied
force then determine the dislocation’s shape. Dislocation reconfiguration, in turn, dictates its
ability to overcome the resistance of the cluster field to its motion.

In Figure9.5, a total of 15 SIA prismatic clusters, each with the same b = 1
2
[011], d = 40,

l = 100, and y = 80, are shown to interact with an advancing dislocation on its glide plane. The
external shear stress σ11/µ or τ/µ is gradually increased from 0 at intervals of ∆τ/µ = 0.008%.
At each stage, the dislocation reaches a new stable configuration, as shown in Figure 9.5a. As a
result of the initial angle between the dislocation’s Burgers and tangent vectors, its line becomes
asymmetric, as can be seen in the figure. When the normalized applied stress is increased to
0.112%, the dislocation starts to break away from one side of the cluster atmosphere. Once
this process of unzipping begins, it is further accelerated by the change in local curvature at
the freed end of the dislocation, as can be ascertained form Figure 9.5-b.

To determine the spatial resolution of PDD in describing the instability phenomenon that
leads to dislocation unlocking from clusters, we use different number of segments. Figure 9.6
shows the effects of using different nodal densities on the spatial resolution of the dynamic
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Figure 9.4: Interaction between an F-R source (b = 1
2
[101̄]) in Cu on the (1 1 1)-plane with

a single sessile prismatic interstitial defect cluster(b = 1
2
[111]), d=50 a, subjected to a step

function stress σ11 = 120 MPa (τ/µ = 0.096%). The cluster center has the local coordinate:

(a)=(0 -800 80); (b)=(0 -800 120).
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Figure 9.5: Dynamics of the asymmetric unlocking mechanism from a cluster atmosphere of 15

equally spaced sessile interstitial clusters (d = 40, y = 80 and l = 100). (a)Equilibrium state

with equal shear stress interval of 4 MPa (∆τ/µ = 0.008%). (b)Unlocking state at a stress

σ11 = 140 MPa (τ/µ = 0.112%), with equal time interval ∆t∗ = 2 × 105.
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dislocation shape, and on the critical unlocking stress. In Figure 9.6-a,b,c, the dislocation
line is initially divided into 6, 18, 30 segments, respectively. It can be seen that as the nodal
density is increased, the dislocation shows more variations in its local curvature. However, once
the segment length is smaller than the inter-cluster distance, no more changes are observed,
and a convergent shape is achieved. When the number of segments is decreased to only 6,
the dislocation cannot sense the variation of the stress field of individual clusters, and only
responds to their integrated effects. Consequently, it can not adjust its local curvature, since
the present interpolation scheme is based on cubic shape functions. It is expected that quintic
spline shape functions may be able to capture strong variations in dislocation curvature with a
small number of segments. Comparing the spatial scales of FIGS. 9.5 and 9.6, one can see that
convergent spatial resolution of the dynamic dislocation shape on the order of 1-2 atomic lattice
spacings is obtained. To resolve smaller features, one may have to consider crystal anisotropy
and non-linear displacement-force relationships in the analysis.

The results of scaling the CRSS with the inter-cluster and stand-off distances are shown In
FIGS. 9.7 and 9.8, respectively. The analytical results of Trinkaus et al.(?) are also compared
with the current numerical simulations. In Figure 9.7, 15 equally-spaced clusters interact with
a glide edge dislocation with two pinned ends, l = 80 and d = 40, and b = 1

2
[1̄10] for both

dislocation and clusters. The figure shows that the CRSS decreases with the increase in the
inter-cluster distance, in a manner consistent with the analytical estimates. The dislocation
does not have a chance to bulge out in between the clusters, and thus breaks away in a rigid
fashion from its middle section, where the cluster field decreases with the increase in l. It is
very interesting, however, to note that the numerical simulations show two distinct regimes:
regime A, where the l ≤ 2d, and regime B, where l ≥ 2d. In regime A, the cluster fields overlap,
and the force distribution on the segment does not vary significantly to allow any bulging out
during the unlocking process. Thus, the resistance to dislocation motion is globally produced
by the collective field of all clusters. In regime B, however, once the inter-cluster separation is
larger than twice its diameter, the force variation of clusters over the segment is large, and the
dislocation prefers to buckle in between them. The radius of curvature of this bulge is on the
order of 1

2
the inter-cluster distance. Thus, the resistance to dislocation motion switches now

to a local process, where its radius of curvature determines the CRSS. A sudden jump is clearly
observed when we cross from regime A to B, as can be seen in Figure 9.7. As the inter-cluster
distance increases in regime B, the resisting curvature decreases, and hence the decrease in
the CRSS, albeit at a higher level than in regime B. This behavior represents bistability of the
dislocation configuration as a function of the inter-cluster distance.

The dependence of the CRSS on the stand-off distance is likewise displayed in Figure 9.8,
where a comparison with the analytical theory is also made. For the parallel Burgers vectors
case, good agreement with analytical theory is obtained, because the behavior is mainly in
regime A of Figure 9.7. The somewhat smaller values of the numerical simulations are a result
of the self-forces close to the pinned ends reinforcing the applied stress field. However, when the
clusters Burgers vectors are orthogonal to the dislocation’s, the cluster field variations along
the inter-cluster distance are very strong, and the dislocation prefers to bulge out, reverting to
regime B behavior that is associated with higher resistance. The CRSS is higher by a factor of
2 in this case, as can be seen from Figure 9.8.
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Figure 9.6: The influence of the number of segments on the resolution of the dislocation un-

locking mechanism: (a) 6 segments; (b) 18 segments; (c) 30 segments.
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Figure 9.7: Comparison between the results of PDD simulations and the analytical results of
Trinkaus et al. for the dependence of CRSS (τ/µ) on the inter-cluster distance.
(?)
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Figure 9.8: Comparison between the results of PDD simulations and the analytical results of
Trinkaus et al.for the dependence of CRSS (τ/µ) on the inverse square stand-off distance. Case
(1): Burgers vectors of clusters and the dislocation are parallel; Case(2): Burgers vectors of
clusters is orthogonal to that of the dislocation.
(?)
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9.1.3 Dislocation Junctions

Dislocation-dislocation interaction can result in either their attraction towards each other, or
their repulsion from one another. The interaction of dislocations at close separation has been
found to be associated with significant reconfiguration of their shapes(?)-(?). If dislocation
interaction is attractive, the two closest segments are simultaneously pulled towards each other
till a stable common part (junction) of the two dislocations is formed. However, when the
segments repel one another, a stable crossed state can also form (?). The dynamics of dislocation
junction formation and breakup have attracted recent attention( e.g. (?), (?), (?)), because of
the importance of this mechanism in strain hardening and pattern formation(?). Especially in
FCC metals of low stacking fault energy, dislocation junction structures are usually complex,
since dislocation cores are dissociated into partials separated by stacking faults (?). Under these
conditions, sessile Lomer-Cottrell junctions are generated. They significantly impede further
dislocation motion resulting in strain hardening. Because of their stability, sessile junctions
can also act as nucleation sites for dislocation cell walls(?). In the present PDD method, we
introduce a critical length scale rc ≈ |b|, where the two dislocation cores are not permitted
to interpenetrate if they approach one another at smaller distances. In this simple fashion,
complex atomic level simulation of the core structure is obviated(?), and no specific rules are
further introduced.

First, we show in Figure9.9 the dynamics of attractive junction formation without any ex-
ternally applied stress. Two initially straight dislocations of Burgers vectors and slip planes
given by: b1n1 = 1

2
[011̄](111) and b2n2 = 1

2
[101](111̄) are pinned at their ends, and allowed

to move approaching each other until they are locked at equilibrium. Their locked equilibrium
state can be understood to result from the balance between their mutual interaction at the close
separation of rc, and the respective self-forces of their curved arms that form close to the pinned
ends. The length of the straight section (junction) that forms at the intersection of the two
glide planes is approximately 200. Figure 9.9-a shows a 2-D projection view of the successive
motion of 1

2
[011̄](111) , while the 3-D view of the junction structure is shown in Figure 9.9-b.

The intrinsic strength of junctions is the key factor in understanding strain hardening in
crystals (?), thus it is important to study the process of junction destruction under an externally
applied stress. Once an unstressed junction is formed, as shown earlier here, the binding forces
on its middle straight section will be balanced by the self-forces on the four curved arms.
However, if an applied stress is also introduced, the balance of forces is very delicate, because
the dislocation curvature at both ends of the straight junction section changes considerably.
The two ends of the junction act as pseudo pinning points, and the four arms start to behave as
small F-R sources, bowing out considerably as the applied stress is gradually increased. Figure
9.10 shows the detailed dynamics of the junction unzipping process under an increasing applied
stress σ11/µ. When the applied stress is increased to 0.2%, the four arms of the two dislocations
begin to curve, but the binding forces between the two dislocations in the junction are still very
strong, and a final stable configuration is formed. When the applied stress is increased to
0.6%, the bowing out of the four arms achieves a high level of self forces at the two ends of
the junction, overcoming binding forces in the immediate neighborhood. It is interesting to
point out that, when the applied stress is gradually increased, the curvatures near the pseudo
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Figure 9.9: Dynamics of 2 unstressed F-R sources ( 1
2
[011̄](111) and 1

2
[101](111̄)) forming

a 3D junction along (1̄10) , b = 1
2
[110]. (a) 2D view for the motion of the F-R source

(1
2
[011̄](111)1

2
[1̄01](11̄1)) on its glide plane(111). Time intervals are (1) initial configuration,

(2) 1.5× 104, (3) 5.0× 104, (4) 1.3× 105, (5) Final configuration. (b) 3-D view of the junction
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Table 9.1: Error Estimation for different nodal distributions during junction formation. The
configuration with 12 segments for each dislocation is selected as reference.

No. of Segments Absolute Error εa Relative Error εr CPU-time(sec)
3 27.8 20.05% 406.2
4 19.7 14.25% 841.1
6 16.0 8.75% 2932.6
8 4.97 1.00% 4902.4
12 0 0 8320.2

pinning points become very high, leading to high self-forces at the ends. Once the curvature
at the two junction tips exceeds a critical value, the junction cannot sustain the high forces,
and the ”pinning” points themselves become unstable. In response, the two pseudo pinning
points then move inward reducing the junction length. Once this process occurs, the length of
the pseudo F-R sources gradually increases, causing the curvature near the ”pinning” points to
be even higher. A dynamically unstable unzipping process ensues at both ends of the junction
till it totally breaks up, and the two dislocations are freed from one another. The high spatial
and temporal fidelity of the PDD is clear in this example, since only 5-9 segments are used
throughout the entire simulation. The simulation encompasses balance between binding forces
as a result of interaction between straight segments within the junction separated by only one
atomic distance with forces on the arms of the curved segments at much larger length scales
with only a few segments. The results obtained here with a few degree of freedom for the
dynamics of junction formation and destruction are in general agreement with the atomistic
simulation of Rodney and Philips (?).

9.2 Work Hardening in Single Crystals

9.2.1 Introduction

It is now clear that microstructure at the microscale level controls the macroscale mechanical
properties of metals. Such microstructures could be very heterogeneous like cells, persistent slip
bands, and dislocation tangles. They are critical to the material properties. Dislocations are
the carrier of plastic deformation of materials. The direct numerical simulation of dislocation
motions is used to study the relation between microstructure and macroscale properties.

Work hardening of metals is a traditional problem that has been studied for decades. Because
of the complex microstructure resulted from dislocation interactions, there is still not a single
satisfactory theory that can be used to fully explain the underlying mechanism controlling the
work hardening properties of materials.



9.2. WORK HARDENING IN SINGLE CRYSTALS 303

[1 1 1]

[1 1 -1]

[1 1 1]

[1 1 -1]

[1 1 1]

[1 1 -1]

( a )

( b )

( c )

Figure 9.10: Dynamics of a stressed junction showing configurations at various stress levels: (a)

Equilibrium, σ11 = 100 MPa (b) Equilibrium, σ11 = 250 MPa (c) Unstable, σ11 = 300MPa.
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Work hardening of single crystals is generally divided into 3 or more stages. Each stage has
a distinct work hardening rate (dε/dτ). At the same time, specific microstructures form during
the development of different stages. For example, cell structures are believed to form in stage
III of work hardening. Cell sizes are believed to relate to the strength of materials.

To understand the work hardening and explore the underlying mechanisms, the UCLA-
MICROPLASTICITY computer code is used to simulate dislocation microstructure evolutions
during the material deformation.

9.2.2 Simulation Procedure

A simple one-dimension tension is applied to simulate the deformation of materials. The cor-
responding microstructure evolution and the stress-strain curve are obtained from the results.

The tension is applied through a constant strain rate. Define

c = ε̇e + ε̇p (9.6)

as the applied strain rate, where εe is the elastic strain rate and εp the plastic strain rate. The
plastic strain rate is obtained from the motion of dislocations as

ε̇p = − 1

2V

N∑
i=1

livi(ni ⊗ bi + bi ⊗ ni) (9.7)

where li is the length of the dislocation segment, V is the volume of the simulated material,
n = v × ξ, v is the velocity of the dislocation segment and ξ is the tangent vector of the
dislocation.

The elastic strain rate is defined as:

ε̇e =
σ̇

E
(9.8)

where E is the Young’s modules.

Substituting Eq. 9.7 and 9.8 into Eq. 9.6, we can obtain the expression of the relation of
applied stress and strain rate as

σ̇ = E(c − ε̇p) (9.9)

Because of σ̇ = σt+1−σt

δt
, Eq. 9.9 leads to

σt+1 = σt + Eδt(c − ε̇p) (9.10)

where δt is the time step.

In simulations, the plastic strain rate is calculated from the motion of dislocations. Using Eq.
9.10 we can obtain the strain-stress curves. The simulations will directly relate the dislocation
motion at the microscale to the macroscale mechanical properties, which provides a way to
study the material behaviors.
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9.2.3 Simulation Results

We performed several simulations on different cases to study the dislocation microstructure
evolution and the macroscopic mechanical behaviors (strain-stress curves). In our simulations,
with the deformation increasing, dislocations deform into different microstructures like dislo-
cation tangles, dislocation slip bands and cell structures. These microstructures interact with
dislocations and the strain-stress curves reflect these underlying motions of defects.

The simulations are still in very low strain level. However, they provide us with the following:

1. Microstructure evolutions are directly simulated and it is clear that interactions between
dislocations control the formation of different microstructure patterns.

2. The strain-stress curves are closely related to and are a direct result of the dislocation
motions. For different dislocation motions (cases with different dislocation densities),
there are some differences of the mechanical behaviors.

3. There are also some similarities. For example, with enough initial dislocations, dislocation
densities for different cases have similar relations to the strains. This may help us in
developing simulations to larger stain level.

Results for 5 µm and low density

In this case, the simulation volume is 5µm, and the dislocation density is 5× 107cm/cm3. The
applied constant strain rate is 100s−1. The simulated results are shown in figures 9.11. Different
microstructures at different strain levels are shown in figures 9.12 to 9.15. The different colors
in the microstructure figures represent different glide systems as defined in figure 9.12(same for
all the microstructure figures in the latter sections.
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Figure 9.11: (a) Simulated strain-stress curve; (b) Dislocation density vs strain simu-
lated.(Result 1)
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Figure 9.12: (a) Initial simulated microstructure(Result 1); (b) Different colors represent dif-
ferent gliding systems.
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Figure 9.13: Simulated microstructure at time step 450.(Result 1)
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Figure 9.14: Simulated microstructure at time step 1200.(Result 1)
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Figure 9.15: Simulated microstructure at time step 1800.(Result 1)
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Results for 5 µm and intermediate density

In this case, the simulation volume is 5µm, and the dislocation density is 4× 108cm/cm3. The
applied constant strain rate is 100s−1. The simulated results are shown in figures 9.16 and 9.17.
Different microstructures at different strain levels are shown in figures 9.18 to 9.24
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Figure 9.16: (a) Simulated strain-stress relation; (b) Dislocation density vs strain.(Result 2)
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Figure 9.17: Frequency of annihilation vs strain simulated.(Result 2)
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Figure 9.18: Initial simulated microstructure.(Result 2)
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Figure 9.19: Simulated microstructure at time step 500.(Result 2)
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Figure 9.20: Simulated microstructure at time step 750.(Result 2)
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Figure 9.21: Simulated microstructure at time step 1000.(Result 2)
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Figure 9.22: Simulated microstructure at time step 100. Short range interactions of junctions
and dipoles are illustrated.(Result 2)
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Figure 9.23: Simulated microstructure at time step 1000. Dislocations are forming into cell
structures.(Result 2)
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Figure 9.24: Simulated microstructure at time step 1000. Dislocation tangles are shown in the
figure.(Result 2)

Results for 10 µm

In this case, the simulation volume is 10µm, and the dislocation density is 1×108cm/cm3. The
applied constant strain rate is 100s−1. Different microstructure at different strain levels are
shown in figures 9.25 to 9.34.

Results for 5 µm and high density

In this case, the simulation volume is 5µm, and the dislocation density is 1× 109cm/cm3. The
applied constant strain rate is 100s−1. Different microstructures at different strain levels are
shown in figures 9.35 to ??.

9.3 Thin Films & Nanolayers

Introduction

Transmission Electron Microscopy (TEM) offers the most direct method of comparison for
DD simulations. However, few such comparisons have been made to date, and these have been
qualitative examinations and not quantitative comparisons between experiment and modeling
(?, ?, ?). Comparisons of DD simulations to static TEM images are necessarily indirect and
qualitative since standard TEM images are two-dimensional thin foil projections of static mi-
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Figure 9.25: (a) Simulated strain-stress relation; (b) dislocation density vs strain.(Result 3)
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Figure 9.26: Frequency of annihilation vs strain.(Result 3)
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Figure 9.27: Initial simulated microstructure.(Result 3)
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Figure 9.28: Simulated microstructure at time step 250.(Result 3)
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Figure 9.29: Simulated microstructure at time step 500.(Result 3)
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Figure 9.30: Simulated microstructure at time step 750.(Result 3)
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Figure 9.31: Simulated microstructure at time step 1000.(Result 3)
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Figure 9.32: Simulated microstructure at time step 1350.(Result 3)
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Figure 9.33: Simulated microstructure at time step 1000, junctions and dipoles are
shown.(Result 3)
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Figure 9.34: Simulated microstructure at time step 1350, dislocations form complex 3D struc-
tures.(Result 3)
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Figure 9.35: (a) Simulated strain-stress curve; (b) dislocation density vs strain. (Result 4)
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Figure 9.37: Initial simulated microstructure.(Result 4)
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Figure 9.38: Simulated microstructure at time step 250.(Result 4)
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Figure 9.39: Simulated microstructure at time step 500.(Result 4)

0

5000

10000
0

5000
10000

0

5000

10000

X Y

Z

Figure 9.40: Simulated microstructure at time step 750.(Result 4)
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Figure 9.41: Simulated microstructure at time step 840.(Result 4)

crostructures. Dynamic dislocation behavior in thin foils can be observed by in-situ TEM, and
several interesting experimental studies have been made using this technique(?, ?). Some 3D
information about dislocation motion can be ascertained if travelling dislocations leave a slip
trace on the surface. However, information on the relative positions of dislocations is largely
limited to 2D results, and without 3D information on dislocation configurations, the elastic
interactions between dislocations cannot be accurately determined. A technique has been de-
veloped in which 3D dislocation configurations can be quantified before and during an in-situ
straining TEM experiment (?). Although direct 3D observations of dislocation motion is not
possible, knowledge of 3D configurations preceding and following deformation, along with 2D
in-situ records of motion can be used to reconstruct the overall 3D behavior. Such information
can also be used for direct validation of 3D DD simulations.

The present study details a direct comparison between experimental observations and com-
puter simulations of dislocations in thin foils. The goal is to use these comparisons to ascertain
the nature of forces on dislocations and the salient mechanisms that control their motion. The
effects of the constrained geometry of the foil and the free surface on dislocation motion are
explored. Simplified elasticity calculations of dislocation forces and motion are not reliable
to correlate with experimental data because of the complex 3D structure of observed disloca-
tions and the influence of surface image forces. Thus, utilization of 3D computer simulations,
including surface image effects is necessary.

We specifically examine here two effects that are particular to dislocation behavior in thin
foils. First, since dislocation loops may terminate at free surfaces, computer simulations must
track the position of dislocation-free surface intersections. Thus, special boundary conditions
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must be applied to the study of thin foil deformation. Second, the free surfaces of a thin foil may
strongly influence dislocation behavior by introducing image stresses, which become significant
when dislocations approach the surface. Strong image forces can influence dislocations by
enhancing their out-of-plane motion through cross-slip and climb mechanisms.

Numerous experiments have shown that cross-slip, which is thermally activated, plays an
important role during stage-III work hardening in FCC single crystals(?)-(?). Double cross-
slip results in dislocation generation by expanding new Frank-Read sources on neighboring
glide planes(?). Only segments of screw (or nearly screw) character may perform cross-slip,
because they are able to move on any favorably-oriented glide plane. The probability of a
dislocation segment to cross-slip onto a neighboring slip plane increases significantly when the
resolved shear stress on that plane is high. Any large internal stress field, which may arise from
inclusions and other obstacles to glide, surfaces, or interfaces, may induce cross-slip events.

Motion out of the glide plane can also be accomplished by climb (?, ?, ?). At low tempera-
tures or in the absence of a non-equilibrium concentration of point defects, dislocation motion is
restricted almost entirely to glide. However, at higher temperatures or owing to a locally-high
stress, an edge dislocation can move out of its slip plane by climb.

The objective of this work is to utilize 3D stereo-TEM in conjunction with in-situ straining
TEM to describe the evolution of the spatial topology of dislocations in thin foils. DD com-
puter simulations are used to investigate the salient mechanisms that determine experimentally-
observed dislocation shapes. In doing so, we explore the importance of image surface forces
and their effects on out-of-plane dislocation motion by the cross-slip and climb mechanisms.
We show that surface-force induced cross-slip greatly influences the structure and dynamics of
the dislocation microstructure in thin foils, and that dislocation motion in thin foils may not
be representative of bulk behavior. To our knowledge, this is the first direct comparison of
experiment and simulation of moving dislocations.

9.3.1 Experimental Procedure and Results

Stereo-TEM was used in conjunction with in-situ straining to describe the evolution of the
spatial distribution of dislocations in thin Cu foils. In-situ TEM experiments are generally
used to develop an understanding of bulk material properties. However, the inference of bulk
material properties from thin foil in-situ observations is often controversial due to the effects of
free surfaces on dislocation configurations. We plan here to link direct experimental observations
of dislocation motion and reconfiguration with computer simulations so as to discern dislocation
mechanisms that are specific to thin films. Examining thin foil behavior is an advantage in that
it includes surface effects, and can thus better gauge the fidelity of DD models.

TEM in-situ tensile specimens were cut, ground, and electro-polished from a well annealed
copper sample. Tensile Cu foils were prepared with dimensions of 11.5 mm by 2.5 mm and
a thickness of approximately 175 µm as shown in Fig. 9.42. Electrolytic polishing was used
to thin the center of the specimen to perforation. The geometry of the thinned region can
be approximated as two hemispherical dimples intersecting the top and bottom surfaces at 2
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mm circles. Thinning produced a hole approximately 400 µm in diameter, and the specimen
thickness at the edge of the hole is generally 10-20 nm. The experimental observations were
made near the top edge of the hole at a position where the sample thickness is about 200 nm.

(a) (b)

Figure 9.42: (a) The solid model of the sample, and (b) FEM mesh around the central hole.

Deformation was carried out inside the TEM using a displacement control, single tilt, strain-
ing specimen holder. During in-situ straining TEM experiments, it is advantageous to pre-strain
the specimen while viewing an area of interest until some dislocation activity begins. This is
primarily to ensure that dislocation motion will occur in the area of interest before spend-
ing significant time doing stereo and Burgers vector analysis. However, once the specimen
is pre-strained, there is potential for the specimen to relax somewhat while analysis is being
performed, and some dislocations can change position or escape the region being observed.

The stereo-coupled in-situ experiments involve obtaining a 3D description of the disloca-
tion configuration prior to and following in-situ straining in the microscope. 3D configurations
are obtained using a modified stereo-TEM technique detailed elsewhere (?). Standard stereo-
microscopy of crystalline materials is almost never possible with a single-tilt TEM holder making
it unfeasible for all commercially available in-situ straining TEM holders. The modified ap-
proach is a weak beam technique involving changing the sign of g (the imaging beam) and/or
sg (how far the imaging beam deviates from the exact Bragg condition) between images while
tilting across a Kikuchi band that is at less than approximately 10◦ to the tilting direction.

The stereo pair and diffraction pattern demonstrating the modified stereo technique for the
initial dislocation configuration is shown in Fig.(9.43), with the tensile axis direction vertical
(same as stereo tilt axis and specimen holder axis). The positions of the dislocations are
measured using a computer program that allows the user to mark points along a dislocation line
with a 3D cursor while viewing micrographs stereoscopically (?). The orientations of the tensile
axis and specimen plane normal with respect to the grain are [53(6̄8)51]] and [(7̄8)(1̄5)61)],
respectively. Based on this geometry, Schmid factors for the common fcc slip systems obtained
assuming a simple tension assumption are given in Table 9.5. Burgers vector analysis was
performed on several key dislocations. Dislocations labeled 11, 13, and 22 in Fig. 9.43 have a
Burgers vector of [101] and dislocation 12 has a Burgers vector of [1̄01̄].

During in-situ straining, dislocation motion was monitored in the TEM at 30 frames per sec-
ond. Figure 9.44 shows dislocation configurations at various times during the in-situ straining.
Comparing the first frame of Fig. 9.44 with the configuration seen in Fig. 9.43, it is evident
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Table 9.2: Schmid factors for the Cu thin foil under simple tension.

(111) (111̄)
[0 1 1̄] [101̄] [11̄0] [011] [101] [11̄0]
0.174 0.003 0.177 0.046 0.279 0.325

(111) (111̄)
[0 1 1̄] [101] [110] [011] [101̄] [110]
0.339 0.296 0.043 0.119 0.014 0.105

Figure 9.43: Stereo pair (top) and diffraction pattern demonstrating the modified stereo tech-
nique.

that dislocation 11 and 22 moved between the time when the stereo pair was taken and when
the straining was continued and recorded. However, these two dislocations do not move during
further straining. Three dimensional representations of the dislocation configuration before and
after straining are given in Fig. (9.45). In the 3D representations and the DD calculations based
on these configurations, the initial and final configurations of dislocation 11 are assumed to be
the same, specifically the configuration given by the final stereo pair. This assumption is rea-
sonable, since dislocations 11 and 22 do not react with one another in changing configuration,
because the two dislocations have the same Burgers vector.

Dislocations 12 and 13 share the same primary glide plane, (111̄), and Burgers vector but
have opposite signs. Hence, they move in opposite directions. One end of dislocation 13 is
pinned at a node (point labeled (d) in the first frame) while the other end terminates at the
foil surface (point labeled (a) in first frame). There is a jog, labeled (bc), along the length of



9.3. THIN FILMS & NANOLAYERS 325

Figure 9.44: Time sequence of in-situ TEM measurements during straining. Time units are -
min:sec:sec fraction
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Figure 9.45: 3D rendering of experimentally-observed dislocation configurations in the Cu thin
foil - (a) before deformation, and (b) after deformation.

dislocation 13 lying on the (1̄11) plane. During straining, the right end remains pinned at the
node and the segment (ab) glides downward in the image. Dislocation 12 starts out pinned at
a different node, labeled (e). A straight segment (labeled (ef)) of dislocation 12 extends from
the node diagonally across the image towards the top left corner where it jogs upwards towards
the free surface (segment labeled (fg)). During straining, unlike dislocation 13, dislocation 12
escapes from the pinning point (e) (third frame) first, only to be pinned again at another node
directly below the first pinning point, labeled (e) in the third frame. The result is the formation
of a jog along the length of dislocation 12 as seen in frame 3. The segment (he) appears to
glide to the left, while insignificant movement of segment (hfg) was discerned up to frame 3.
In frame 4-6, the segment (fh) glides upward in the image. This motion eventually leads to
dislocation 12 escaping from the pinning point (e) and soon after that, a large portion of the
dislocation segment (he) escapes to the surface. A key question not resolved from Fig. 9.44
is whether dislocations 12 and 13 intersect during glide (frames 4 and 5 appear to indicate
a possible interaction). This is very difficult to discern from the 2D in-situ straining images,
but the stereo imaging (Fig. 9.44) reveals that these dislocations do not intersect. Another
question is the distance of the various dislocation segments from the free surfaces that can only
be resolved from stereo imaging of the in-situ strained dislocation substructures. As shown
later in this paper, having quantitative information of the dislocation positions in the in-situ
straining experiment is crucial in modeling the dynamics of dislocations in thin foils.

The bowed out segment of dislocation 11 in Fig. 9.45 is not visible in the first frame of Fig.
9.44. This implies that this segment glided out to the free surface in the time between stereo
imaging and the onset of further straining. Since the specimen is under strain during this time,
beam heating may lead to escape of bowed out segments that are near the free surface. The
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remaining segments seen in Fig. 9.44 are not on the glide plane, and hence no further motion
is detected.

Dislocation 22 appears as a straight line in Fig. 9.43 but kinked in the first frame of Fig. 9.44.
It is possible that it experiences a similar type of motion to that described above for dislocation
12 in frames 1-3. The kinked dislocation 22 may be strongly pinned at both ends (although the
details of the pinning points are not discerned clearly in these images) and hence, no further
motion is detected in the in-situ straining sequence shown in Fig. 9.44. Motion of dislocations
motions shown in Fig. 2 appear to be more evident for dislocations that terminate at a free
surface. The influence of surface forces on dislocation dynamics in thin films is discussed in
more detail in the DD simulation section of this paper.

Based on slip trace analysis, dislocation glide has taken place on two glide planes: (111̄) and
(1̄11). The resolved shear stresses for the [101](111̄) and [101](1̄11) dislocations are approxi-
mately the same, although slightly less than the highest stressed slip systems.

There is extensive discussion of the error involved in conventional and modified stereo-TEM
given elsewhere (?). The experimental error in the third dimension (z) for standard stereo-TEM
depends on the stereo angle and is around an order of magnitude greater than the measurement
error in the other two dimensions. With the measurement error in the x and y directions being
on the order of 1nm, the measurement error in the z direction is around 10 nm. The error for
the modified technique is the same as for standard stereo provided both g and sg change sign
but not magnitude.(?) In the present case, these ideal imaging conditions were not obtained,
likely resulting in a somewhat larger error in z. These errors are to be kept in mind during the
direct comparison of the modeling results to the experimental data.

9.3.2 Dislocation Dynamics in Thin Foils

In the present study, we use the Parametric Dislocation Dynamics (PDD) method to simulate
the motion and interaction of dislocations (?)-(?). We incorporate here additional forces on
dislocations as a result of their interaction with the free surface. There are several models
available to calculate the effects of surface forces, or to directly include the image stress field
into DD simulations. These approaches include Lothe’s energy theorem (?), Gosling and Willis’
Green’s function method (?), and the superposition method based on solution of the Boussinesq
problem (?). For complex dislocation configurations and boundary conditions, image stresses
due to surfaces and interfaces can now be computed by the finite element method (FEM) (?, ?).
In this work, we implemented Lothe’s theorem for direct calculations of surface forces into the
PDD code (?). For an isotropic medium, Lothe (?) determined the force per unit length
induced by a free surface on a straight dislocation segment (?):

F =
µb2

4π (1 − ν) λ

[
|(1 − ν cos2 β) tan θ|n1 + |2ν cos β sin β|n2

]
, (9.11)

where µ, ν are the material’s shear modulus and Poisson’s ratio, respectively. Parameters are
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shown in Fig. 9.46. λ is the distance from point P , where the force is evaluated, to point O at
which the dislocation line intersects the free surface. n1 is a unit vector on the plane OO’P, with
direction perpendicular to the dislocation line, n2 is a unit vector on the plane containing OP
and the Burgers vector, with direction perpendicular to the dislocation line on the glide plane.
n1 represents the direction of the force component, which acts to rotate the dislocation line so
that it is normal to the surface, while n2 represents the direction of the force component, which
acts to align the dislocation along its Burgers vector. The angle θ is between the tangent and
Burgers vectors, while β refers to the angle between the tangent vector and the surface normal.
The surface force is then decomposed to a component on the glide plane, and added to be a
part of the resolved glide forces, along with those dictated by the applied stress and interaction
forces. Because curved dislocation segments are employed, the tangent vector is extended to
its intersection with the free surface, and EQN. (9.11) is used to compute the force per unit
length at any point on the dislocation line. This force is also integrated along the parametric
curves to determine the nodal positions and coordinates, as described in reference (?).

β θ

n2

n1
λ

O’

P

O

b

Figure 9.46: Illustration of Lothe’s formula to calculate surface image force.

In the present model, dislocation loops are discretized into several curved segments that can
glide on different glide planes (see Table 9.3). Internal nodes belonging to two different glide
planes can only move along the intersection line of the two planes. Dislocations may end at the
surface or at some joint nodes with other dislocations inside the material. Surface nodes can
move along the intersection line of the glide and surface planes. Since the motion of surface
nodes is associated with the creation of surface steps, the mobility of these nodes is assumed
to be 20% of the bulk mobility (104 Pa−1 s−1)(?).

Because screw dislocation segments can move on different intersecting glide planes, cross-slip
is possible (?). In the present simulations, the orientation of various segments are checked to
determine if the average tangent vector on the segment is aligned within 15◦ of its Burgers vector
orientation. If that is the case, another check is made on the resolved shear stress magnitude on
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Table 9.3: Nodal segment distributions on dislocations, with corresponding Burgers vectors (b),
glide plane Miller indices. All segments are in mixed characters.

Dislo-
cation

Seg. 1
Miller

Seg. 1
Nodes

Seg. 2
Miller

Seg. 2
Nodes

Seg. 3
Miller

Seg. 3
Nodes

b

11 jog 1-15 (111̄) 15-16 (1̄11) 16-29 [101]
12 (111̄) 1-7 (1̄11) 7-24 (111̄) 24-41 [1̄01̄]
13 (111̄) 1-27 (1̄11) 27-28 (111̄) 28-36 [101]
22 (111̄) 1-18 (1̄11) 18-37 (111̄) 37-44 [101]

all glide planes on which the segment may glide. Following the Friedel-Escaig mechanism(?),
the probability of a cross-slip event to occur is related to the activation energy and the resolved
shear stress on any glide plane as(?, ?):

P = β
L

L0

δt

δt0
exp(V · τ − τIII

kT
) (9.12)

where β is a normalizing coefficient that makes the probability ranging from 0 to 1, τIII = 32
MPa is the critical resolved shear stress at the onset of stage III of work hardening, V = 300 b3

is the activation volume, k is Boltzmann constant, T is the temperature, L0 = 1 µm and δt0 = 1
sec are respectively references to length and time, τ is the resolved shear stress on the cross-slip
plane, L is the length of the screw segment, and δt is the discrete time-step(?).

After the probabilities of cross-slip on each plane are calculated, the plane with a larger prob-
ability of cross-slip is selected for dislocation to move. When the dislocation segment approaches
the free surface, the resolved shear stress on possible glide planes increases dramatically, and
the probability of cross-slip is enhanced. Further analysis of the experimental data also indi-
cated the presence of many small jogs on dislocation lines. Such jogs can produce vacancies
as they move towards the sample surface, which may result in additional out-of-plane motion
due to climb of edge components as well. As a simple model of climb, comparison between
the experimental and the computed dislocation structures was made and climb movement was
attempted for segments that showed large differences. In summary, the simulations proceeded
in the following way: (1) dislocation motion along glide planes only, (2) cross-slip motion, and
(3) climb.

One uncertainty in the calculation is the stress state acting on experimentally-observed
dislocations. The direction of the shear stress was determined by examining the dislocation
bow out and motion. In the simulations, the applied stress was increased until the final position
of the dislocations matched the experiment. A 3-D Finite Element Model (FEM) was also used
to analyze the stress state in the sample. The model consisted of 7880 tetrahedral elements,
corresponding to 16268 nodes. A displacement boundary condition was used, corresponding to
sample straining by edge displacements in the range of (0-4) microns. A solid model for the
sample is shown in Fig. 9.42. Results of the axial (normal) stress components along the tensile
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axis (y-direction) and along its perpendicular (x-direction) are shown in Fig. (9.47). Also shown
in Fig. 9.48 is the corresponding normal stress contour around the central perforation. Although
large stress gradients are observed near the central hole region, the zone where dislocations are
observed extend over a relatively small length (microns), and the axial stress level is estimated
to be 150 MPa for the full 4 µm displacement. It is also found that the shear stress component
in this zone is negligible, confirming that tensile stress state in our DD model is close to the
correct value.
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Figure 9.47: FEM results for normal stress distribution in the sample along the axial direction
(y) and its normal (x).
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Figure 9.48: FEM results for σyy contour around the central hole.

9.3.3 PDD Simulations for Experimental Analysis

Initial PDD computer simulations of the experimental data restricted the motion of disloca-
tions to movement on the glide plane. The initial results indicated that while the experimental
dislocation motion on the glide planes is matched reasonably well in the simulations, motion
in the direction normal to the TEM observation plane is greatly underestimated by the simu-
lations. To be more concrete, with no climb or cross-slip mechanisms invoked, the difference
between the simulations and experiments for dislocation 11 is approximately 16 nm within the
observation plane and 12 nm out-of-plane, roughly within the experimental uncertainty. The
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other dislocations were less well determined, with a difference in dislocations 22 and 13 within
the observation plane of approximately 61 nm and an out-of-plane error of 80 nm. The motion
of dislocation 12 is even more poorly modeled, with an in-plane difference of 200 nm and an
out-of-plane error of 140 nm.

PDD simulations that include dislocation cross-slip and climb (using the methods described
above) were thus performed. These simulation results are shown in Fig. (9.49) and are compared
with experimental observations of Figs. (9.43) and (9.45). The results show that dislocation
22 undergoes cross-slip motion, dislocation 13 climbs, and dislocation 12 shows both climb and
cross-slip motion. Details of the cross-slip mechanism of dislocation 22 are shown in Fig. (9.50),
where we see that the segment reconfigures from the original slip plane to the neighboring one
with a higher probability of cross-slip motion. The cross-slip probabilities of two screw segments
are listed in table (9.4). It is obvious that cross-slip planes have larger probabilities. Although
cross-slip does not have to happen on cross-slip plane, the dislocation segment will select the
plane that has large a larger probability.

Table 9.4: Probabilities of cross-slip of screw segments at an applied stresses of 100MPa

Segment on Dislocation Original Plane Cross-slip Plane
segment 2 on Dislocation 12 P=0.44 P=1.0
segment 2 on Dislocation 22 P<0.01 P=0.63
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Figure 9.49: Initial and final dislocation configurations simulated by PDD

Image stresses play an important role in activating the cross-slip by changing the resolved
shear stress on the cross-slip planes. For example, when cross-slip occurs, for dislocation 12,
the resolved shear stresses resulting from image forces on the cross-slip plane(111̄) and on the
original plane (1̄11) are 37.76 MPa and 20.15 MPa, respectively. The resolved shear stresses
resulting from applied stress on the cross-slip plane and the original plane are 46.22 MPa and
48.18 MPa, respectively. The cross-slip plane has even a lower stress without the image effect.
The average final resolved shear stresses on the cross-slip plane and the original plane are 81.98
MPa and 60.07 MPa, which shows that surface image forces greatly increase the cross-slip
probability on the cross-slip plane. For climb, we calculated the climb stresses on dislocation
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Figure 9.50: Dislocation 22 positions during cross-slip motion: (1) Final configuration without
cross-slip, (2) Final configuration with cross-slip

12 and 13 as 208.3 MPa and 294.3 MPa at the end of straining. We believe that these high
stresses can lead to pipe diffusion that results in dislocation climb(?, ?). Careful analysis of
node coordinates of the simulated and experimental configurations shows great reduction in the
positional difference when cross-slip and climb motion are included, with the largest difference
for any of the dislocations of about 13 nm in-plane and 17 nm out-of-plane. These uncertainties
are well within experimental error.

Conclusions

Direct validation of DD simulations with experiments (in situ straining coupled with 3D
imaging in TEM) allowed us to correctly model the motion of dislocations in thin, annealed
Cu foils with a low initial dislocation density where surface image forces play a significant role
in determining the dislocation dynamics. It is shown, through systematic comparison between
experimental observations and PDD simulations, that dislocation configurations in thin copper
foils acquire considerable 3-dimensional components that cannot be explained by glide events
alone. The structure of dislocation lines is highly jogged, with non-planar components. Surface
image forces in the thin copper foil appear to have two main effects: (1) they result in the
inducement of cross-slip for screw components; (2) they also nucleate jogs on dislocation lines.
Possibly through vacancy flow from the surface, the motion of these jogs may also result in
additional out of plane displacement of edge dislocation segments as well.

Introduction to Nanolayer Mechanics

Nano-layered structures are candidates for applications requiring thin volumes (e.g. micro-
electronics, opto-electronics, laser mirrors, etc.), or may be developed for more demanding
structural applications (e.g. aircraft, rocket engines, transportation, advanced energy, etc.).
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Table 9.5: Schmid factors for the common fcc systems under simple tension.

(111) (111̄)
[0 1 1̄] [101̄] [11̄0] [011] [101] [11̄0]
0.174 0.003 0.177 0.046 0.279 0.325

(111) (111̄)
[0 1 1̄] [101] [110] [011] [101̄] [110]
0.339 0.296 0.043 0.119 0.014 0.105

The mechanical behavior of these two types of structures can be vastly different as a result of
geometry and structural constraints. Recent experimental research on the deformation behavior
of multi-layer nanocrystal composites shows that very high strength and ductility can indeed
be obtained, when plastic deformation is restricted to flow in confined small volumes (Mitchell,
Lu, Griffin, Nastasi and Kung 1997, Misra, Verdier, Lu, Kung, Mitchell, Nastasi and Embury
1998, Anderson, Foecke and Hazzledine 1999, Misra, Verdier, Kung, Nastasi, Embury and
Hirth 2000, Anderson and Hazzledine 2000). New material processing methods, such as wire
drawing, sputtering or evaporation (Embury and Hirth 1994, Embury and Han 1999), have
shown that nano-layered structures can be manufactured to be ultra-strong. The flow stress
in nanolayered structures can approach to within 1/3 of the theoretical shear strength of order
µ/30, where µ is the shear modulus (Embury and Han 1999). This possibility raises a host
of technological and fundamental considerations related to the maximum strength that can be
attained in materials? In principle, plastic flow can be confined to small volumes by controlling
the strength and spacing of engineered dislocation obstacles at the nanoscale (Anderson et al.
1999, Kung and Foecke 1999). The high strength, and the length scale of the nanostructure
itself may result in new considerations in crystal plasticity (Embury and Hirth 1994).

In an effort to experimentally explore material parameters that control the strength of nano-
layered composites, Cu-Nb, Cu-Cr and Cu-Ni layered structures were produced by cold-working
(Spitzig, Pelton and Laabs 1987), evaporation or sputtering (Misra et al. 1998). In addition, as-
pects of fcc/bcc duplex structure deformation have been recently considered (Sinclair, Embury
and Weatherly 1999). The strength increase associated with reduction of the bi-layer thick-
ness has been explained by a variety of possible mechanisms, including the Hall-Petch model
of dislocation pile-ups at interfaces, the Koehler model of dislocation image interactions, and
the Orowan model of single dislocation bow-out between layers. Considering single dislocation
behavior, Embury and Hirth (Embury and Hirth 1994) attempted to derive the strength and
deformation mechanism maps, allowing for dislocation-dislocation and dislocation-interface in-
teractions. A number of material design knobs can be used to impart high strength and control
plastic slip in nanolayered structures, including nanolayer height in single crystals, grain size in
polycrystals, lattice and interface Peierls stress levels, interface structure, coherency strain level,
misfit dislocation structure and spacing, geometry of plastic slip transmission by shear transfer,
and the co-deformation of incompatible slip systems (e.g. fcc/bcc, fcc/hcp, & hcp/bcc).



334 CHAPTER 9. APPLICATIONS

Plastic deformation of nanolayer materials is influenced by the existence of large interfacial
areas, as compared to bulk polycrystalline materials. The first set of factors that affect strength
is structural in nature, where forces on dislocations vary across an interface. The variation
can be a result of: (1) lattice constant mismatch that generates coherency strains; (2) misfit
interfacial dislocations in semi-coherent and incoherent interfaces; (3) stacking fault energy
changes in incoming and outgoing slip planes; (4) slip system mismatch that forces cross-slip
of screw dislocations across the interface; (5) and the effects of dislocation core spreading
into the interface (Clemens et al. 1999, Anderson and Li 2001, Rao and Hazzledine 2000).
The second factor is the mismatch across the interface of elastic properties (constants), which
reflect changes in the strength of atomic forces as dislocations cross from one material to
another. This image force effect places additional opposing forces as dislocations cross an
interface, and is known as the Koehler barrier ( see, for example Rao & Hazzledine (Rao and
Hazzledine 2000)). Although the strength of nanolayer materials is dominated by the influence
of interfacial image forces on dislocation motion (Clemens et al. 1999, Rao and Hazzledine
2000, Anderson and Li 2001), current theoretical estimates of image forces on dislocations
often rely on approximate methods of analysis based on isotropic, infinitely extended materials.
Accurate determination of nanolayer strength and plasticity require rigorous development of
dislocation theory in layered media. The purpose of the present investigation is to establish
a systematic theoretical and computational approach for 3-dimensional dislocation motion in
anisotropic, nanolayer materials. Subsequently, we use the approach to calculate the strength
of nano-layered materials.

The methodology of Dislocation Dynamics (DD) has been recently developed to describe
plasticity on the basis of direct numerical simulations of the collective motion of dislocation
ensembles, with successful applications to deformation problems at the nano- and micro-scales
(e.g. (Kubin et al. 1992, Zbib et al. 1998, Schwarz 1999, Ghoniem et al. 2000a)). However,
the majority of these approaches treat bulk materials, with a few investigations that treat
free surfaces or strained layers (Schwarz 1999, Khraishi et al. 2001, Martinez and Ghoniem
2002, Weigrand et al. 2002) . In nanolayer materials that contain many interfaces, most of the
present methods would either result in low accuracy, or have limitations on their applicability.
Existing methods for dealing with dislocations near free surfaces or interfaces may be classified
into a number of categories, as follows:

1. The superposition method, where regular solutions obtained by numerical methods (e.g.
the finite element, boundary element (Weigrand et al. 2002, Martinez and Ghoniem 2002),
or the Boussinesq point force solution on a free surface (Verdier et al. 1998)) are super-
posed on singular solutions for dislocations in infinite media to satisfy traction equilibrium
at the free surface;

2. Approximation methods, based on Lothe’s solution (Lothe et al. 1982), or by assuming
that interfaces are rigid (Von Blanckenhagen et al. 2001);

3. The surface dislocation method, where a surface dislocation loop distribution is determined
so as to satisfy interfacial or free surface traction conditions at collocation points (Khraishi
et al. 2001);
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4. Elasticity methods, based on solutions of a dislocation segment near a free surface (Gosling
and Willis 1994, Fivel et al. 1996).

The approaches described above have limitations, either because they are restricted to the
simple case of a planar free surface, or that they lack sufficient numerical resolution of the
elastic field near interfaces and surfaces. For nanolayer materials, the density of interface
area is high, and dislocations are expected to interact with many interfaces. It is desirable,
therefore, to extend the methods of 3-dimensional DD that have been successfully developed
for bulk materials, to treat nanolayer materials. However, solutions for the elastic field of 3D
dislocations near free surfaces or interfaces are very few (e.g. see references (Bacon and Groves
1970, Salamon and Dundurs 1971, Comniou and Dundurs 1975, Lothe et al. 1982, Gosling and
Willis 1994)), while solutions for the field of 3-D arbitrary shape dislocations in anisotropic
multilayers are not available.

We first develop here a method for calculating the elastic field of an arbitrary 3D dislocation
loop in a general multi-layered material. Theoretically, such an elastic field can be calculated
through a surface integral (Mura 1968, Salamon and Dundurs 1971, Han and Ghoniem 2004),
assuming that the Green’s functions are known. It is desirable to determine the elastic field as
a line integral so that faster computations can be performed, and at the same time allow the
procedure to be incorporated into DD algorithms. For a dislocation in an infinite homogeneous
medium, the stress field can be expressed as a line integral along the dislocation loop (Mura
1987). In addition to the special case of a dislocation loop in a homogeneous infinite space, a
line integral representation of the elastic field due to a general dislocation loop is available only
for an isotropic half-space (Gosling and Willis 1994).

In Section 9.3.4, we develop the essential formulas that govern the elastic field of an in-
finitesimal dislocation segment in an anisotropic multi-layered material by using the 2D Fourier
transformation method. The elastic field of a general dislocation loop of arbitrary geometry is
then evaluated through a line integral along the dislocation loop. Computational procedures
are obtained for an anisotropic half-space, two half spaces, and for a multilayered material in
Section 9.3.4, and the results are incorporated into line integrals for 3D dislocations of arbitrary
shape in Section 9.3.5. Dislocation motion in multi-layered thin films is then investigated in
Section 9.3.7 for incorporation into 3D dislocation dynamics computer simulations. The in-
fluence of elastic property mismatches on dislocation motion and interaction forces is finally
discussed in section 9.5.5.

9.3.4 Basic Equations for Anisotropic Nanolayers

For a 3D dislocation loop of general geometry, the displacement vector can be expressed as
(Mura 1968)

ui(x) = −
∫
S

Cjlmnbm
∂

∂x′
l

Gji(x
′,x)nn(x′)dS(x′) (9.13)

where Cjlmn are the elastic moduli, Gji(x
′,x) are the Green’s functions at x′ due to a point

force applied at x, S is an arbitrary surface capping the loop, nn is a unit normal to S and bm
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is the Burgers vector.

The surface integral in Equation (9.13) is valid for a dislocation loop in either homogeneous or
inhomogeneous materials, assuming that the elastic Greens functions for a particular geometry
and elastic anisotropy are known. There are two main difficulties in using Equation (9.13).
First, evaluation of surface integrals for dislocation loops of complex 3D geometry can be
computationally demanding and intensive (Han and Ghoniem 2004). Second, elastic Greens
functions are not explicitly known for inhomogeneous anisotropic materials.

For a dislocation loop in an infinite homogeneous space, the displacement gradient tensor
can be reduced to a line integral along the dislocation as (Mura 1968, Mura 1987):

ui,j(x)∞ =
∮
L

β∞
jih(x − x′)dlh(x

′) (9.14)

where

β∞
jih(x − x′) = CklmnbmεjnhG

∞
ik,l(x − x′) (9.15)

and L and dlh are the dislocation line and line element, respectively. The superscript ∞
represents quantities in an infinite space, f,l = ∂f/∂xl, and εjnh is the usual permutation
tensor.

The stress field produced by the dislocation can then be expressed as:

σij(x)∞ =
∮
L

S∞
ijh(x − x′)dlh(x

′) (9.16)

where

S∞
ijh(x − x′) = CijklCpqmnεlnhbmG∞

kp,q(x − x′) (9.17)

The kernel S∞
ijh(x−x′) in Equation (9.17) can be considered as the ij-stress component at x

produced by a line element of dislocation lying in the h-direction at x′, with Burgers vector b in
an infinite space. While β∞

jih(x−x′) in Equation (9.15) can be considered as the corresponding
displacement gradient.

For a finite space, the field produced by the elemental dislocation source in an infinite
space is not guaranteed to satisfy prescribed boundary conditions. We therefore need to add a
complementary solution (denoted as SC

ijh(x,x′) or βC
jih(x,x′)) to the infinite medium solution

(S∞
ijh(x−x′) or β∞

jih(x−x′) ), such that all boundary conditions can be satisfied. For example, on
a free surface at x3 = 0, we should have: [S∞

ijh(x−x′)+SC
ijh(x,x′)] |x3=0 = 0. If a complementary

solution (with a superscript C) can be obtained, then the elastic field due to a dislocation loop
in the corresponding finite space can be evaluated through the line integral:

ui,j(x) =
∮

L

[
β∞

jih(x − x′) + βC
jih(x,x′)

]
dlh(x

′) (9.18)

σij(x) =
∮

L

[
S∞

ijh(x − x′) + SC
ijh(x,x′)

]
dlh(x

′) (9.19)
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The first terms in Equations (9.18) and (9.19) are known infinite space solutions, and contain
well-understood singularities. The second (complementary) terms, however, are regular, and
need to be determined according to interface and boundary conditions. Now, assume that the
displacement field of the complementary kernel is uC

kh. The stress field it produces is then:
SC

ijh(x,x′) = Cijklu
C
kh,l(x,x′), and the corresponding equilibrium equation is given by:

Cijkl(x)uC
kh,lj(x,x′) = 0 (9.20)

For a layered medium, the general solution can be obtained by a Fourier transform with
respect to the in-plane coordinates (x1, x2) as

ũ(ξ1, ξ2, x3; x
′
3) =

∞∫
0

∞∫
0

u(x; (0, 0, x′
3))e

iξαxαdx1dx2 (9.21)

The equilibrium equation then becomes:

Ci3k3ũ
C
kh,33 − i(Ciαk3 + Ci3kα)ξαũC

kh,3 − CiαkβξαξβũC
kh = 0 (9.22)

where the Greek subscript α=1 or 2, whereas Roman subscripts range over 1,2,3.

The general solution of Equation (9.22) can be expressed in a compact form as (Yang and
Pan 2002a):

ũC(ξ1, ξ2, x3; x
′
3) = iη−1(Ā < e−ip̄ηx3 > V + A < e−ipηx3 > W) (9.23)

where (η, θ) are the polar coordinates of (ξ1, ξ2) (ξ1 = η cos θ, ξ2 = η sin θ), V and W are
unknown functions (of η, θ and x′

3), < e−ipηx3 >= diag[e−ip1ηx3 , e−ip2ηx3 , e−ip3ηx3 ]. pi (Impi > 0)
and A = (a1, a2, a3) are the eigenvalues and eigen-matrix of the generalized Stroh eigen-problem
(Ting 1996):

[Q + piR + RT ) + p2
i T]ai = 0 (9.24)

Qik = Cijksnjns, Rik = Cijksnjms, Tik = Cijksmjms

with n = [cos θ, sin θ, 0]T and m = [0, 0, 1]T .

The displacement gradient for the complementary solution is:

ũC
,α(ξ1, ξ2, x3; x

′
3) = nα(Ā < e−ip̄ηx3 > V + A < e−ipηx3 > W) (9.25)

The induced stress field will then be: SC
ijh(x,x′) = Cijklu

C
kh,l(x,x′). We will separate the field

into two contributions: (1) out-of-plane stresses t = (S13h, S23h, S33h), and (2) in-plane stresses
s = (S11h, S12h, S22h). In the transformed domain, these can be expressed as (Yang and Pan
2002a):

t̃C(ξ1, ξ2, x3; x
′
3) = B̄ < e−ip̄ηx3 > V + B < e−ipηx3 > W (9.26)

s̃C(ξ1, ξ2, x3; x
′
3) = C̄ < e−ip̄ηx3 > V + C < e−ipηx3 > W (9.27)
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The matrices B = (b1,b2,b3) and C = (c1, c2, c3) are related to the Stroh eigen-matrix A as

bi = (RT + piT)ai, ci = Diai (9.28)

with Dkli = C1klαnα + piC1kl3 for k = 1, 2, and D3li = C22lαnα + piC22l3.

Note that for a half space x3 ≤ 0, V = 0, while for x3 ≥ 0, W = 0.

In order to impose the appropriate boundary conditions for layered materials, the trans-
formed Green’s tensor in an infinite space is needed. This is given by:

G̃∞(ξ1, ξ2, x3; x
′
3) = iη−1

{
A < e−ipη(x3−x′

3) > AT , x3 < x′
3

−Ā < e−ip̄η(x3−x′
3) > ĀT , x3 > x′

3

(9.29)

Elastic Fields of Dislocations

We determine here the complementary terms necessary for obtaining full solutions for disloca-
tion loops in half-space, bi-materials, and in general anisotropic layered media.

Dislocation in an Anisotropic Half-Space

Let’s assume that a dislocation loop is situated in an anisotropic half-space, occupying x3 ≤ 0
and having a free surface on x3 = 0. The surface equilibrium boundary condition is expressed
as:

[SC
i3h(x,x′) + S∞

i3h(x − x′)] |x3=0 = 0 (9.30)

In the transformed domain, we have:

S̃C
i3h(x,x′)|x3=0 = t̃Cih|x3=0 = BW , (9.31)

S̃∞
i3h(x − x′) = Ci3klCpqmnεlnhbmG̃∞

kp,q(x − x′)

= −iξαCi3klCpαmnεlnhbmG̃∞
kp + Ci3klCp3mnεlnhbmG̃∞

kp,3 . (9.32)

Substituting (9.29) (for x′
3 < x3 ≤ 0) into (9.32), we obtain:

S̃∞
i3h |x3=0 = λikhpq

[
nq(−Ā < eip̄ηx′

3 > ĀT )kp + mq(−Ā < eip̄ηx′
3 >< p̄ > ĀT )kp

]
(9.33)

where λikhpq = Ci3klCpqmnεlnhbm.

Substituting (9.31) and (9.33) into the free traction surface boundary condition (in the
transformed domain): S̃C

i3h(x,x′)|x3=0 + S̃∞
i3h|x3=0 = 0, we get:

W = B−1λikhpq

[
nq(Ā < eip̄ηx′

3 > ĀT )kp + mq(Ā < eip̄ηx′
3 >< p̄ > ĀT )kp

]
(9.34)

The unknown coefficient W in the complementary solution is thus determined. Substituting
(9.34) into Equations (9.23), (9.26) and (9.27) determines the complementary parts of the
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displacement vector and stress tensor. These are complex explicit expressions, but can be
written in the following forms:

ũC = iη−1J2 < e−ir1η > J1 < e−ir0η > J0 (9.35)

for the displacement vector, and

t̃C = J2 < e−ir1η > J1 < e−ir0η > J0 (9.36)

for the traction tensor. The same expression is also obtained for the in-plane tensor s̃. In
Equations (9.35) and (9.36), the tensors Jn(θ) and rn(θ) are independent of η, but are functions
of θ. These solutions are in the transformed domain, and need to be transformed back to the
physical domain by the inverse Fourier Transform:

f(x1 − x′
1, x2 − x′

2, x3, x
′
3) =

1
(2π)2

∞∫
0

2π∫
0

ηf̃(η, θ, x3, x
′
3)e

−iη[(x1−x′
1) cos θ+(x2−x′

2) sin θ)]dθdη. (9.37)

Carrying out the first integral over (0 < η < ∞), the 2-D inverse transformation is reduced to
a 1-D integral (Yang and Pan 2002a). The reduced integrals for the elastic fields are given by:

uC
ih =

1

(2π)2

2π∮
0

Hih

s
dθ , (9.38)

tCih = − 1

(2π)2

2π∮
0

Hih

s2
dθ , (9.39)

with Hih = (Jk2)2(Jk2k1)1(Jk1)0, and s = (rk2)1 + (rk1)0 + (x1 − x′
1) cos θ + (x2 − x′

2) sin θ. Note
that sih has the same expression as that of tih, and that all these functions have their own Hih

(different from each other), but share the same s. Explicit expressions are given in Appendix
??. Thus, the complementary parts of the elastic field of a dislocation in a half-space can be
evaluated by line integrals over the interval [0, 2π]. The complementary parts plus the infinite-
space solutions are the total elastic fields due to an infinitesimal dislocation segment, and the
elastic field due to a dislocation loop is obtained through the line integrals (9.18) and (9.19).

Dislocation in Perfectly-Bonded, Anisotropic Two Half-spaces

Consider an anisotropic bi-material full space, where the lower half-space (x3 < 0) is occupied
by material (0), the upper half-space (x3 > 0) by material (1), and quantities in them are
denoted by the corresponding superscripts (0) and (1), respectively. Suppose now that the
interface (at x3 = 0) is perfectly bonded. This requires the continuity of the displacement and
traction vectors across the interface, i.e.

u(0)|x3=0− = u(1)|x3=0+ t(0)|x3=0− = t(1)|x3=0+ (9.40)
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Instead of the displacement continuity condition (9.40), however, we will use an equivalent
condition on the tangential displacement gradient, given by (Hill 1961):

u(0)
,α |x3=0− = u(1)

,α |x3=0+ (9.41)

Here, α = 1 or 2, u,α is the in-plane component of the displacement gradient (or called tangential
distortion).

Without loss of generality, we assume that we have an infinitesimal dislocation segment,
located in material (0). We express the solution for the displacement gradient in material (0)
as:

ũ
(0)
,j = ũ

(0)∞
,j + ũ

(0)C
,j = β̃

(0)∞
jih + njA

(0) < e−ip(0)ηx3 > W (9.42)

The first term ũ
(0)∞
,j corresponds to the homogeneous full-space solution, which is known

from Equation (9.15), with the elastic properties of material (0). The second term corresponds
to the complementary solution due to the interface. Correspondingly, the stress field is also
separated into two components, and the traction vector can be expressed as:

t̃(0) = t̃(0)∞ + t̃(0)C = S̃
(0)∞
i3h + B(0) < e−ip(0)ηx3 > W (9.43)

where S
(0)∞
i3h is known from Equation (9.17), with the elastic properties of material (0).

Likewise, the solutions in material (1) due to the infinitesimal dislocation segment in material
(0) can also be separated. Thus, the displacement gradient in material (1) is expressed as:

ũ
(1)
,j = ũ

(0)∞
,j + ũ

(1)C
,j = β̃

(0)∞
jih + njĀ

(1) < e−ip̄(1)ηx3 > V (9.44)

The first term ũ
(0)∞
,j is the known full-space solution, with the elastic properties of material

(0), while the second term is the complementary solution (which is to be determined). The

stress field in material (1) can be derived from ũ
(1)
,j , giving the traction field as:

t̃(1) = t̃(1)∞ + t̃(1)C = S̃
(1)∞
i3h + B̄(1) < e−ip̄(0)ηx3 > V (9.45)

with
S

(1)∞
i3h = C

(1)
ijklC

(0)
pqmnεlnhbmG

(0)∞
kp,q (x − x′) (9.46)

as the traction field in full-space material (1) due to the displacement field ũ(0).

Substituting Equations (9.42)-(9.46) into the interface conditions, we have:

B(0)W + S̃
(0)∞
i3h |x3=0 = B̄(1)V + S̃

(1)∞
i3h |x3=0 (9.47)

nαA
(0)W + β̃

(0)∞
αih |x3=0 = nαĀ

(1)V + β̃
(0)∞
αih |x3=0 (9.48)

Finally, the full solution is obtained as:

W = −(B̄(1)Ā(1)−1A(0) − B(0))−1∆S̃∞
i3h, V = (B(0)A(0)−1Ā(1) − B̄(1))−1∆S̃∞

i3h (9.49)
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with

∆S̃∞
i3h = S̃

(1)∞
i3h |x3=0 − S̃

(0)∞
i3h |x3=0 = (C(1)

ijkl − C
(0)
ijkl)C

(0)
pqmnεlnhbmG̃

(0)∞
kp,q (x − x′)|x3=0,

G̃
(0)∞
kp,q |x3=0 = −nq(Ā(0) < eip̄(0)ηx′

3 > Ā(0)T )kp − mq(Ā(0) < eip̄(0)ηx′
3 >< p̄(0) > Ā(0)T )kp

(9.50)

The displacement and stress (including displacement distortion) solutions have the same
forms as Equations (9.35) and (9.36), respectively, and all real fields are obtained by 1D inte-
grals, as in Equations (9.38) and (9.39).

Dislocation in an Anisotropic Multi-layer Material

Consider a laterally infinite composite thin film made of different layers. Each layer is ho-
mogenous, anisotropic and of uniform thickness. Interfaces between layers are assumed to be
perfectly bonded. A coordinate system (x1, x2, x3) is attached to the the thin film, with the
x3-axis perpendicular to all interfaces. A general layer n occupies the space zn−1 ≤ x3 ≤ zn,
and quantities with its properties are denoted by corresponding superscripts (n). Assume now
that an infinitesimal dislocation segment is located in layer k. The displacement gradient in
layer n can be expressed as:

ũ
(n)
,j = β̃

(k)∞
jih + nj[Ā

(n) < e−ip̄(n)η(x3−zn−1) > V(n) + A(n) < e−ip(n)η(x3−zn) > W(n)] (9.51)

The first term is the full-space solution, given by Equation (9.15), with the elastic prop-
erties of material k. The other terms correspond to the complementary part of the solution.
Accordingly, the out-of-plane traction vector is given by:

t̃(n) = S̃
(n)∞
i3h + [B̄(n) < e−ip̄(n)η(x3−zn−1) > V(n) + B(n) < e−ip(n)η(x3−zn) > W(n)] (9.52)

with S
(n)∞
i3h = C

(n)
ijklC

(k)
pqmnεlnhbmG

(k)∞
kp,q (x − x′), and the solution for the in-plane traction s̃(n)

is similar to that given by (9.52).

Perfectly bonded conditions along interfaces require that the traction and displacement (or
tangential distortion) vectors are continuous. For interface n, this gives:

B̄(n) < e−ip̄(n)η(zn−zn−1) > V(n) + B(n)W(n) + S̃
(n)∞
i3h |x3=0

= B̄(n+1)V(n+1) + B(n+1) < e−ip(n+1)η(zn−zn+1) > W(n+1) + S̃
(n+1)∞
i3h |x3=0

(9.53)

Ā(n) < e−ip̄(n)η(zn−zn−1) > V(n) + A(n)W(n) ,

= Ā(n+1)V(n+1) + A(n+1) < e−ip(n+1)η(zn−zn+1) > W(n+1)

(9.54)

With all interface, bottom and top layer (half-space or free surface) boundary conditions, a
system of algebraic equations can be formed. Solving these equations, the elastic field is fully
determined.
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9.3.5 Peach-Koehler Forces in Layered Materials

Dislocation Loop Near an Interface

We give here an example of a 3-D dislocation loop of a simple circular geometry to verify the
present line integral method, and to illustrate the main characteristics of dislocation fields near
interfaces.

z [001]

x [100]

Interface

Nickel

half space

Aluminum

half space

b

y [010]

Figure 9.51: Schematic for the geometry of a 3-D circular dislocation loop near an interface or
free surface

Consider a circular dislocation loop in a half-space substrate. The loop lies near a free surface
or an interface, as shown in Figure (9.51). To be specific, we take the substrate material, which
extends for all z < 0, to be an anisotropic aluminium crystal. The aluminum substrate is bound
by a free surface or is perfectly bonded with an anisotropic nickel half-space along the surface
z = 0. Both Al and Ni are fcc cubic anisotropic crystals, with their crystallographic axes
[100],[010], and [001] lined up along the x = 1, y = 2, and z = 3 coordinate axes, respectively.
The elastic constants needed for the present calculations are obtained from reference ((Hirth
and Lothe 1982)). The circular dislocation loop lies on the (111) plane, its Burger’s vector b is
taken along the [1̄10] direction. The loop radius, R=200 b, and its center is located at z=-180
b, where b=|b| is the magnitude of the Burgers vector of aluminum. For verification of the
present line integral results, we show in Figure (9.52) the results of stress field components for
infinite space and the exact surface integral solutions. Calculations of surface integral, with
Equation (9.13) as the starting point are performed using an evaluation of Green’s functions
and their derivatives in the corresponding materials (Han and Ghoniem 2004). We follow
the procedure of Pan and coworkers for the numerical determination of Green’s functions in
anisotropic bi-materials and multilayered materials (Pan and Yuan 1999, Yang and Pan 2002b).
Stress components along the z-axis, induced by the dislocation loop, are shown in Figure (9.52-
a) for the case of free surface, and Figure (9.52-b) for the interface case. Because of symmetry,
σ11 = −σ22, σ13 = −σ23, σ12 = σ33 = 0, and thus we only show the stress components σ22

and σ23. It can be observed from the figures that the numerical results of the present line
integral method are nearly identical to those obtained by the surface integration method (Han
and Ghoniem 2004) for the case of a dislocation in half-space, and are in good agreement when
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the dislocation loop is near the interface. As the dislocation loop approaches the free surface,
the out-of-plane stress components are forced to decrease till they become identically zero at
the surface. However, in-plane stresses increase in order to satisfy overall equilibrium. When
the aluminum substrate is bonded to a harder half-space (e.g. nickel), out-of-plane stresses are
continuous across the interface, and larger than their corresponding values in infinite space.
In-plane stress components, on the other hand, experience jumps because of the discontinuity
in the elastic properties across the interface. The magnitude of stress increases across the
interface, moving from the softer (aluminum) to the harder substrate (nickel).

In general, the stresses near a free surface are larger than their corresponding values near an
interface to a harder material. The influence of the interface on the disturbance of the elastic
field is somewhat local, and is limited to within a distance of a few hundred lattice constants
from the free surface or an interface.
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9.3.6 Dislocation-Interface Interaction

Dislocations move along the direction of the Peach-Koehler force exerted on them by the local
elastic field, which of course includes image stresses due to interfaces in addition to applied and
self-forces. The speed of the motion is controlled by the overall mobility, however, and that
may include many contributions from interactions with electrons, phonons or other dispersed
barriers. Complex DD simulations typically solve for the motion of interacting dislocation
ensembles. In this section, we focus on understanding the influence of image forces due to
interfaces or free surfaces on the magnitude and distribution of the Peach-Koehler force. This
is given by: f = σ · b × dl, where the virtual force f is exerted on a line segment dl with the
Burgers vector b, and situated in the stress field σ. The stress field may originate from various
sources, such as applied forces, residual stresses, image stresses (due to boundary conditions),
other dislocations, and even the dislocation loop itself (self-forces).
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Figure 9.52: Stress components along the z-axis for a circular dislocation loop (see Figure
(9.51)) in (a) Al half-space and (b) Al-Ni bi-material. Solid lines represent surface integral
results, small square symbols: line integral results, and dashed lines: infinite space solutions.

When a dislocation resides in a finite medium, adjustments of the stress field to satisfy
surface or interface boundary conditions result in local changes of the stress tensor close to the
dislocation line. Thus, calculations of the self-force for this altered stress field, which requires
integrals along the dislocation line, would also include the influence of the boundary adjustment.
Thus, the self-force would subsume the image effects of the boundary, and would be geometry
dependent. To remove such ambiguities, and to clearly determine the effects of the interface or
boundary, the stress field induced by a dislocation is divided into two parts: the full-space stress
σ∞, and the image stress σC . The stress σ∞ corresponds to that induced by the dislocation
in a homogeneous and infinite space, with elastic properties of the material where most of the
dislocation resides. The stress field σ∞ of a dislocation in an infinite anisotropic material can
be calculated by the line integral given by Eq1uation (9.13), and will induce a self-force on
the dislocation. Because of the singularity of σ∞ along the dislocation line, an average field is
obtained by the Brown procedure (Brown 1964), or alternatively through the Gavazza-Barnett
limiting process (Gavazza and Barnett 1976). Details of the numerical procedure for the stress
field and self-force of a dislocation loop in an infinite anisotropic material are found in our
recent work (Han et al. 2002). The force induced by the complementary part of the stress
field, σC , which reflects the interface effect on modifying the infinite medium stress field of
the dislocation, will be termed henceforth the image force, and is calculated directly by the
Peach-Koehler formula.

We illustrate here the effects of free surfaces and interfaces on dislocation image forces for
a typical dislocation configuration in an Al film, of width h, on a Cu substrate. The system
will is modeled as a thin film that is perfectly bonded to a half-space. The Al film may have a
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Figure 9.53: Image force distribution on an oblong dislocation loop in a thin Al layer on a Cu
substrate with an additional aluminum oxide film on top (a) the layer is capped with an Al2O3

film of thickness hc=0.1 h (b), and 1.0 h.
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free surface (e.g. an un-oxidized film in vacuum), or is capped by a thin Al2O3 layer of width
hc. An oblong dislocation loop is located on the {111}-plane in the middle of the Al film, and
has a Burgers vector of b = a

2
< 11̄0 >, and a is the lattice constant, as shown in Figure

(9.53). The oblong loop is composed of two straight segments parallel to the interfaces, which
typically result from interface image forces as will be shown later, and are connected by two
half-circular segments. The length (straight section) and width of the oblong dislocation are L
and D, respectively, with L = 2D and D = h. The distribution of image forces on the loop is
shown in Figures (9.53-a) through (9.53-c) for different thicknesses of the capped layer. The
image force per unit length in these figures is normalized by b2 × 1010 (Pa)/h.

The image force distribution on the straight dislocation segment closest to the free surface is
attractive, as one expects. However, its magnitude and direction cannot be obtained through a
simple geometric construction by reflecting the dislocation loop across the interface. It is seen
from Figure (9.53-a) that the image force on the loop switches from attractive near the free
surface to repulsive near the harder Cu substrate. When the Al film is capped by a harder oxide
layer, the image force is found to have a strong dependence on the capping layer thickness, as
long as it is less than the thickness of the thin film itself. Thus, for a thin film capped with
several thinner layers, the image force would have major contributions from several neighboring
interfaces. When the thickness of the capping layer is larger than the film thickness, as shown
in Figure (9.53-c), the distribution of the image force tends to that generated by a semi-infinite
medium. It is interesting to note that while the dislocation loop is attracted to the free surface,
which would accelerate the formation of a surface step, it is repelled by the harder oxide film.
A very thin oxide layer (hc = 0.1h), as shown in Figure (9.53-b), almost balances the repulsive
Cu interface forces on the middle curved sections of the loop rendering them force-free. This
result cannot be expected from geometric image constructions as well.

9.3.7 Dislocation Dynamics in Layered Materials

A variational form of the governing equation of motion for a dislocation loop Γ has been devel-
oped for over-damped dislocation dynamics, where the work exerted on dislocation loop expan-
sion is balanced by viscous dissipation (Ghoniem et al. 2000a), i.e.

∫
Γ(F t

k −BαkVα)δrk|ds| = 0.
Here, F t

k is the total Peach-Koehler force induced by applied external forces, internal stress
fields (such as dislocation interactions, interface image forces, and the self-force), Bαk is the
resistance (inverse mobility) matrix, Vα is the velocity, rk is the displacement of the dislocation
line, and ds the dislocation line vector. Because the present formulation results in a line integral
form of the force vector distribution, it can be readily incorporated into the PDD framework
(Ghoniem et al. 2000a). In this section, we present computer simulation results for dislocation
motion in nano-layered materials using the PDD methodology.

It has been experimentally established that the hardness (or strength) of multi-layer thin
films is much higher than corresponding bulk materials. It is also shown by numerous experi-
ments that the strength and hardness of the film increase as the thickness of constituent layers
decreases (Shinn, Hultman and Barnett 1992, Misra et al. 1998, Clemens et al. 1999). Several
underlying mechanisms have been proposed in recent years, although relying on approximate
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treatments of dislocation fields in such systems. The objective here is to apply the present
rigorous elasticity solutions for 3-D dislocation loops in anisotropic, multi-layer thin films to
develop an understanding of plasticity and strength at the nano- to the micro-scale.

Experimental results and isotropic elasticity estimates show that the dominant mechanism
that controls the strength and hardness of multi-layer thin films is the influence of the disloca-
tion image force associated with a mismatch in elastic properties between adjacent film layers
(Clemens et al. 1999). For layered materials with a large mismatch in elastic properties, a
significant hardness enhancement was observed. On the other hand, for layered materials with
small differences in their elastic properties, no measurable hardness enhancement was detected
(Shinn et al. 1992, Clemens et al. 1999). Experiments on an Fe/Pt layered system (Daniels, Nix
and Clemens 1995a, Daniels, Nix and Clemens 1995b) indicated that when the bilayer thickness
ranges from few to tens of nano-meters, the hardness of this bilayer metal system exhibits a
plateau. Over this bilayer period range, the interface structure, misfit dislocation density and
coherency strains all change rapidly, so they are not likely to be the dominant mechanism.
Hence, the mismatch in elastic moduli was concluded to be the most likely dominant factor
determining hardness enhancements in these layered materials (Daniels et al. 1995a, Daniels et
al. 1995b).

Two models are often used to explain the observed behavior of hardness (or flow stress)
in thin films. In the threading dislocation model (Freund 1990, Nix 1998), the flow stress is
determined by the energy balance between the threading glide dislocation segment and the
misfit dislocation left behind at the interface. This model results in a flow stress that scales
approximately with the inverse of the film/layer thickness. For a thin film/layer of thickness h,
subjected to a uniform applied biaxial stress σa, the critical stress (σth

c ) for threading dislocation
motion is given by (Freund 1990)

σth
c ≈ µb

4π(1 − ν)h
[(4 − ν) ln(h/r0) − 1] (9.55)

for an isotropic material with a shear modulus µ, Poisson’s ration ν, and a dislocation core
cut-off radius r0 ≈ b. In this model, interfaces are introduced as impenetrable planes for
dislocations.

The second model is an extension of the well-known Hall-Petch effect. Here, dislocations
are assumed to form a pile-up at a boundary until a critical stress is reached. This results in
a flow stress which is inversely proportional to the square root of the layer thickness or grain
size. Both models qualitatively explain the increase in the flow stress with decreasing film/layer
thickness, but not the behavior as the layer thickness decreases below tens of nano-meters.

In the present work, we focus on simulation of dislocation motion in relatively thin layers,
when the individual layer thickness is in the range of few nanometers to hundreds of nanome-
ters. This is typically much smaller than the characteristic length scale of grains occupied by
dislocation networks in bulk materials. Therefore, the number of dislocations needed in order
to study thin layer plasticity is small. In many cases, plasticity and strength can be described
through the behavior of a single dislocation loop.
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Consider a Cu thin layer (thickness h), sandwiched between two semi-infinite harder Ni
substrates. The dislocation is originally located within the thin layer. Cu and Ni are both fcc
crystals with [001] out-of-plane orientations and < 110 > {111} slip systems, and anisotropic
elastic constants (Hirth and Lothe 1982). In Cu, b = 0.361 nm, and the dislocation mobility
is taken to be isotropic (M = 104 Pa−1 s−1). The system is subjected to a uniform applied
biaxial stress σa. We will ignore here the stress due to lattice mismatch. We only consider the
image force effect due to the modulus difference at the Cu-Ni interface. The value of image
force increases as the dislocation segment approaches the interface, and is singular exactly at
the interface. This is a consequence of the assumptions of linear elasticity, which has been
successfully used in dislocation dynamics simulations including similar singular behavior of
the dislocation self-force, energy and junction formation. If a cut-off radius is introduced for
the dislocation, the results of infinitesimal linear elasticity for self-force, energy, and junction
formation are in good agreement with more detailed atomistic simulations (Rodney and Phillips
1999). We assume also here that dislocations do not dissociate into partials, and take the cut-off
radius to be r0 ≈ b (Freund 1990, Nix 1998). Detailed atomistic simulations are required to
ascertain the value of the cut-off distance. In the following simulations, we assume that there is
one Frank-Read (F-R) source inside one of the layers, and that the source dislocation is initially
straight and pinned from both ends.

9.3.8 Confined Layer Slip (CLS)

Figure (9.54) shows the propagation mode of a source dislocation in a Cu layer of thickness
144 nm at different loading levels. We choose the length L of the original dislocation to be
longer than the layer thickness, h, i.e. L=4h. Under a small applied stress below a critical value
(approximately estimated by Freund’s formula, Equation (9.55)), the dislocation will bow out in
the Cu layer towards the interface. As a result of the image force exerted by the harder Ni layer,
the dislocation is repelled away from the interface and reaches an equilibrium configuration. If
the applied stress is larger than the critical value, the dislocation first bows out towards the
interface then it is blocked by the image force and is confined to propagate within the layer.
The critical stress for the onset of confined layer slip is first estimated according to Equation
(9.55) with equivalent isotropic values of µ and ν. This value is then refined by increasing (or
decreasing) the applied stress until the dislocation cannot achieve its equilibrium configuration
any more.

The influence of the dislocation source size is also considered. Below the critical stress
for threading dislocation motionσth

c , dislocations cannot propagate in the layer. When the
initial source size is approximately longer than the layer thickness, the dislocation bows out
and reaches an equilibrium configuration. If the initial source size is smaller than the layer
thickness, slip propagation is controlled by the Orowan mechanism, and the critical stress for
bowing out can be estimated as: (Foreman 1967) σO

c ≈ µb
2πL

√
6 ln(L/r0).

In comparing the critical stresses for a threading dislocation motion within a layer, σth
c , with

that for the activation of an F-R source by the Orowan mechanism, σO
c , the two values are

close when the layer thickness, h, is on the order of the initial F-R source length, L. In any
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Figure 9.54: Dislocation motion in a thin layer with h=144 nm under different applied biaxial
stress levels (a) σa = 210 MPa < σth

c = 250 MPa, and (b) σa = 280 MPa > σth
c = 250 MPa.

Each line corresponds to a time increment of 0.1 ns.
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thin layer, many F-R sources may exist with different sizes, locations and orientations. If the
applied stress is smaller than the critical stress for threading dislocation motion, σ < σth

c , some
dislocations will expend towards the interface, but none would be able to propagate within the
layer. Once the applied stress is removed, F-R source dislocations will re-tract to their original
length. This type of dislocation motion does not lead to permanent deformation of the thin
film. We term this regime as quasi-elastic. When the applied stress reaches the critical value
σth

c , longer dislocations with L>h will expand, but will still be confined within the layer. This
regime of behavior is the so-called Confined Layer Slip (CLS)(Anderson and Li 2001). Finally,
if the applied stress is increased further, σ > σO

c > σth
c , shorter dislocations L<h are gradually

activated, first bowing out from stable shapes, then reach the interface, and finally propagate
within the layer. Thus, dislocations emitted from longer F-R sources with L>h are controlled
by the threading dislocation mechanism, while shorter ones by the Orowan mechanism.

9.3.9 Loss of Slip Confinement

Cu thin film

Ni half space

Ni half space

Figure 9.55: Dislocation motion in a thin layer with h=10.8 nm under an applied stress σa =
1.2 GPa > σth

c = 1 GPa. Each line corresponds to a time increment of 2 ps.

As individual layers become very thin (i.e. in the tens of nanometers), only single dislocations
can propagate and expand upon the application of an externally applied stress. However,
because the layer thickness is very small, the curvature of the dislocation loop in segments
subtended between layers would be extremely high, and thus self-forces in these regions are
very substantial. The externally applied stress would have to overcome such large self-forces
if these curved segments are to expand. The applied P-K force on those segments that are
parallel to the interface does not have to overcome self-forces because the curvature of these
segments is small. Rather, the image force from neighboring and other interfaces would have to
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be overcome by the applied P-K force. Since we regularized the solution by selecting a cut-off
radius of one Burgers vector on either side of the interface, the dislocation will be repelled
with a maximum image force on one side of the interface, and then attracted with a different
maximum force once it crosses the interface. If the applied stress is high enough that the
maximum P-K force on the straight dislocation segments close to the interface overcomes both
repulsive and attractive forces, the dislocation will cross from one layer to the neighboring one,
and CLS is finally lost. This mode of deformation is shown in Figure (9.55), where successive
dislocation positions at 10 ns time intervals are shown for an F-R source dislocation, initially
with a straight segment pinned at both ends, and is subjected to a suddenly applied bi-axial
stress of magnitude 1.2 GPa. The dislocation, which lies on the (111)-slip plane, has an initial
length of 43.2 nm, and its Burgers vector is a

2
< 1̄01 >. After 15 ps, the leading edge of the

bowed out dislocation reaches the interface. Since the applied P-K force is larger than both
the attractive and repulsive components of the image force, the dislocation loses confinement
within the copper layer and expands into the neighboring nickel layer.
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Figure 9.56: Yield strength of a Ni-Cu layered thin film as a function of the layer thickness.
Solid line: Freund’s formula , triangles: experimental results , and circles: current simulation
results.

(Freund 1990, Misra et al. 1998)

Figure (9.70) shows results of our calculations for the maximum strength of a copper layer
in a thin film of alternating Cu/Ni layers based on the activation of a single F-R source, as a
function of the layer period. Experimental results for nano-indentation by Misra et al. (Misra
et al. 1998) and Clemens et al. (Clemens et al. 1999) are also shown. Since Freund’s formula
is often used to estimate the strength of thin films, film strength using Equation (9.55) is also
shown as a solid line on the same figure for comparison. For layers of thickness less than
approximately 100 nm, a single F-R source will determine the overall strength of the layer as
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a competition between confinement in the layer by image forces generated by elastic modulus
mismatch, and resistance to deformation by self-forces on the curved ends of the dislocation
loop. If the modulus mismatch is not too great, dislocation loops will cross from layer to
layer rather than be confined within a layer. One would expect that the maximum strength is
determined by the layer thickness and the ratio of elastic modulii as well. For thicker layers,
F-R sources can operate many times leading to dislocation multiplication and the formation of
a pile-up. In such case, the dominant deformation mode is the Hall-Petch mechanism.

Based on the present simulations, a strength-thickness map for Cu/Ni multi-layer materials
is shown in Figure (9.57). Four regions representing different deformation mechanisms are
shown, consistent with earlier investigations (see (Anderson et al. 1999, Misra, Verdier, Kung,
Embury and Hirth 1999) ). These are:

1. Region I - The applied P-K force is smaller than both the Koehler barrier and the self-
force. Dislocation loops deform to an equilibrium shape, and regain their original shape
upon removal of the applied stress. This is a quasi-elastic deformation mode;

2. Region II - The applied P-K force is larger than the Koehler barrier. Dislocation loops
are no longer confined in this region, and plastic instability is manifest in loss of confine-
ment;

3. Region III - The applied P-K force is less than the Koehler barrier but still greater than
the maximum self-force anywhere on the loop. Loops are forced to propagate within one
layer in this Confined layer Slip (CLS) mode of deformation;

4. Region IV - The layer thickness is so large that it can support several emitted dislocations
from F-R sources within the layer, but the applied P-K force is such that the leading
dislocation in the pile-up cannot overcome the Koehler barrier. This is the classical
Hall-Petch mode of plastic deformation.

Conclusions

The development of a line integral form for the elastic field of dislocations in anisotropic,
multi-layered materials has enabled an extension of the PDD method to the simulations of
plasticity and strength in these material systems. Earlier efforts in this area rely on surface
integrals for the derivatives of Green’s functions, which complicates numerical implementation
in DD computer simulation programs. The following conclusions can be drawn from applications
of the developed method to a number of material deformation problems at the nano-scale to
the micro-scale:

1. The influence of free surfaces or interfaces on dislocation motion through image forces
extends into the material to several hundred lattice constants. Thus, for computer sim-
ulations of large material volumes (e.g. tens of microns), image forces can be neglected
until the dislocation is within a few hundred lattice constants. Numerical resolution of
any method (including the Finite Element) must be sufficient close the surface.
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Figure 9.57: Plastic deformation mechanism and strength map for thin layered films.
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2. In thin anisotropic films containing many layers of small thickness (i.e. in the tens to
hundreds of nm), interaction between several interfaces contributes to the image force
on dislocations. No simple geometric image construction can be found to yield accurate
magnitude and direction of interface image forces.

3. To retain the original idea of the dislocation self-force in an infinite medium, the elastic
field is separated into two components: one that yields the self-force in an infinite medium,
while the second is due to the effect of interfaces (i.e. the image force).

4. In thin Al films on Cu substrates, it is shown that a small layer of aluminum oxide can
reverse the surface image force from attractive to repulsive. Also, the interaction between
the Al/Al2O3 interface and the Al/Cu interface can result in near zero image force on
curved dislocation segments in the middle of the film. If the oxide film thickness is greater
than the film thickness itself, its image force can be approximated by the semi-infinite
half-space results.

5. Plastic deformation of very thin layers in the tens of nm thickness range is controlled by
a competition between the resistance of curved segments due to high self-forces, and the
maximum force to transmit nearly straight segments across the interface (i.e. the Kohler
barrier). If the layer is too thin, this results in high curvatures and resistance to CLS.
Depending on the ratio of the elastic modulii of adjacent layers, dislocations may find an
easier path to move into adjacent layers, and thus CLS is lost. On the other hand, if the
ratio of elastic modulii between adjacent layers is sufficiently high and the layer thickness
is sufficiently large, dislocations are forced to be confined within one layer.

6. Strength calculations from the present model show reasonable agreement with experimen-
tal nano-indentation data on Cu/Ni nano-layered materials. Strength saturation below
layer thicknesses of ∼ 20 nm is a result of the near independence of the Koehler barrier
strength on layer thickness. The present model is incapable of explaining the decrease in
layer strength below ∼ 10 nm, as shown in the experimental data. This limitation may
be attributed to atomistic dislocation core effects not included in the model.

7. Four general deformation mechanisms are identified for layered thin films: quasi-elastic,
plastic instability, Confined Layer Slip, and the Hall-Petch regime, consistent with recent
literature (Anderson et al. 1999, Misra et al. 1999).
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9.4 Ductile-to-Brittle Transition

9.5 Plastic Flow Localization

9.5.1 Introduction

Many experimental observations have shown that neutron irradiation of metals and alloys at
temperatures below recovery stage V causes a substantial increase in the upper yield stress (ra-
diation hardening), and beyond a certain dose level, induces a yield drop and plastic instability
(see, for example, Smidt 1970, Dai 1995, Singh, Edwards & Toft 1996, and Baluc, Dai and
Victoria 1999). Furthermore, the post-deformation microstructure of a specimen showing the
upper yield point has demonstrated two significant features. First, the onset of plastic deforma-
tion is generally found to coincide with the formation of “cleared”channels, where practically all
plastic deformation takes place. The second feature refers to the fact that the material volume
in between cleared channels remains almost undeformed (i.e. no new dislocations are generated
during deformation). In other words, the initiation of plastic deformation in these irradiated
materials occurs in a very localized fashion. This specific type of plastic flow localization is
considered to be one of many possibilities of plastic instabilities in both irradiated and unir-
radiated materials (e.g. Kocks 1981, Neuhäuser 1990 and Luft 1991). A theory of radiation
hardening was proposed by Seeger (1958) in terms of dislocation interaction with radiation-
induced obstacles (referred to as depleted zones). Subsequently, Foreman (1968) performed
computer simulations of loop hardening, in which the elastic interaction between the disloca-
tion and loops was neglected. The model is based on Orowan’s mechanism, which assumes
that the obstacles are indestructible. In this view of matrix hardening, the stress necessary
to overcome localized interaction barriers represents the increase in the yield strength, while
long-range elastic interactions are completely ignored. These short-range dislocation-barrier in-
teraction models lead to an estimate of the increase of the critical resolved shear stress (CRSS)
of the form: ∆τ = αµb/l, where α is a numerical constant representing obstacle strength, µ
the shear modulus, b the magnitude of the Burgers vector, and l is the average inter-obstacle
distance. Kroupa (1966), and Kroupa and Hirsch (1964), on the other hand, viewed hardening
to result from the long-range elastic interaction between slip dislocations and prismatic loops.
In their model of friction hardening, the force necessary to move a rigid, straight dislocation
on its glide plane past a prismatic loop was estimated. In these two classes of hardening mod-
els, all dislocation sources are assumed to be simultaneously activated at the yield point, and
that plastic deformation is homogeneous throughout the material volume. Thus, they do not
address the physics of plastic flow localization. Singh, Foreman & Trinkaus (1997) introduced
the concept of “stand-off distance” for the decoration of dislocations with small SIA loops, and
proposed the “Cascade Induced Source Hardening” (CISH) model , in analogy with Cottrell
atmosphere (Cottrell 1948). The central question of the formation of dislocation decoration
was treated analytically by Trinkaus, Singh & Foreman (1997a&b). Subsequent detailed elas-
ticity calculations showed that glissile defect clusters that approach dislocation cores within
the “Cascade Induced Source Hardening” are absorbed, while clusters can accumulate just
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outside this distance (Ghoniem et al. 2000a). Trinkaus, Singh & Foreman (1997a&b) con-
cluded that dislocation decoration is a consequence of defect cluster mobility and trapping in
the stress field of grown-in dislocations. The CISH model was used to calculate the stress
necessary to free decorated dislocations from the atmosphere of loops around them (upper
yield, followed by yield drop), so that these freed dislocations can act as dislocation sources.
The CRSS increase in irradiated Cu was shown by Singh, Foreman & Trinkaus (1997) to be
given by: ∆τ ∼ 0.1µ(b/l)(d/y)2, where µ is the shear modulus, b, l, d and y are the Burgers
vector, inter-defect distance, defect diameter, and ‘stand-off ’distance, respectively. Assuming
that y ∼ d, and that l ∼ 35b, they estimated ∆τ/µ ∼ 5 × 10−3. The phenomenon of yield
drop was proposed to result from the unpinning of grown-in dislocations, decorated with small
clusters or loops of Self-Interstitial Atoms (SIAs). Fig.9.58 shows a set of stress-strain curves
for annealed and cold-worked pure copper, copper containing a dispersion of aluminum oxide
particles (also in cold-worked condition) and copper irradiated with fission neutrons at 320 K
to dose levels of 0.01 and 0.2 dpa, and tensile-tested at 295 K (Singh, Edwards & Toft 1996).
Neutron irradiation of pure copper at 320 K does not only lead to an increase in the upper yield
stress, but it also causes a prominent yield drop and plastic flow localization. An example of
localized plastic flow in irradiated CuCrZr alloy under low-cycle fatigue conditions is shown in
Fig.9.59 (Singh, Stubbins & Toft 2000a). Note that cleared channels appear to be associated
with relatively large inclusions (i.e. stress concentration). The objective of the present study is
to assess the physical mechanisms, which are responsible for the initiation of plastic instability
in irradiated FCC metals by detailed numerical simulations of the interaction between disloca-
tions and radiation-induced defect clusters. Two distinct problems, which are believed to cause
the onset of plastic instability are addressed in the present study. First, we aim at determining
the mechanisms of dislocation unlocking from defect cluster atmospheres as a result of long-
range elastic interaction between dislocations and sessile prismatic interstitial clusters situated
just outside the stand-off distance. The main new feature of this analysis is that dislocation
deformation is explicitly considered during its interaction with SIA clusters. Results of this
study are presented in §9.5.3. Second, we investigate the mechanisms of structural softening in
flow channels as a consequence of dislocation interaction with stacking fault tetrahedra (SFTs).
Based on these numerical simulations, a new mechanism of channel formation is proposed,
and the magnitude of radiation hardening is also computed in §9.5.4. Finally, summary and
conclusions are given in §9.5.5.

9.5.2 Interaction Between Dislocations & Defects

The self-energy of a single dislocation loop can be calculated as 1
2

the interaction energy be-
tween two identical dislocation loops separated by a distance r0. The contribution to the self
energy from the dislocation core can be estimated from atomistic calculations, and is usually
on the order of 5-10% of the self energy (Kroupa 1966). However, the core contribution can be
incorporated by adjusting the value of r0. Using an infinitesimal loop approximation, Kroupa
(1966) found the stress tensor of a prismatic loop to be of the form: σij = kijµbR2/2ρ3, where
kij is an orientation factor of on order of unity, R is the loop radius and ρ the distance from the
loop center. The total force and its moment on an SIA cluster can be expressed respectively
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Figure 9.58: Experimental stress-strain curves for irradiated and unirradiated Cu. Specimens
were irradiated in DR-3 reactor at RISO at 320 K, and tensile tested at 295 and 320 K (Singh,
Edwards & Toft 1996).

as:
Fi = −n′

jσjk,ib
′
kδA

′ (9.56)

Mi = − ∈ijk n′
jb

′
lσlkδA

′ (9.57)

Where n′
j, b

′
k, δA

′ refer to the Cartesian components of the normal vector, the Burgers vector and
the habit plane area of the cluster, respectively. As a mobile SIA dislocation loop moves closer to
the core of the slip loop, the turning moment on its habit plane increases, as given by eqn. 9.57.
When the mechanical work of rotation exceeds a critical value of 0.1 eV/crowdion (Foreman
et al. 1992), we assume that the cluster changes its Burgers vector and habit plane, and moves
to be absorbed into the dislocation core. Thus, the mechanical work for cluster rotation is
equated to a critical value, (i.e. δW =

∫ θ2
θ1

Midθi = ∆Ucrit), and used as a criterion to establish
the stand-off distance (Ghoniem et al. 2000a). We describe dislocation motion by developing
Equations Of Motion (EOM) for generalized degrees of freedom (DOF’s) on the basis of a
variational principle for Gibbs free energy, which is derived from irreversible thermodynamics.
Inertial effects (i.e. the kinetic energy of moving dislocations) are not included in this work.
We define the following:

1. Bαk as a diagonal friction (inverse mobility) matrix for phonon drag constants in two
glide and one climb directions.

2. The sum of the Peach-Kohler force, self-force, Peierls lattice friction and climb forces (per
unit dislocation line length) as: f t

k
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Figure 9.59: TEM picture of localized plastic flow emanating form internal inclusions in CuCrZr
alloy, neutron-irradiated at 320 K to a dose level of 0.3 dpa and fatigue-tested at 320 K with
a loading frequency of 0.5 Hz (Singh, Stubbins and Toft 2000a)
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3. An effective generalized force, fm on a curved segment defined as:

fm =
∫ 1

0
f t

i Cim(u) | ds | (9.58)

4. A phonon drag coefficient matrix element, γmn, given by:

γmn =
∫ 1

0
Cim(u)BikCkn(u) | ds | (9.59)

With these quantities calculated for each curved segment, Ghoniem, Tong & Sun (2000a) showed
that the global DOF’s for the entire loop, Ql can be obtained by solving the set of differential
equations given by:

Fk =
Ntot∑
l=1

ΓklQl,t (9.60)

Similar to the finite element procedure, the local segment phonon drag coefficient matrix [γmn]
is added into corresponding global locations in the global phonon drag coefficient matrix [Γkl],
while the force vector is mapped onto a corresponding global vector: Fk. Here, the total number
of DOF’s for the loop are: Ntot = NsNDF . The global phonon drag coefficient matrix [Γkl] is
also symmetric and banded or sparse. The component Γkl is zero if the degrees of freedom k
and l are not connected through a segment. Eqn. (9.60) represents a set of time-dependent
ordinary differential equations which describe the motion of dislocation loops as an evolutionary
dynamical system. The computational time-step is dictated by the dislocation mobility, which
is quite high in FCC metals (the phonon drag coefficient (inverse mobility, eqn. 9.60) in Cu is
taken as 5 × 10−5 Pa s (Kubin 1993)). Numerical integration of the equations of motion are
performed by implicit iterative methods.

9.5.3 Unlocking of Dislocations from Defect Clusters

The two main aspects of dislocation interaction with defect clusters that affect both hard-
ening and ensuing plastic flow localization are: (1) dislocation unlocking from defect cluster
atmospheres; and (2) destruction of SFTs on nearby slip planes by gliding dislocations. The
interaction between grown-in dislocations and trapped defect clusters has been shown to lead
to unfaulting of vacancy clusters in the form of vacancy loops (Ghoniem, et al. (2000b)). It can
also result in rotation of the habit plane of mobile SIA clusters (eqn. 9.57). Once either one
of these two possibilities is realized for a vacancy or SIA cluster, it is readily absorbed into the
dislocation core. Ghoniem, et al. (2000b) used these conditions to determine an appropriate
stand-off distance from the dislocation core, which is free of irradiation-induced defect clusters.
It is estimated (Ghoniem et al., 2000a) that clusters within a distance of 3-9 nm from the dislo-
cation core in Cu will be absorbed, either by rotation of their Burgers vector or by unfaulting.
We will use this estimate as a guide to calculations of long-range interactions of dislocations
with sessile prismatic SIA clusters situated outside the stand-off distance in §9.5.3. While the
experimentally-observed average SFT size is 2.5 nm for OFHC copper, the radius of a sessile
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interstitial cluster, which results from coalescence of smaller mobile clusters, is assumed to be
in the range: ∼ 4 − 20 nm. The local density of interstitial defect clusters at the stand-off
distance is taken to be in the range 0.6− 4× 1024 m−3, giving an average inter-cluster spacing
of ∼ 18 − 35 a. In subsequent computer simulations, we use the following set of material data
for Cu: lattice constant (a = 0.3615 nm), shear modulus (µ = 45.5 GPa), Poisson’s ratio
(ν = 0.35), F-R source length (L=1500-2000 a).

Interaction between an F-R Source and a Single SIA Cluster
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Figure 9.60: Dynamics of F-R source (b = 1
2
[1̄01]) interaction with a single sessile prismatic

interstitial defect cluster very near the glide plane. The cluster has a radius of 50 a, and a
Burgers vector of b = 1

2
[110] on the (111) glide plane. The cluster is located at (0, -1000 a, 40

a) in the local plane coordinates. Time intervals are: (1) 1 ps, (2) 2.5 ps, (3) 25 ps, (4) 50 ps,
(5) 1200 ps.

To gain insight into the mechanism of dislocation unlocking from the random field of deco-
rating clusters, we first consider the simpler situation for the interaction between an F-R source
and one single sessile cluster (radius= 40 a) from the glide plane at a stand-off distance of 40
a. The original analysis of Kroupa (1966) of a similar problem considered the case of a single
straight, infinitely long and rigid dislocation, interacting with another single circular disloca-
tion loop. More recently, Kubin and Kratochvil (2000) have analyzed the interaction between
an infinite dislocation and a rectangular dipolar loop. In the following, the defect cluster is
assumed to be a circular prismatic dislocation loop situated above (or below) the glide plane
of an F-R source. The Burgers vector of clusters is b = 1

2
[110] or b = 1

2
[1̄1̄0], while for the ex-

panding F-R source: b = 1
2
[1̄01]. Other equivalent cluster orientations give redundant results.

We also assume here that the dislocation loop is not dissociated into partials. A uniaxial stress
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along [100] of σ11 = 100 MPa is suddenly applied. The equations of motion for position and
tangent vectors are solved for 21 nodes on the expanding source, and the shape is re-computed
by implicit iterative integration to ensure stability of the solution. Fig.9.60 shows the change in
shape of the expanding F-R source dislocation, as it comes closer to the cluster location. After
1 ps, the advancement of the F-R source is nearly unaffected by the prismatic defect cluster off
the glide plane, as shown in Fig.9.60. As the dislocation line of the F-R source come within 100
- 200 a from the cluster, the dislocation line is repelled, and starts to deform significantly by
∼ 25 ps. Even though the cluster force is relatively small, the dislocation line is very flexible,
thus achieving an equilibrium configuration in about 0.1 ns. When the same sessile SIA cluster
is moved vertically away from the glide plane, the interaction dynamics is significantly changed,
both quantitatively and qualitatively (see Fig.9.61). By ∼ 10 ps, the F-R source dislocation
clears itself from the influence of the cluster force field, which just distorts the dislocation line
as it passes underneath it on the glide plane. The line deformation caused by the cluster is
eventually erased as a result of the restoring dislocation self force. It is clear that the F-R
source dislocation unlocks itself rather easily and quickly from the elastic field of one single SIA
cluster at a distance of 80 a away from the glide plane.

Interaction between an F-R Source and a Row of SIA Clusters
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Figure 9.61: Dynamics of F-R source interaction with a single sessile prismatic interstitial defect
cluster at a farther stand-off distance. All conditions are the same as in Fig.9.60, except that
the cluster is located at (0, -1000 a, 80 a) in the local plane coordinate, and time intervals are:
(1) 1 ps, (2) 2.5 ps, (3) 25 ps, (4) 50 ps, (5) 75 ps.

Consider now the more complex interaction between an expanding F-R source dislocation
and the full field of multiple sessile SIA clusters (loops) present in a region of decoration. As
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Figure 9.62: Dynamics of F-R source interaction with an attractive interstitial defect cluster
atmosphere at the stand-off distance of 100 a. Clusters have parallel and identical Burgers
vectors to the F-R source of b = 1

2
[1̄01]. The apllied stress, σ11 is gradually increased to 200

MPa before the dislocation line breaks free from clusters.

the F-R source expands in the elastic field of SIA clusters, each point on the dislocation line will
experience a resistive (or attractive) force, which must be overcome for the dislocation to move
further. The dislocation line curvature, and hence the local self force also change dynamically.
To determine the magnitude of collective cluster resistance, systematic calculations for the
dynamics of interaction between attractive (Fig.9.62) and repulsive (Fig.9.63) SIA clusters are
presented. When the SIA clusters are all attractive, the dislocation line is immediately pulled
into their atmosphere, but as the applied stress is increased, the dislocation remains trapped
by the force field of SIA clusters. When the stress is increased to 200 MPa, the line develops
an asymmetric configuration as a result of its Burgers vector orientation, and an unzipping
instability eventually unlocks the F-R source from the collective cluster atmosphere, as shown
in Fig.9.62. This asymmetric unlocking mode is characteristic of high linear cluster density on
smaller sections of F-R source decorations, as shown in Fig.9.62, where the linear density of
SIA clusters is ∼ 1

50
(cluster/ lattice constant). On the other hand, as the linear density of

SIA clusters is reduced to ∼ 1
100

(cluster/ lattice constant), and the cluster coverage of the F-R
source is extensive, another instability mode develops. Fig.9.63 shows the detailed dynamics
of the collective cluster interaction with an expanding F-R source. The high fidelity of the
current PDD method for space and time resolution of this interaction is clearly shown in the
inset to Fig.9.63. A fluctuation in the line shape is amplified by the combined effects of the
applied and self forces on the middle section of the F-R source, and the dislocation succeeds
in penetrating through the collective cluster field at a critical tensile stress of σ11 = 180MPa
(or equivalently at CRSS of τ/µ = 0.0015). A summary set of results for similar calculations
are shown as scaling graphs in Figs. 9.64 and 9.65. The critical shear stress (in units of the
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shear modulus) is shown in Fig.9.64 as a function of the stand-off distance, for a fixed inter-
cluster distance of 50 a. The results of current calculations are compared to the analytical
estimates of Singh, et al. (1997) and Trinkaus, et al. (1997b). For farther stand-off distances,
the current results show a larger critical stress as compared to the analytical estimates, while
for stand-off distances smaller than ∼ 60 a, a smaller critical stress is required to unlock the
F-R source. When the stand-off distance is large, the applied stress must overcome the self-
force, which results from the finite length of the F-R source, in addition to the collective cluster
elastic field. This aspect is not considered in the extension of Trinkaus, Singh & Foreman
(1997b) of Kroupa’s theory (1966), where the line is assumed to be rigid as it moves close
to the clusters. At smaller stand-off distances, however, the dislocation easily unlocks by one
of the two unzipping instability modes discussed earlier, and the predicted CRSS is smaller
than analytical estimates. Similar features are displayed in Fig.9.65, where our calculations are
again compared to the analytical scaling relationship developed by Trinkaus, Singh & Foreman
(1997b). At inter-cluster distances smaller than 70 a, the dislocation shape instability reduces
the CRSS from corresponding analytical results. It is estimated that the required CRSS is
∼ 0.001µ ( ∼ 50 MPa for copper), for an average inter-cluster distance of l ∼ 50 a, and
a stand-off distance of ∼ 40 a. It is experimentally difficult to determine the local value of
l in the decoration region of dislocations, which is likely to vary considerably, depending on
the character of the dislocation Burgers vector. However, l ∼ 50 a is an upper bound, while
l ∼ 20 − 30 a is more likely. Since the CRSS is roughly inversely proportional to l, the most
likely value of the CRSS to unlock dislocations and start the operation of F-R sources would be
τCRSS ∼ 100−150MPa. Depending on the local value of the Schmidt factor, the corresponding
uniaxial applied stress is thus likely to be on the order of 200 − 300MPa, under conditions of
heavy decoration (i.e. at a displacement damage dose of ≥ 0.1 dpa). The current estimates for
the unlocking stress are thus consistent with the experimental data of Fig.9.58, and indicate
that the operation of F-R sources from decorated dislocations can be initiated by one (or both)
of the following possibilities:

1. activated F-R sources are decorated with a statistically low linear defect cluster density;

2. dislocation sources are initiated at stress singularities in regions of internal stress concen-
tration.

In either one of these two possibilities, the most likely orientation of plastic slip is along direc-
tions of maximum local Schmidt factors.

9.5.4 The Mechanism of Channel Formation

Once dislocation sources are unlocked from their decoration atmospheres causing a yield drop,
they additionally interact with the surrounding random field of defect clusters (e.g. vacancy
loops or SFTs). We investigate here the interaction between emitted F-R dislocations and
vacancy-type defect clusters as a possible mechanism of radiation softening immediately be-
yond the yield point. Numerical computer simulations are performed for the penetration of
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Figure 9.63: Dynamics of the symmetric unlocking mechanism, initiated by small fluctuations
in the dislocation line as it passes near the cluster atmosphere. Conditions are the same as in
Fig.9.62, except that the clusters are repulsive, and of a Burgers vector b = 1
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cluster spacing of 50 a
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Figure 9.65: Scaling of the critical shear stress with the inter-cluster distance for a fixed stand-
off distance of 40 a

undissociated slip dislocation loops emitted from active F-R sources (i.e. unlocked from defect
decorations) against a random field of SFTs or sessile Frank loops of the type: 1

3
< 111 > {111}.

At the present level of analysis, there is no distinction between SFTs and vacancy loops, since
they are modeled as point obstacles to dislocation motion that can be destroyed once an as-
sumed critical force on them is reached. The long-range elastic field of these small obstacles
is ignored. The present computer simulations are extensions of Foreman’s analysis (Foreman
1968) in the following respects: (1) dislocation sources are not free segments, and are emitted
from pinned Frank-Read (FR) sources; (2) the simulations are fully 3-dimensional, and not on a
single glide plane; (3) obstacles are destructible: a necessary condition for flow localization; (4)
multiple, 3-D jogged and interacting dislocation loop pileups are simulated; and (5) dislocation
segments in-between SFTs are not in equilibrium with the applied stress. The random distri-
bution of SFTs is generated as follows: (1) the volumetric density of SFTs is used to determine
the average 3-D position of each generated SFT; (2) a Gaussian distribution function is used
(with the standard deviation being 0.1-0.3 of the average spacing) to assign a final position
for each generated SFT around the mean value; and (3) the intersection points of SFTs with
glide planes are computed by finding all SFTs that intersect the glide plane. For simplicity, we
perform this procedure assuming that SFTs are spherical and uniform in size.
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Figure 9.66: Propagation of plastic slip emanating from a single Frank-Read source in cop-
per irradiated and tested at 100 oC. Displacement damage dose=0.1 dpa, STF’s density=
4.5 × 1023m−3, size=2.5 nm. Simulated crystal size=4500 a ( 1.62 µm). Initial F-R source
length=1600 a ( 576 nm). Stress is applied along [100]. ”Unzipping” of curved dislocation
segments is clear during the initial stages of deformation, where long segments can get ”stuck”
till they are unzipped by increasing the applied stress.
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Interaction between Unlocked Dislocations and Matrix Defect Clusters (SFT’s)

Initially, one slip dislocation loop is introduced between two fixed ends, as in section 3. A
search is performed for all neighboring SFTs on the glide plane. Subsequent nodal displace-
ments (governed by the local velocity) are adjusted such that a released segment interacts with
only one SFT at any given time. The interaction scheme is a dynamic modification to Friedel
statistics (Friedel 1956), where the asymptotic maximum plane resistance is found by assuming
steady-state propagation of quasi-straight dislocation lines. While Friedel calculates the area
swept as the average area per particle on the glide plane, we adjust the segment line shape
dynamically over several time steps after it is released from an SFT. When a segment is within
5 a from the center of any SFT, it is divided into two segments with an additional common
node at the point of SFT intersection with the glide plane. The angle between the tangents
to the two dislocation arms at the common node is then computed, and force balance is per-
formed. When the angle between the two tangents reaches a critical value of Φc, the node is
released, and the two open segments are merged into one. If the force balance indicates that
the segment is near equilibrium, no further incremental displacements of the node are added,
and the segment of the loop is temporarily stationary. However, if a net force acts on that
segment of the loop, it is advanced and the angle re-computed. It is possible that the angle
between tangents reach the critical value, even though the segment is out of equilibrium. Sun,
Ghoniem and Wang (2000) have shown that the elastic interaction energy between a glissile
dislocation and an SFT is not sufficient to transform the SFT into a glissile prismatic vacancy
loop. They proposed an alternate mechanism for the destruction of SFTs by passage of jogged
and/or decorated dislocations close to the SFT. The energy released from recombination of a
small fraction of vacancies in the SFT was estimated to result in its local rearrangement. In the
present calculations, we assume that vacancies in the SFT are absorbed in the dislocation core
of the small contacting dislocation segment, forcing it to climb and form atomic jogs. With
this mechanism, the entire SFT is removed from the simulation space, and jogged dislocations
continue to glide on separate planes, thus dragging atomic-size jogs with them. Successive
removal of SFTs from nearby glide planes can easily lead to channel formation and flow local-
ization in the channel, because the passage of consecutive dislocation loops emitted from the
F-R source is facilitated with each dislocation loop emission. The matrix density of SFTs in
irradiated copper at low temperature (0.22-0.27 Tm) is taken from experimental data (Singh,
Edwards & Toft 1996). Fig.9.66 shows the results of computer simulations for propagation of
plastic slip emanating from a single Frank-Read source in copper irradiated and tested at 100
oC (Singh, Edwards and Toft 2000b). The density of SFTs is 4.5×1023 m−3 and the average size
is 2.5nm. In this simulation, the crystal size is set at ∼ 1.62µm, while the initial F-R source
length is 1600 a (∼ 576nm). A uniaxial applied tensile stress along [100]- σ11 is incrementally
increased, and the dislocation line configuration is updated till equilibrium is reached at the
applied stress. Once full equilibrium of the dislocation line is realized, the stress is increased
again, and the computational cycle repeated. At a critical stress level (flow stress), the equi-
librium dislocation shape is no longer sustainable, and the dislocation line propagates till it is
stopped at the crystal boundary, which we assume to be impenetrable. All SFTs interacting
with the dislocation line are destroyed, and plastic flow on the glide plane is only limited by
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dislocation-dislocation interaction through the pile-up mechanism. During the initial stages
of deformation, small curved dislocation segments unzip forming longer segments, which are
stuck till they are unzipped again by increasing the applied stress. It is noted that, particularly
at higher stress levels, the F-R source dislocation elongates along the direction of the Burgers
vector, as a result of the higher stiffness of screw dislocation segments as compared to edge
components. The F-R source configuration is determined by (a) the character of its initial
segment (e.g. screw or edge), (b) the distribution of SFTs intersecting the glide plane, and
(c) any other dislocation-dislocation interactions. This aspect is illustrated in Fig.9.67, where
two interacting F-R sources in copper are shown for a displacement dose of 0.01 dpa and an
SFT density of 2.5× 1023 m−3 and with an average size of 2.5nm. All other conditions are the
same as in Fig.9.66. The two F-R sources are separated by 20 a (∼ 7.2nm). It is seen that
the spread of the F-R dislocation line with an initial strong edge component of the Burgers
vector is much faster than the F-R source with an initial pure screw component. Significant
deformation of the two loops is also observed when corresponding segments meet, and a higher
stress is required to overcome additional interaction forces.
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Figure 9.67: Spread of plastic slip emanating from two interacting Frank-Read sources in copper
irradiated and tested at 100 oC. While the simulation conditions are the same in Fig.9.66, the
two F-R sources are separated by 20 a ( 7.2 nm). Significant deformation of the two loops is
observed when corresponding segments meet, and a higher stress is required to overcome the
additional forces generated by each F-R source on the other one.



9.5. PLASTIC FLOW LOCALIZATION 369

Local Strain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

220

240

0

5

10

15

20

25

30

35

40

45

50

55

60

65
φ

c
=160°

φ
c

Single plane

Two planes, d=20a
Two planes, d=500a

∆σ
ap
p
li
ed
(M
P
a)

∆τ
ap
p
li
ed
(M
P
a)

Figure 9.68: The effects of inter-planar F-R source interactions on the flow stress in copper
irradiated and tested at 100 oC, and a displacement damage dose of 0.1 dpa. Local strain is
measured as the fractional area of swept glide planes.

Matrix Radiation Hardening

Penetration of activated F-R sources into a 3-D field of destructible SFTs can be viewed as a
percolation problem, first considered by Foreman (1968) on a single glide plane, and extended
here to complex 3-D climb/glide motion. The critical stress above which an equilibrium disloca-
tion configuration is unsustainable corresponds to the percolation threshold, and is considered
here to represent the flow stress of the radiation-hardened material. Since activated F-R sources
may encounter nearby dislocations, such interactions should be considered in estimates of the
flow stress. The effects of inter-planar F-R source interactions on the flow stress in copper
irradiated and tested at 100 oC is shown in Fig.9.68. A plastic stress-strain curve is constructed
from the computer simulation data, where the local strain is measured in terms of the fractional
area swept by expanding F-R sources on the glide plane. It is shown that while the majority
of the increase in applied stress of irradiated copper can be rationalized in terms of dislocation
interaction with SFTs on a single glide plane, dislocation-dislocation dipole hardening can have
an additional small component on the order of 15 % for very close dislocation encounters on
neighboring slip planes (e.g. separated by ∼ 20 a). For larger separation (e.g. ∼ 500 a) the
additional effects of dipole hardening is negligible. Dislocation forest hardening does not seem
to play a significant role in determination of the flow stress, as implicitly assumed in earlier
treatments of radiation hardening (e.g. Seeger 1958, Makin and Minter 1960, and Foreman
1968). The influence of the irradiation dose on the local stress-strain behavior of copper irradi-
ated and tested at 100 oC is shown in Fig.9.69. In the present calculations, we do not consider
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strain-hardening by dislocation-dislocation interactions, and make no attempt to reproduce the
global stress-strain curve of irradiated copper. Computed values of the flow stress are in general
agreement with the experimental measurements of Singh, Edwards and Toft (2000b), as can
be seen from Fig.9.70. A more precise correspondence with experimental data depends on the
value of the critical interaction angle Φc, which is the only relevant adjustable parameter in
the present calculations. In Fig.9.69, Φc = 165o. Determination of the two adjustable param-
eters ( Φc and B) requires atomistic computer simulations beyond the scope of the present
investigation. Additional calculations for the flow stress for OFHC copper, irradiated at 47
◦C and tested at 22 ◦C are given in Table (2) below, and compared to the experimental data
of Singh, Edwards and Toft (1996). The flow stress value at a dose of 0.001 dpa has been
extrapolated from the experimental results of Dai (1995) for single-crystal copper irradiated
with 600 MeV protons. It is noted that, while the general agreement between the computer
simulations and the experimental data of irradiated Cu is reasonable at both 22 oC and 100
oC, the dose-dependence of radiation hardening indicates that some other mechanisms may be
absent from the current simulations.
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Figure 9.69: Dose dependence of the increase in flow stress in copper irradiated and tested at
100 oC. The displacement damage dose varies in the range 0.001 - 0.1 dpa, and conditions
correspond to the experimental data of Singh, Edwards and Toft (2000b).

Table (2)
Experimental (Singh, Edwards and Toft 1996) and calculated tensile hardening parameters for

OFHC copper, irradiated at 47 ◦C and tested at 22 ◦C



9.5. PLASTIC FLOW LOCALIZATION 371

Dose (dpa)
0.1 0.2 0.3

0

50

100

150

200

250

300

∆σ
0
.0
5
(M
P
a
)

φ
c
=158

o

φ
c
=165

o

φ
c
=170

o

Experiment

OFHC-Cu

Figure 9.70: Comparison between the dose dependence of computed increase in flow stress
values and the experimental measurements of Singh, Edwards and Toft (2000b).

Displacement SFT density Planar inter-SFT Experimental Calculated Calculated
Dose (dpa) (1023m−3) distance (a) ∆σ0.05 (MPa) ∆σ (MPa) ∆σ (MPa)

(Φc = 160O) (Φc = 165O)
0.001 0.8 196 110 (Dai1995) 145 110
0.01 5.3 76 134 240 205
0.1 6.7 67.5 238 250 210
0.2 6.6 68.5 249 245 205

Investigations of dislocation interaction with full or truncated SFTs considered recently
by Sun, Ghoniem and Wang (2000) indicated that local heating may be responsible for the
dissolution of SFTs by interacting dislocations, and that their vacancy contents are likely to
be absorbed by rapid pipe diffusion into the dislocation core. The consequence of this event is
dislocation climb out of its glide plane by formation of atomic jogs, followed by subsequent glide
motion of jogged dislocation segments on a neighboring plane. In Fig.9.71, we present results of
computer simulations of this glide/ climb mechanism of jogged F-R source dislocations. Fig.9.72
shows a side view of the glide/ climb motion of a dislocation loop pileup, consisting of three
successive loops, by projecting dislocation lines on the plane formed by the vectors: [111] and
[1̄1̄2]. SFTs have been removed for visualization clarity. It is noted that for this simulated three-
dislocation pileup, the first loop reaches the boundary and is held there while the second and
third loops expand on different slip planes. We assume that the simulation boundary is rigid,
with no attempt to simulate slip transmission to neighboring grains. However, the force field of
the first loop stops the motion of the second and third loop, even though the stress is sufficient
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to penetrate through the field of SFTs. This glide/climb mechanism of jogged dislocations in
a pileup can be used to explain two aspects of dislocation channel formation. As the group of
emitted dislocations expand by glide, their climb motion is clearly determined by the size of
an individual SFT. For the densities considered here, a climb step of nearly one atomic plane
results from the destruction of a single SFT. The climb distance is computed from the number
of vacancies in an SFT and the length of contacting dislocation segments. The jog height is thus
variable, but is generally of atomic dimensions for the conditions considered here. The width
of the channel is a result of two length scales: (1) the average size of an SFT (∼ 2.5nm); and
(2) the F-R source-to-boundary distance (∼ 1−10µm). This aspect can be seen from Fig.9.59.
Secondary channels, which are activated from a primary channel (i.e. source point), and which
end-up in a nearby primary channel (i.e. boundary) are thinner than primary channels. Further
detailed experimental observations of the channel width dependencies are necessary before final
conclusions can be drawn. The second aspect of experimental observations (Fig.9.58), and
which can also be explained by the present mechanism, is that a small degree of hardening
occurs once dislocation channels have been formed. Dislocation-dislocation interaction within
the non-coplanar jogged pileup requires a higher level of applied stress to propagate the pileup
into neighboring grains.

Figure 9.71: A front 3-D view of the glide/ climb mechanism of the jogged dislocation pileup.
Note the gradual destruction of SFTs as the pileup develops.

While the initiation of a dislocation channel is simulated here, full evolution of the channel
requires successive activation of F-R sources within the volume weakened by the first F-R
source, as well as forest hardening within the channels themselves. The possibility of dislocation
channel initiation on the basis of the climb/ glide mechanism is further investigated by computer
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Figure 9.72: < 11̄0 > projection for glide/ climb motion of a dislocation loop pileup, consisting
of three successive loops. SFT’s have been removed for visualization clarity.

simulation of OFHC copper irradiated to 0.01 dpa, and tested at 100 ◦C, and is shown in
Fig.9.73. Formation of clear channels is experimentally observed at this dose level (Singh,
Edwards & Toft 2000b). The figure is a 3-D representation for the initial stages of multiple
dislocation channel formation. For clarity of visualization, the apparent SFT density has been
reduced by a factor of 100, since the total number of SFTs in the simulation volume is 3.125×107.
The initial dislocation density is taken as ρ = 1013 m−2. To show the importance of spatial
SFT density variations, a statistical spatial distribution within the simulation volume has been
introduced such that lower SFT densities are assigned near 10 glide planes. All dislocation
segments are inactive as a result of high density of surrounding SFTs, except for those on
the specified glide planes. Search for nearby SFTs is performed only close to active channel
volumes, which in this case totals 174,846. It is observed that within a 5µm volume, the
number of loops within a pileup does not exceed 5. It is expected that if the pileup continues
across an entire grain (size ∼ 10µm), a higher number of loops would be contained in a jogged
dislocation pileup, and that the corresponding channel would be wider than in the present
calculations. We have not attempted to initiate multiple F-R sources within the volume swept
by the dislocation pile-up to simulate the full evolution of channel formation. As a result, the
channel shape created by a single active F-R source is of a wedge nature. In future simulations,
we plan to investigate the full evolution of dislocation channels.
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Figure 9.73: 3-D view for the formation of dislocation channels on glide planes which have
low SFT density, for irradiated copper at a dose of 0.01 dpa. For clarity of visualization, the
apparent SFT density has been reduced by a factor of 100. Note that other dislocation segments
are inactive as a result of high density of surrounding clusters
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9.5.5 Summary & Conclusions

The present investigations have shown that dislocation lines are highly flexible. For small
inter-cluster or stand-off distances (which are typical of decorated dislocations), the unlocking
stress can be a factor of two smaller than values obtained when one assumes rigid disloca-
tion interactions. Two possible mechanisms of dislocation unlocking have been identified: (1)
an asymmetric unzipping-type instability caused by partial decoration of dislocations; (2)a
fluctuation-induced morphological instability, when the dislocation line is extensively deco-
rated by defect clusters. Estimated unlocking stress values are in general agreement with ex-
perimental observations that show a yield drop behavior. It appears that unlocking of heavily
decorated dislocations will be most prevalent in areas of stress concentration (e.g. precipitate,
grain boundary, triple point junction, or surface irregularity). Computer simulations for the
interaction between unlocked F-R sources and a 3-D random field of SFTs have been utilized
to estimate the magnitude of radiation hardening, and to demonstrate a possible mechanism
for the initiation of localized plastic flow channels. Reasonable agreement with experimental
hardening data has been obtained with the critical angle Φc in the limited range of 158o −165o.
Both the magnitude and dose dependence of the increase in flow stress by neutron irradiation
at 50o C and 100o C are reasonably well predicted. In spatial regions of internal high stress,
or on glide planes of statistically-low SFT densities, unlocked dislocation sources can expand
and interact with SFTs. Dislocations drag atomic-size jogs and/or small glissile SIAs when an
external stress is applied. High externally-applied stress can trigger point-defect recombination
within SFT volumes resulting in local high-temperatures. A fraction of the vacancies contained
in SFTs can therefore be absorbed into the core of a gliding dislocation segment producing
atomic-size jogs and segment climb. The climb height is a natural length scale dictated by
the near-constant size of the SFT in irradiated copper. It is shown by the present computer
simulations that the width of a dislocation channel is on the order of (200-500 atomic planes),
as observed experimentally, and is a result of a stress-triggered climb/ glide mechanism. The
atomic details of the proposed dislocation-SFT interaction and ensuing absorption of vacancies
into dislocations need further investigations by atomistic simulations. Finally, it should be
pointed out that at relatively high neutron doses, dense decorations of dislocations with SIA
loops, and a high density of defect clusters/ loops in the matrix are most likely to occur. As
shown here, these conditions can lead to the phenomena of yield drop and flow localization.
Solutions of these problems in the field of materials design may be sought, either to avoid dis-
location decorations and channel formation, or to prevent propagation of dislocations through
the channels (e.g. by providing closely-spaced indestructible obstacles on glide planes).
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9.6 Persistent Slip Bands in Fatigue

The spontaneous formation of dislocation patterns is one of the most striking features of plastic
deformation of ductile crystalline solids at the micro scale. These patterns consist of alternating
dislocation rich and dislocation poor regions usually in the µm range (e.g. dislocation bundles,
veins, walls, channels, and dislocation cells). The formation of these patterns is widely believed
to be a result of collective interactions between dislocations. Nonetheless, such collective phe-
nomena play a prominent role in determining the general characteristics of plastic deformation,
fatigue, and fracture properties of ductile materials.

The dislocation pattern formation process is a consequence of an overproduction of disloca-
tions. Only a small fraction of them is needed to carry plastic deformation, while the rest is
stored in the crystal. The deformed crystal, which is supersaturated with dislocations, tends
to decrease the internal energy by mutual screening of their elastic fields. If dislocations pos-
sess sufficient maneuverability provided mainly by easy cross-slip, the leading mechanism is
individual screening. Dislocations are stored in the form of dipoles, which are transformed to
dipolar loops of prevailing edge character (i.e. prismatic). A sweeping mechanism was pro-
posed to explain the pattern formation (Kratochv́ıl and Saxlova 1992). Loops are swept by
glide dislocations, or may drift in stress gradients to clusters, and hinder the motion of fresh
glide dislocations causing strain hardening. A homogeneous distribution of loops is thus un-
stable. The current understanding of the above scenario is still only intuitive. The theoretical
predictions (Kratochv́ıl and Saxlova 1992) - (Kratochv́ıl 2001) are mostly qualitative, a fully
quantitative description is hindered by lack of knowledge of the specific mechanisms outlined
within this framework. The main objective of the present work is to utilize the dislocation
dynamics approach (e.g. (Ghoniem and Amodeo 1990) - (Ghoniem et al. 2000a)), and provide
quantitative data needed for continuum and statistical models of pattering.

During the initial stages of cycling at low plastic strain amplitudes (typically <10−3),
dislocation-rich regions form a pattern known as a matrix structure consisting of snake-like
veins (tangles, bundles, loop patches) oriented on average along edge dislocation directions.
The veins, which are loosely organized in quasi periodic patterns are surrounded by dislocation
poor channels. It has been noted that the tangle (bundles) structure observed in cubic metals
at the beginning of the second stage of hardening in tension tends to form an arrangement
akin in morphology and size to the vein pattern. The veins (tangles) occupy approximately
50 % of the crystal volume and the density of stored dislocations in the veins increases with
deformation. At a certain stage of cycling, the veins become saturated and start to be unstable.
The saturation of the matrix structure is a prelude of localization of strain into thin lamellae
called persistent slip bands (PSBs).

In the lamellae, the characteristic ladder structure of dipolar dislocation walls (cells) may
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develop gradually from leftovers of the veins. The walls and veins contain predominantly nar-
row prismatic loops. The basic phenomena underlying the process of plastic deformation at the
micro scale is the large difference between the internal energy of an ideal crystal and a crystal
with dislocations strained by the same amount. This fact creates a thermodynamic driving
force which is probably the reason for the highly non-correlated generation of dislocations by
the bursts of activated dislocation sources. This process results in an overproduction of dislo-
cations. Only a small fraction of them is needed to carry plastic deformation, while the rest
is stored in the crystal. Deformed crystals supersaturated with dislocations tend to decrease
the internal energy by mutual screening of their elastic fields. If dislocations possess sufficient
maneuverability provided namely by easy cross-slip (solids with wavy slip), the leading mech-
anism is individual screening. The dislocations are stored in the form of dipoles, which are
transformed to dislocation dipolar loops of prevailing edge character or such loops are directly
formed. The loops hinder the motion of the fresh glide dislocations causing strain hardening.
A homogeneous distribution of loops is unstable. Loops are swept by glide dislocations or
are drifted by stress gradients to clusters and a dislocation pattern is formed. In the clusters
(tangles, veins, walls) at a sufficient concentration, loops and dislocations start to annihilate,
modify the dislocation pattern, and through strain hardening control strain localization.

An approximate analytical model of sweeping of a rigid prismatic loop by a straight glide
dislocation has been studied analytically (Kratochv́ıl, Kroupa and Kubin 1999), and a quan-
titative criteria for the steady sweeping of the dipolar loop is obtained. Formulas for the
stress field of a prismatic rectangular loop of an infinitesimal or finite width have been derived
(Verecký, Kratochv́ıl and Kroupa 2002, Khraishi and Zbib 2002). Alternatively, the compo-
nents of the stress tensor generated by a single loop has been evaluated by the numerical fast
sum method (Ghoniem and Sun 1999a). As these stress fields are rather complex, an accurate
method is needed to obtain reliable quantitative data on the sweeping process. For that reason,
The parametric dislocation dynamics (PDD) method proposed by Ghoniem, Huang and Wang
(Ghoniem, Tong, Huang, Singh and Wen 2002b, Huang and Ghoniem 2003) is employed here
for the simulation. We study here the influence of forces between small dislocation dipoles on
their individual and collective motion in stress gradients. We also investigate the basic mech-
anism of early clustering and pattering of dipolar loops that is experimentally observed under
fatigue loading conditions.

In section 9.6.1, we develop a model used to simulate the dynamics of a glide dislocation and
interacting dipolar loops. Results of the model are given in section 9.6.2, where we investigate
the combined motion of a glide dislocation and a single dipolar loop, the behavior of two dipolar
loops with and without their mutual interaction forces, and finally the collective motion of a
group of dipolar loops under cyclic applied stress. Finally conclusions are given in section 9.6.3.

9.6.1 Dynamics of a Glide Dislocation and Dipolar Loops

We analyze here the dynamics of a single glide dislocation and interacting dipolar loops. There
are basically four types of dipolar dislocation loops: vacancy and interstitial loops, each in
two possible stable configurations (Verecký et al. 2002). In the analysis here, results for va-
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cancy loops in one of the stable configurations are presented. For interstitial loops and other
configurations, the results are similar, and will therefore not be presented.

Figure 9.74 shows the initial geometry of a glide dislocation and a single dipolar loop. The
dislocation can glide on the (111) slip plane, while the dipolar loop can only move along its own
glide cylinder, i.e. along the direction of the Burgers vector [101̄]. We assume here that the
dipolar loop is a parallelogram. Its two long arms are parallel to the edge orientation [12̄1] with
a length of 60 nm and glide on (111) slip plane, while the two short arms glide on the (11̄1) slip
plane. The relative distance of the two long arms is chosen such that the dipolar loop plane
and the glide plane (111) for the two long arms form an angle of 45◦ as shown in Figure 9.74-b.
The height of the dipolar loop is taken as 4 nm (Tippelt, Bretschneider and Hahner 1997),
which is measured by the distance between the two (111)glide plane. The originally straight
glide dislocation with the same Burgers vector as the dipolar loop can have any orientation,
and is pinned at both ends. We choose the glide plane normal as the z -axis, and the direction of
the glide dislocation as the x -axis. The distance between the slip plane of the glide dislocation
and the center of the loop is its stand-off distance, and is denoted by D, as shown in Figure
9.74-b. The distance of the projection of the center of the dipolar loop on the glide plane to the
initial dislocation position is denoted by d. Thus the coordinates of the position of the dipolar
loop in this local coordinate system can be written as (x,d,D). The geometric configuration and
dimensions follow the experimental observations in reference (Tippelt et al. 1997).

b
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Figure 9.74: Geometry and initial configuration of a dipolar loop and a glide dislocation. (a)
relative positions in 3D geometry. (b) representation of the dipolar loop and dislocation in the
local coordinate system.

Figure 9.75 shows the deformation of a dipolar loop initially located at (0,30,20) under the
influence of the glide dislocation and a shear stress τ = 4 MPa. The glide dislocation and
the four segments of the dipolar loop interact simultaneously under the influence of an external
shear stress. It is shown that the deformation of the 2 short segments is very small, and they are
almost straight. The maximum relative deflection of the two long arms is less than 1 % of their
length. Thus the overall deformation of the dipolar loop is very small, and can be neglected. As
a result, we will assume here that the dipolar loop shape is rigid under relatively low applied
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shear stresses, and that it moves as a whole along the direction of its Burgers vector. The
position of a loop is determined only by the coordinates of its center. A rigid approximation
for the dipolar loop motion is thus possible. In all simulations, the material parameters are
for Nickel (the shear modulus µ = 80 GPa, Poisson’s ratio ν = 0.33, and |b|=0.25 nm). We
also assume that the effect of dislocation dissociation into partials in Nickel is small and can
be neglected.
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Figure 9.75: Configuration of the dipolar loop describe in Figure 9.74 under an external shear
stress τ = 4 MPa, with full interaction between its segments. The coordinates of the dipolar
loop center are (0,30,20).

The equation of motion for the center of a loop in the rigid approximation can be written
as:

dxDL
i

dt
= fdis +

∑
j �=i

fDL
j − f friction (9.61)

Here, xi stands for the position of the ith dipolar loop center along the axis of its glide cylinder.
fdis and fDL

j are force components along the glide direction generated by the stress fields of
the glide dislocation and the interaction forces from other dipolar loops, respectively. f friction

is the lattice friction, which introduces a threshold for the motion of the dipolar loop (Kubin
and Kratochv́ıl 2000), it varies with the selection of specific material. The force components
fdis and fDL

j have the general form:

f =
∮

DL

(σ · b × t) · b/b dl (9.62)

where b stands for the Burgers vector, σ is the stress field of either the dislocation or of the
j ’th dipolar loop exerted on the i ’th loop. The stress σdis is calculated by the fast sum method
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as introduced in (Ghoniem and Sun 1999a). The stress of a loop σDL
j is easily computed by

summing up the analytical solution (Devincre 1995) of the 4 straight segments of the dipolar
loop. It is to be noted here that a spatially uniform stress field has no effect on the motion of
a dipolar loop, as a result of the closed line integration giving a net zero force on the loop.

Once the parametric curve for the dislocation segment is mapped onto the scalar interval ω ∈
[0, 1], the stress field everywhere is obtained as a fast numerical quadrature sum (Ghoniem and
Sun 1999a). Let us define the following dimensionless parameters: r∗ = r

a
, f∗ = F

µa
, t∗ = µt

B
.

Here, a is the lattice constant, µ the shear modulus, B the mobility and t is time. Following
reference (Ghoniem et al. 2000a), a dislocation can be divided into Ns segments. In each
segment Γj, we can choose a set of generalized coordinates qm at the segment ends, thus allowing
parameterization of the form: r∗ = CQ. Here, C = [C1(ω), C2(ω), ..., Cm(ω)], Ci(ω), (i =
1, 2, ...m) are shape functions dependent on the parameter (0 ≤ ω ≤ 1), and Q = [q1, q2, ..., qm]	.

Let, fj =
∫
Γj

C	f∗ |ds| , kj =
∫
Γj

C	C |ds| be the total force vector on a curved segment Γj,
and the corresponding stiffness matrix, respectively. Following a procedure similar to the Finite
Element Method (FEM), the equations of motion for all curved segments can be assembled in
global matrices and vectors, as:

F =
Ns∑
j=1

fj, K =
Ns∑
j=1

kj (9.63)

and the equations of motion can be expressed as:

K
dQ

dt∗
= F (9.64)

EQN. 9.64 represents a system of ordinary differential equations, which describe the motion
of an ensemble of interacting dislocations. Numerical integration of this system of coupled
equations (EQN. 9.61 and 9.64) was carried out by the step forward Euler explicit integration
method. The glide dislocation is typically discretized into 22 segments, and cubic splines are
used to approximate the shape of each segment. The overall time step is controlled such that
the maximum displacement of any dipolar loop or a node on the gliding dislocation is less than
0.01 nm within a time step.

9.6.2 Results

Conditions for the dislocation sweeping of dipolar loops proposed by Kratochv́ıl et al. (Kra-
tochv́ıl et al. 1999), as the basic mechanism leading to the formation of Persistent Slip Bands
(PSB), which was based on the assumptions of the interaction between straight rigid disloca-
tion and dipolar loops, relies on a number of key processes. In this section, we present results
that show quantitative assessments of some of the basic ingredients in the sweeping mecha-
nism. First, we analyze the motion of a single dipolar loop that is simultaneously interacting
with a glide dislocation. Then, we show results for two dipolar loops interacting with a glide
dislocation to quantify the role of inter-dipolar forces on their coupled motion. And finally, the
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Figure 9.76: Distribution of line force per unit length generated on an initially straight dislo-
cation line by a dipolar loop situated at various stand-off distances. The coordinates of the
dipolar loop are (0,30,D). (a) The direction of the dislocation is normal to the loop’s major
axis. (b) The direction of the dislocation is parallel to loop’s major axis.

collective motion of groups of dipolar loops is investigated as a pre-requisite for the initiation
of PSBs during fatigue loading conditions.

Glide Dislocation and a Single Dipolar Loop

In the following calculations, the position of the dipolar loop relative to the glide plane is
(0,30,D), and the glide dislocation is oriented along [12̄1]. Figure 9.76-a shows the distribution
of the resolved shear force per unit length exerted by the dipolar loop on a straight glide dis-
location, which lies along [101̄], calculated for various stand-off distances. When the main loop
axis is normal to the dislocation direction, the dipolar loop generates rapid asymmetric forces
on the dislocation, as can be seen in Figure 9.76-a. The force distribution on the dislocation is
shown in Figure 9.76-b, where the main axis of the dipolar loop is oriented along the dislocation
line. The force distribution is symmetric in this configuration. The calculations clearly indicate
that the range of the dipolar force on the dislocation is fairly localized, and is confined to about
twice the larger dimension of the loop (i.e. ∼ 120 nm). As a result of such rapid dipolar force
spatial variations, the method of PDD (Ghoniem et al. 2000a) is found to be very suitable.

Dipolar loop forces deform the dislocation line, and this in turn, produces stress gradients
in the vicinity of the loop itself. Thus, the mere presence of a dipolar loop close to a straight
dislocation generates forces on the loop tending to move it along. Once the effective total force
on the dipolar loop exceeds the lattice friction force (the friction stress is assumed to be 8
MPa (Kubin and Kratochv́ıl 2000)), the loop moves along its glide cylinder, as governed by
EQN. 9.61, and consequently changes the force distribution on the dislocation again. Figure
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Figure 9.77: Interaction between a screw dislocation and a mobile dipolar loop under an external
shear stress τ = 4MPa. The initial condition of the dipolar loop is the same as that in Figure
9.76. Note that the scale on the axes is different. (a) Relative position of the dipolar loop
and configuration of the dislocation at 0.88 ns and 2.83 ns, respectively. (b) Loop position and
velocity as functions of time.

9.77 shows the simultaneous motion of a dipolar loop and the dislocation as obtained from the
numerical integration of EQNs. 9.61 & 9.64. The projection of the configuration on the slip
plane is shown in Figure 9.77-a, while the position of the dipole center along its glide cylinder
is given in Figure 9.77-b.

The dipolar loop is swept away from its original location by the stress gradient generated
from the curved dislocation. At the beginning of the process, the stress gradient is low, thus
the velocity of the dipolar loop is low. After about 0.5 ns, the dipolar loop forces result in
higher dislocation curvature. Thus, the loop is driven away faster with an increasing velocity.
At about 2.5 ns, the loop reaches a terminal velocity of about 75 m/s, as shown in Figure
9.77-b. During the simulation, the two ends of the dislocation are pinned. In order to remove
boundary effects of the glide dislocation, we choose a long dislocation with an initial length of
4 µm.

Under cyclic stress conditions, the applied stress is reversed within each cycle. We use here an
applied shear stress with an amplitude of 4 MPa above the friction stress. The glide dislocation
passes back and forth under the dipolar loop. However, the gradient vector of the stress field
does not change its sign during stress reversals, because it depends only on the dislocation
shape. Thus, the interaction force between the dipolar loop and the dislocation keeps the loop
moving along the same initial direction with each oscillation. Figure 9.78 shows the position of
the dipolar loop center as a function of the number of stress cycles.
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The Effects of Mutual Interaction Between Dipolar Loops

One important factor that controls the collective motion of dipolar loop groups is the influence
of inter-loop forces. To study this effect, we examine here the interaction between two vacancy-
type dipolar loops. The force as a function of the mutual position of the two loops is shown in
Figure9.79. The stand-off distances of the loops are 12 nm and 20 nm, respectively. It is shown
in Figure9.79-a that the inter-loop force is a complex function of their relative distance, and that
the range of influence is rather small. This feature enables the introduction of a cut-off distance
when we perform large-scale simulations. Figure9.79-b shows the mutual driving force when
the relative ∆y = 0 between loops (refer to Figure 9.74 for the coordinate system). Inter-dipole
forces become small and negligible when the relative distance is larger than approximately twice
the loop size.

Figure 9.80 demonstrates the interaction between a glide dislocation and two dipolar loops,
initially located at (-5,30,24) and (5,30,24) respectively. The Burgers vector of the glide dislo-
cation and the loops is b= 1

2
[101̄]. The dislocation sweeps both loops away to the negative side,

as shown in Figure 9.80-b. Due to their close distance, the mutual interaction between the two
dipoles is very strong. Thus the second dipolar loop is pushed to the opposite direction until
their relative distance is around 40 nm, where their mutual interaction decreases to around
zero, They were then moved almost independently by the dislocation cusp, as shown in Figure
9.80-a. The stress state of the dipolar loops generated a cusp on the dislocation line. This cusp
changes the stress state, and in this way modifies the motion of the dipolar loops.

The importance of inter-loop forces on the dynamics of dipole-dipole-dislocation interactions
is demonstrated in Figure 9.81. The centers of two loops are initially located at (-10,30,24) and
(10,20,24). In this configuration, the loops are bound together due to their mutual interaction.
If mutual loop interaction is artificially switched off, the two dipolar loops move quite indepen-
dently from one another, with the latter one moving a little bit faster than the leading one, as
seen in Figure 9.81. On the other hand, if mutual interaction is included, inter-loop binding
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Figure 9.80: Interaction between a Frank-Read source with an initial screw orientation and
two mutually interactive dipolar loops, initially located at(-5,30,24) and (5,30,24), respectively.
Both dislocation and dipolar loops have b= 1

2
[101̄]. (a) Dislocation configuration at different

times (time interval ∆t=0.7 ns). (b) Change of position for the two loops as a function of time.
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Figure 9.81: Comparison between the effects of including and excluding the mutual interaction
of the two dipolar loops. The two dipolar loops are initially located at(-10,30,24) and (10,20,24)
respectively.

forces are stronger than forces exerted by the glide dislocation. The loops move as a group,
with their relative separation almost kept unchanged.

Collective Motion of Dipolar Loops

To demonstrate the collective sweeping of dipolar dislocation loops, the dynamics of interaction
between a glide dislocation and 20 loops is simulated. The dislocation is pinned at its ends,
representing a Frank-Read source, and is cycled by the applied stress. The loops are initially
randomly distributed in the vicinity of the dislocation slip plane, in the range of distances
-300 nm ∼ 300 nm, as shown in Figure 9.82-a. The dislocation line is very long (4 µm), so
as to remove the effects of pinning boundary conditions on dipolar loop dynamics. Successive
configurations of this system are shown in Figure 9.82-b through Figure 9.82-d. After a critical
number of cycles, dipolar loops separate into two clusters, and both groups move in the negative
direction. The dynamics of the interaction process is displayed in a trajectory plot, shown in
Figure 9.83. Two well-separated loop clusters are formed after a number of cycles of the order
of 20, as can be seen in Figure 9.82-d and Figure 9.83. Some loop pairs are strongly coupled
together, retaining their relative positions throughout the entire simulation (see the trajectories
of two loops at the lower end of Figure 9.83), while most others execute complex trajectories
that cannot be predicted a priori. Nevertheless, the final configuration is represented by dipolar
loop clusters swept into two well-separated groups. The glide dislocation then moves in the
loop-free channel.
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Figure 9.82: The relative configuration of 20 dipolar loops at the end of different cycles: (a)-

initial, (b)-5th cycle, (c)-10th cycle, (d)-15th cycle
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Figure 9.83: trajectory plot of the dynamics of 20 interacting dipolar loops, driven by an
oscillating screw dislocation.
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9.6.3 Conclusions

The results presented here show that the parametric dislocation dynamics method (Ghoniem
and Sun 1999a, Ghoniem et al. 2002b) is a convenient tool for studies of elementary mechanisms
of dislocation pattering caused by elastic interactions amongst defects. The method is accurate
enough to deal with complex stress fields associated with the dynamic motion of dipolar dis-
location loops and glide dislocations. The present investigation has demonstrated a number of
physical processes involved in the sweeping mechanism:

1. The stress field of a dipolar loop forms a small cusp on the glide dislocation, which localizes
high stress gradients in its vicinity, and the loop appears to be riding on that cusp.

2. Detailed investigation of loop-loop interaction forces show that such forces are critically
important to the sweeping mechanism. The cusp on the dislocation line caused by one
loop leads to indirect coupling with other loops, and this effect facilities loop cluster
formation. On the other hand, when two loops are on different glide cylinders, and their
inter-loop force barrier is overcome by the force exerted by the glide dislocation, loops
trap one another in their mutual interaction field and move together. This self-trapping
effect appears to be essential to the formation of loop clusters.

3. Dislocation dynamics simulations demonstrate that the loop clustering mechanism plays
an important role in the process of sweeping, which results from the complex interaction
between loops and glide dislocations. The sweeping process has been tested using fixed-
ends of a glide dislocation that is about 4 µm long and 20 rigid dipolar loops.
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Chapter 11

Kinetic Monte Carlo Simulation of
Defects

11.1 Experimental Observations of Nano-defects

The microstructural evolution in both fcc and bcc metals produced by neutron irradiation has
been studied for a long period of time. Under neutron irradiation, primary defect clusters,
which are directly produced in displacement cascade, play an important role in microstructural
evolution and changes in properties of irradiated materials. Evidence for the existence of
self-interstitial atom (SIA) and vacancy cluster within the cascade volume has been provided
by experimental methods as well as by computer simulations. For example, Diffuse X-ray
scattering on fast neutron irradiated metals at temperatures below stage I provide evidence
for spontaneous SIA cluster formation in cascades (von Guerard, Grasse and Peisl 1980, ?, ?).
Molecular dynamics (MD) studies have also established the fact that SIA clusters are produced
directly in high energy cascades without need for diffusion during the cooling down phase of
the cascade (?, Foreman, English and Phythian 1992, ?, ?, Phythian, Stoller, Foreman, Calder
and Bacon 1995, ?, Osetsky, Victoria, Serra, Golubov and Priego 1997, Soneda and Diaz de la
Rubia 1998, Bacon, Gao and Osetsky 2000). Small interstitial loops can further organize to
make up patches or rafts at elevated temperature (Brimhall and Mastel 1970, Stiegler and
Bloom 1971, ?), and dislocations are often heavily decorated by SIA clusters in the form of
small interstitial loops (Stiegler and Bloom 1971, Trinkaus, Singh and Foreman 1997, Singh et
al. 1997). Under some conditions, say a high temperature for instance, a raft of small closely
spaced loops becomes unstable due to easy proceeding of glide and climb, and can eventually
result in a large dislocation loop (Brimhall and Mastel 1970).

Rafts of SIA loops and decoration of dislocations with loops have become a crucial issue that
is concerned with the understanding of radiation hardening under cascade damage conditions.
It has been experimentally observed that in the deformation process of metals and alloys under
cascade damage conditions an increase of the upper yield stress without dislocation generation
occurs and is followed by a yield drop and plastic instability (Singh et al. 1997). A ’cascade
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induced source hardening’ (CISH) model has been proposed by Singh et al. (Singh et al.
1997) and applied to explain the occurrence of yield drop, in which a dislocation decorated
with interstitial loops is assumed to be confined by the surrounding atmosphere of interstitial
loops and unable to move as supposed until the applied resolved stress reaches a high level
so that the dislocation can be detrapped from cluster atmospheres in the vicinity of the glide
plane. Huang and Ghoniem (Huang and Ghoniem 2002) investigated the interaction dynamics
between sessile SIA clusters and dislocations in terms of elastic interactions with various SIA
cluster densities, the spatial and size distributions of cluster, and the orientation distribution
of individual Burgers vectors by using the method of parametric dislocation dynamics (PDD)
simulations. A considerably smaller critical resolve shear stress (CRSS) was found comparing
with the results of Kroupa’s model (?) of dislocation–defect cluster interaction, and its extension
by Trinkaus et al. (Trinkaus et al. 1997), which were based on calculations of elastic interaction
forces between dislocations and defect clusters in rigid and static configurations.

Being associated with post-irradiation deformation behavior and post-deformation microstruc-
tures, properties of clusters of vacancies and SIAs have received considerable attentions be-
cause of their important effects on microstructural evolutions. The escalation of understanding
the production, migration, and characters of the SIA clusters has lead to the development of
dislocation- and production-bias (Woo and Singh 1992) theories to explain long-term damage
accumulation and microstructural evolution in irradiated materials. Since these atomic-scale
cluster processes like migration, agglomeration, recombination etc., are difficult to observe in
situ, much of the understanding is extracted from modelling and simulation or inferred from
experimental observations. In addition to the identification of defect cluster formation directly
in cascades, MD simulations have demonstrated a significant character of these SIA clusters
produced in the cascades that a large portion of them are highly glissile (Foreman et al. 1992).
Computer simulation has also revealed that large SIA clusters in α-Fe can collapse to form
perfect dislocation loops with Burgers vector b = 1

2
< 111 > that have {110} habit planes and

execute one-dimensional (1D) random motion in the slip direction (Wirth, Odette, Maroudas
and Lucas 2000, Wirth, Odette, Maroudas and Lucas 1997, Soneda and de la Rubia 2001, Oset-
sky, Bacon and Serra 1999). The indirect experimental evidence for the intracascade clustering
as well as for the 1D glide of SIA clusters have existed in the literature for quite some time
(Trinkaus, Singh and Foreman 1993).

In the study of radiation damage, MD simulations using semi-empirical embedded-atom
method (EAM) interatomic potentials have played a very important role in understanding the
details of defect production in displacement cascades, and in helping to study the dynamics
of point defect and defect cluster diffusion. Comprehensive reviews of recent development of
MD simulations of radiation damage have been given by Diaz de la Rubia (?) and Osetsky
et al. (?). Radiation damage, however, includes a vast range of irradiation effects, such as
production and diffusion of point defects, and their interaction with microstructures, which
take place over time and length scales than span many order of magnitude. MD techniques are
inapplicable to deal with microstructural evolution in irradiated materials due to its limitation
on time and length scales, or at least not solely capable to do so. Kinetic Monte Carlo (KMC)
simulations, on the other hand, provide another option to perform atomic-level modellings
of defect kinetics and microstructural evolution over relevant length and time scales. KMC



11.1. EXPERIMENTAL OBSERVATIONS OF NANO-DEFECTS 393

has been used to investigate the local short-term intracascade annealing of individual cascade
(Heinisch and Singh 1997) as well as low dose defect accumulation (Heinisch and Singh 1999). In
the present paper, KMC techniques are used to study a key aspect of microstructure evolution
under irradiation: the inhomogeneity and segregation of point defects and damage accumulation
by diffusion and interaction, and the resulting dislocation decoration and formation of rafts of
interstitial clusters.

Using Foreman and Eshelby’s (Foreman and Eshelby 1962) calculation of elastic interaction
of prismatic dislocation loops, Barnes (Barnes 1963) presented a primary discussion on the
migration of point defects by slip or climb or by both processes, and suggested a ”rafts” config-
uration of loops which resulted from loops interacting elastically with others on neighbouring
basal plane and thereby adjusting their positions and orientations to take up low energy po-
sitions. The experimental observation of rafts of loops was provided for graphite irradiated
at 150oC and subsequently annealed as well (Barnes 1963). A comprehensive and systematic
investigation of the development of microstructure as a function of irradiation temperature
was later executed by Brimhall and Mastel (Brimhall and Mastel 1970) for molybdenum in
1970. Even though the formation of rafts of small interstitial clusters/loops is one of the most
striking features under cascade damage conditions and has been found for quite some time
this phenomenon has not been investigated systematically in the past. Brimhall and Masterl’s
work still remains to be the most recognized on the mechanism of raft formation so far. They
were the first to report the observation of raft formation in Mo. Through use of transmission
electron microscopy (TEM), it was found that at low irradiation temperatures, ˜50 oC, existing
small dislocation loops, presumably interstitial, grow by point defect addition; at intermediate
temperatures, 400 to 600 oC, small interstitial loops can migrate and agglomerate into rafts;
at high temperatures, 600 to 800 oC, the loops are highly mobile to form large loops, and
eventually interact with each other to produce a coarse dislocation network. They discussed
the possible mechanisms of formation of loops rafts and dislocation decoration by loops and
attributed them to loop glide combine with self-climb, though their treatment was limited to
higher temperatures where both prismatic glide and conservative climb were both operative.
Eyre, Maher and Bartlett (Eyre, Maher and Bartlett 1971) have carried out experimental ob-
servations and theoretical calculations on the damage structures in molybdenum irradiated by
neutrons, and concluded that the growth of interstitial loops during post-irradiation annealing
also occurs by a combined glide and climb mechanism. Brimhall and Mastel (Brimhall and

 

<1 1 1> 

Figure 11.1: Idealized representation of an side view of prismatic edge dislocation loops com-
prising a raft

Mastel 1970) assumed that prismatic gliding of loops did not occur at 323 K. However, recent
molecular dynamics simulations have demonstrated that small SIA loops glide rapidly via cor-
related diffusion of SIAs in the clusters/loops (Foreman et al. 1992), and furthermore, Trinkaus
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et al. (Trinkaus et al. 1997) have shown that the decoration of dislocation and formation of
rafts are attributed to the one-dimensional glide of SIA clusters to a great extent. An idealized
configuration for a raft (Brimhall and Mastel 1970) was also proposed with using the elastic
calculations by Foreman and Eshelby (Foreman and Eshelby 1962). The edge-on representation
of the configuration for this idealized raft is shown in Figure 11.1. Elastic analysis shows that
loops lying at 42.4o with respect to one another render a minimum interaction energy and form
a stable configuration. It was believed that rafts form by loops having identical Burgers vectors
gliding together as a result of the elastic interaction between the loops, but being prevented
from complete coalescence by the limiting process of self climb (?). Since then more subse-
quent experimental observation of raft formation in Mo and TZM (Mo-0.5Ti-0.1Zr) have been
reported (Sikka and Moteff 1974, ?, Evans 1980, Yamakawa and Shimomura 1988, ?, Singh,
Evans, Horsewell, Toft and Muller 1998). The formation of rafts of interstitial loops in the
monocrystalline Mo was observed occurring at a relatively low dose level of 5.4 × 10−3 dpa
(Singh et al. 1998). The segregation of the microstructure into rafts of loops and isolated loops
eventually leads to a very heterogeneous microstructure at a dose level of 0.16 dpa. Eldrup and
his co-workers (Eldrup et al. 2002) investigated the difference in defect accumulation behavior,
mainly concerned about void nucleation and growth, between fcc Cu and bcc Fe under neutron
irradiation to fluences in the range of 10−4 to 0.8 dpa. TEM observations show that the density
of SIA clusters both in Fe and Cu first increases with dose. At doses higher than � 0.01 dpa, the
clusters begin to segregate and form rafts of SIA clusters. The formation of the rafts-like struc-
tures is significantly more efficient in bcc Fe than in fcc Cu. A TEM photograph of formation of
rafts of loops in Fe irradiated to a dose of 0.72 dpa was presented, the engineering stress-strain
curve by tensile test for the iron specimen irradiated to 0.72 dpa exhibited a strong yield drop
as well. In their experimental observations on void formations in nickel 270 irradiated from
1 × 1018 to 1.5 × 1022 neutrons/cm2 at various temperatures, Stiegler and Bloom (Stiegler and
Bloom 1971) also reported rafts of small, perfect dislocation loops, which they presumed as
interstitial, were dispersed throughout the specimens. Most experimental results suggest that
a raft is made up of a bunch of clusters of small interstitial loops, all having the same Burgers
vector, the raft as a whole having a clear < 111 > habit plane identical to the Burgers vector
of the loops. The size and distribution of rafts are heavily depended on the material purity,
irradiation temperature and irradiation dose, and the size spectrum may range from ˜100 Å to
more than 1000 Å (Brimhall and Mastel 1970, ?).

In many microstructural studies of neutron irradiated metals and alloys segregation of small
dislocation loops of SIA type is often observed in the vicinity of grow-in dislocations in form of
a ’Cottrell-like’ atmosphere (Cottrell 1953). Fig.11.2 shows the structure of a coarse disloca-
tion network with a high concentration of small loops located on or near the dislocation lines
in Nickel 270 irradiated to a fluence of 3.2 × 1019 neutrons/cm2 (Stiegler and Bloom 1971).
The phenomenon of decoration of dislocations by small interstitial loops under cascade damage
conditions have been observed in a wide range of metals and alloys, for instance, pure nickel
irradiated with 14 MeV neutrons at 300 K (?) and 560 K (?), Ni−2 at.% Cu and Ni−2 at.%
Ge alloys irradiated with 14 MeV neutrons at 563K (?), pure copper and copper alloys irradi-
ated with 14 MeV neutrons at 473 K (Satoh, Ishida, Yoshiie and Kiritani 1988), molybdenum
irradiated at 500 oC to a fluence of 5.7 ×1019 neutrons/cm2(Brimhall and Mastel 1970), and
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Figure 11.2: Dislocation structure in Nickel 270 irradiated to a fluence of 3.2×1019 neutron/cm2

(Stiegler and Bloom 1971).

pure single crystal of molybdenum irradiated with fission neutrons to a dose level of 1.6× 10−1

dpa at 320 K (Singh et al. 1998). The status of investigations on dislocation decoration has a
similar situation as on raft formation. The available evidence on dislocation decoration could
date back as early as the discovery of raft formation, but it is rather limited and scattered
in literatures. No attempt was made to systematically study the phenomenon of dislocation
decoration until Trinkaus, Singh and Foreman (Trinkaus et al. 1997) took the first leap on
the mechanisms for decoration of dislocations by small SIA loops. Their model suggests that
the trapping and accumulation of glissile SIA loops in terms of one-dimensional motion play a
predominant role in the occurrence of dislocation decoration. Based on the analysis of experi-
mental observations of plastic deformation in metals irradiated with fission neutron, as well as
combining with dislocation decoration phenomenon, Singh, Foreman and Trinkaus (Singh et al.
1997) proposed the so-called ’cascade-induced source hardening’ (CISH) model to explain the
occurrence of yield drop and plastic instability.

Both raft formation and dislocation decoration heavily depend on an important process, the
production and migration of SIA clusters. Theoretically, there are two main mechanisms which
could result in the formation and growth of interstitial loops: (1) the acquiring single SIA one
at a time, and (2) the migration and aggregation of interstitial clusters. In most of the cases
reported, the first mechanism is supposed to play an inferior role on the basis of the fact that
the coexistence and simultaneous growth of vacancy and interstitial clusters (Barnes 1963). If
the first mechanism dominate the growth of clusters, it is necessary that an interstitial loop
mainly acquires interstitial atoms and rejects vacancies. The efficiency of the growth process is
predicably to be much lower than when the second mechanism of loops migration are involved.
Barnes presented a primary discussion on the direction of migration, magnitude of the driving
force, and migration distance by considering two interacting simple prismatic edge dislocation
loops in aluminium (Barnes 1963). In reality the situation is much more complex than in
the two-interacting-loops case. When it is considered that the vacancy and interstitial loops
each have all the four possible Burgers vectors, are not simple edge dislocations, have various
sizes, and in addition the interactions are not between two loops but with all those nearby,
the situation is considerably complex. It is the intention of this paper to shed some lights
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on the microstructural evolution, specifically dislocation decoration and raft formation, under
displacement cascade conditions with considering interactions between defects.

11.2 Description of Point Defects by Force Multipoles

Most of the following considerations are reviewed from a book by Teodosiu (Teodosiu 1982).
A nano-scale defect exerts forces on the atoms in its vicinity, which are different from those
acting on these atoms in the perfect lattice. Let Pv denote the additional forces exerted by a
nano-defect centred at x′ on the atom situated at x′ + lv. According to the definition of Green’s
function, the force system Pv generates in an infinite elastic medium the displacement field

um(x) =
N∑

v=1

Gms(x − x′ − lv)P v
s (11.1)

where G is Green’s tensor function of the elastic medium, while N is the number of atoms on
which extra forces are exerted. Theoretically, N = ∞, but, as Pv decays very rapidly when
‖lv‖ → ∞, it is usually sufficient to take into account only the forces employed on the first and
second nearest neighbors.

Expanding G(x − x′ − lv) in a Taylor series about x − x′ leads to

Gms(x − x′ − lv) =
∞∑

k=0

1

k!
Gms,q′1q′2...q′

k
(x − x′)lvq1

lvq2
...l′qk

(11.2)

= Gms(x − x′) + Gms,n′(x − x′)lvn +
1

2!
Gms,n′p′(x − x′)lvnl

v
p + ..., (11.3)

where (·),m′ = ∂(·)
∂x′

m
. Obviously, the expansion (11.2) converges only for sufficiently small values

of ‖lv‖, i.e. only if the application points of the forces Pv are sufficiently close to the investigated
nano-defect.

By substituting (11.2) into (11.1), it yields

um(x) =
∞∑

k=0

1

k!
Gms,q′1q′2...q′

k
(x − x′)P (k)

q1q2...qks (11.4)

= Gms(x − x′)P (0)
s + Gms,n′(x − x′)P (1)

ns +
1

2!
Gms,n′p′(x − x′)P (2)

nps + ..., (11.5)

where

P(0) =
N∑

v=1

Pv, P (0)
s =

N∑
v=1

P v
s (11.6)

is the resultant force, and

P(k) =
N∑

v=1

lvlv...lv︸ ︷︷ ︸
k

Pv, P (k)
q1q2...qks =

N∑
v=1

lvq1
lvq2

...lvqk
P v

s (11.7)
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is the multipolar moment of k-th order, k = 1, 2, ..., of the system of additional forces Pv exerted
by the nano-defect on its surroundings. In particular, it is called dipole moment, quadrupole
moment, and octopole moment, respectively, for the tensors as follows

P(1) =
N∑

v=1

lvPv, P (1)
ns =

N∑
v=1

lvnP v
s (11.8)

P(2) =
N∑

v=1

lvlvPv, P (2)
nps =

N∑
v=1

lvnlvpP
v
s (11.9)

P(3) =
N∑

v=1

lvlvlvPv, P (3)
npqs =

N∑
v=1

lvnlvpl
v
qP

v
s (11.10)

Equation (11.4) may be also given a somewhat different interpretation. Namely, it can be shown
that Green’s tensor function G satisfies the equilibrium equation

cijmnGms,jn(x − x′) + δisδ(x − x′) = 0 (11.11)

in the sense of the theory of distributions. Applying on this equation the differential operator

1

k!
P (k)

q1q2...qks

∂k

∂x′
q1

∂x′
q2

...∂x′
qk

(11.12)

and summing with respect to s, we obtain

cijmn

{
1

k!
P (k)

q1q2...qksGms,q′1q′2...q′
k
(x − x′)

}
+

1

k!
P

(k)
q1q2...qkiδ,q′1q′2...q′

k
(x − x′) = 0 (11.13)

Finally, by comparing these relations with the equilibrium equations

cijmnum,jn(x) + fi(x) = 0, i = 1, 2, 3 (11.14)

we conclude that the body force

fi(x) =
1

k!
P

(k)
q1q2...qkiδ,q′1q′2...q′

k
(x − x′) (11.15)

produces the displacement field

um(x) =
1

k!
Gms,q′1q′2...q′

k
(x − x′)P (k)

q1q2...qks (11.16)

The body force (11.15) is called multipolar force of k-th order, and of strength

P̃ (k)
q1q2...qks =

1

k!
P (k)

q1q2...qks (11.17)

By making use of this terminology and comparing (11.4) with (11.16), we may say that the
action of a nano-defect on the elastic medium is equivalent to that of a body force field which
consists of force dipoles, quadrupoles, octopoles, etc. applied at the center of the defect, namely

fi(x) =
∞∑

k=0

P̃
(k)
q1q2...qkiδ,q′1q′2...q′

k
(x − x′) (11.18)
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the strengths of the multipolar forces being completely determined through (11.17) by the
multipolar moments associated with the nano-defect. Kröner was the first to give a systematic
description of point defects with the aid of multipolar moments or as multipolar forces of
second and higher orders. It should be noted that the resultant force and couple exerted by a
nano-defect on its surroundings are zero. Then, the equilibrium condition implies

N∑
v=1

Pv = 0,
N∑

v=1

lv × Pv = 0 (11.19)

The last relation may be rewritten as

N∑
v=1

εknsl
v
nP

v
s = εknsP

(1)
ns = 0 (11.20)

where εkns is so called replacement tensor, or Eddington tensor. It tells us that the dipole
moment P(1) must be a symmetric tensor. Hence, conditions (11.19) are equivalent with

P(0) = 0, P(1) = (P(1))T (11.21)

By introducing (11.21) into (11.4) and taking into account that

Gms,n′(x − x′) = −Gms,n(x − x′), (11.22)

we obtain

um(x) =
∞∑

k=0

(−1)k

k!
Gms,q1q2...qk

(x − x′)P (k)
q1q2...qks (11.23)

= −Gms,n(x − x′)P (1)
ns +

1

2!
Gms,np(x − x′)P (2)

nps −
1

3!
Gms,npq(x − x′)P (3)

npqs + ..., (11.24)

Equation (11.23) shows that the elastic state produced by a nano-defect in an infinite elastic
medium is completely determined by the multipolar moments P(k), k = 1, 2, ..., provided Green’s
tensor function of the medium is known. For an isotropic material this function is

Gms(x − x′) =
1

16πµ(1 − ν)

[
δms(3 − 4ν)

1

r
+

(xm − x′
m)(xs − x′

s)

r3

]
(11.25)

where r = ‖x − x′‖. By substituting (11.25) into (11.23), we see that u(x) is of the order O(r−2)
as r → ∞, in agreement with the results obtained in modelling point defects by rigid spherical
inclusions in an infinite isotropic medium. Assuming that the elastic medium is isotropic, we
deduce from (11.25)

∂Gms(x − x′)
∂xs

= − 1 − 2ν

8πµ(1 − ν)

xm − x′
m

r3
(11.26)

As already mentioned, the elastic field of a nano-defect is characterized by its multipolar mo-
ments. The main procedure for evaluating these quantities is to solve the equation system
(11.23) with the displacement field u(x) acquired by MD simulation. As a rough approxima-
tion, we can only consider the force system Pv exerted on the first nearest neighbors and the
first term in the Taylor expansion (11.23).
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The elastic interaction between nano-defects

In this section we will study the elastic interaction between nano-defects which are simulated
by force multipoles acting in an infinite elastic medium. It should be noted that this description
of nano-defects provides a good approximation only if the separation distance between defects
is large enough. Otherwise, a semi-discrete or fully atomic model of the interacting defects
must be adopted.

The elastic interaction energy between a nano-defect located at x and an elastic displacement
field u is given, according to elastic theory, by the work done against the forces Pv exerted by
the point defect on the neighboring atoms, i.e.

Φint = −
N∑

v=1

Pv · u(x + lv) (11.27)

By expanding u(x + lv) in a Taylor series around x, we obtain

um(x + lv) =
∞∑

n=0

1

n!
um,j1j2...jn(x)lvj1j2...jn

(11.28)

= um(x) + um,i(x)lvi +
1

2!
um,ij(x)lvi l

v
j +

1

3!
um,ijk(x)lvi l

v
j l

v
k + ... (11.29)

Substituting this expansion into (11.27) and considering (11.6), (11.7), and (11.21) yields

Φint = −
∞∑

n=0

1

n!
um,j1j2...jn(x)P

(n)
j1j2...jnm (11.30)

= −
{
P

(1)
im um,i(x) +

1

2!
P

(2)
ijmum,ij(x) +

1

3!
P

(3)
ijkmum,ijk(x) + ...

}
(11.31)

In a homogeneous strain field we have um,i(x) = const. and (11.31) reduces to

Φint = −P
(1)
im um,i = −P

(1)
im Eim (11.32)

i.e. only the dipole moments contribute to the interaction energy. Returning to the general
case, we recall that the force employed on the nano-defects by the elastic state which generates
the displacement field u is

F = −gradxΦint (11.33)

Hence, by taking into account (11.31), we have

Fs = −∂Φint

∂xs

=
∞∑

n=1

1

n!
um,j1j2...jns(x)P

(n)
j1j2...jnm (11.34)

= P
(1)
im um,is(x) +

1

2!
P

(2)
ijmum,ijs(x) +

1

3!
P

(3)
ijkmum,ijks(x) + ... (11.35)

We can now easily derive the elastic interaction energy of two point defects situated at points
x and x′ in an infinite elastic medium and having the multipolar moments P(1),P(2), ..., and
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respectively P̃(1), P̃(2), ..., by substituting the expression (11.23) of the displacement field pro-
duced by one of the defects into (11.31). The results reads

Φint = −
∞∑

n=0

1

n!
P

(n)
j1j2...jnm

∞∑
k=1

(−1)k

k!
P̃ (k)

q1q2...qksGms,q1q2...qkj1j2...jn(x − x′) (11.36)

Since G(x − x′) = O(r−1) as r = ‖x − x′‖ → ∞, we see that the first three terms of the
expression (11.36) decrease as r−3, r−4,and r−5, respectively, for sufficiently large values of the
separation distance r between the defects.

Representation of nano-defects by force dipoles

Point defects are lattice imperfections having all dimensions of the order of one or more
atomic spacing. The point defect may be a vacant sites in the atomic lattice, called a vacancy,
a foreign atom replacing one atom of the lattice, called a substitutional atoms, or a atom
situated between the normal sites of the lattice, called an interstitial atom. Sometimes, two or
more point defects can build characteristic arrangements which are thermodynamically stable
to form a point defect cluster. Our interest will be particularly focus on these nano-scalling
point defect clusters. The collection of point defects produces viscous effects at a macroscopic
scale, which are of great importance for many processes taking place in crystals. Moreover, the
interaction of a nano-defect with other crystal defects is mostly of elastic nature. We will try
to develop elastic models of nano-defects and methods for calculating the elastic interaction of
a defect with other defects.

Firstly, let us consider now in detail the physical significance of the partial derivatives of
first order of G(x). We can obviously write

Gij,k(x) = lim
h→0

1

h
{Gij(x) − Gij(x − hek)} (11.37)

Consequently, the elastic state associated to the displacement field

ui(x) = Gij,k(x) (11.38)

is the limiting value as h → 0 of a sum of two elastic states: the first corresponds to the
concentrated force ej/h acting at the origin; the second corresponds to a concentrated load
−ej/h acting at the point with position vector hek. A straightforward calculation shows that
the resultant of the stress vectors acting on any sphere Ση with radius η and center at the origin
is zero, while their resulting couple equals −ek × ej. Following the terminology introduced by
Love, we say that the elastic field corresponding to the displacement (11.38) is produced by
a unit double force, which is statically equivalent to a directed concentrated couple or to 0
according as j �= k or j = k. In the latter case we say that the singularity at the origin is a
unit double force without moment. The elastic state corresponding to the displacement field

ui(x) = Gij,j(x) (11.39)

which is produced by three mutually orthogonal unit double forces without moment acting
at the origin, is called a center of compression, whereas the elastic state corresponding to
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the opposite of (11.39) is called a center of dilatation. It has been shown that the effects of
a vacancy or an interstitial atom can be approximated by a spherical compression center of
dilatation center.

In view of formula (11.38), we propose here that a nano-defect of arbitrary geometric shape
can be described by a collection of double forces. Specifically, we have

ui(x) = Gij,k(x − x′)fkj(x
′) (11.40)

where fjk is a second order tensor of which the three diagonal components represents three
mutually orthogonal force dipoles without moment, and the rest non-diagonal components are
force dipoles with moment along ej ×ek. It should be noted that the resultant force and couple
of these components consisting fjk should be equal to zero. The condition of zero resultant
force can be achieved in terms of the definition of force dipole. Then, the condition of zero net
force couple implies that the tensor fjk must be a symmetric tensor, i.e.

fkj(x
′) = fT

kj(x
′) (11.41)

Suppose that we have already got the displacement of each and every lattice atom somehow, say
by Molecular Dynamics simulation or experiments. We then can use the least square method
to determine the point force dipolar system, i.e. fjk, which are unknown and exerted on the
center of the defect to characterize the elastic field of the defect. If the real displacement field
is denoted by ũ(x), we define the error function

Π =
N∑

m=1

‖u(x) − ũ(x)‖2 =
N∑

m=1

[u(x) − ũ(x)] [u(x) − ũ(x)] (11.42)

where N is the number of points whose displacements are already known and we used to
calculated the error. According to the method of least squares, the best fitting value of fjk has
the property that

Π = aminimum, (11.43)

i.e.
∂Π

∂fjk

= 0 (11.44)

By solving these six equations we would be able to define a force dipole tensor that can ap-
proximately describe the elastic field induced by the existence of the defect.

As far as the interaction energy between two nano-defects is concerned, it can be readily
shown that

Φint = −f · gradũ(x) = −fijũj,i(x) (11.45)

where fij is the force dipole used to represent the nano-defect at x, and ũ(x) is the displacement

field induced by the defect at x′, which can also be described by a force dipole tensor f̃ . By
substituting the expression (11.40) of the displacement field produced by one of the defects into
(11.45), it results

Φint = −fij f̃lkGjk,li(x − x′) (11.46)

Applications

For simplicity, we will choose the geometric center of the nano-defect as origin, i.e., x′ = 0.
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Vacancy

Gij =
1

16πµ(1 − ν)r

[
δij(3 − 4ν) +

xixj

r2

]
(11.47)

Gij,k =
1

16πµ(1 − ν)r3

[
−(3 − 4ν)δijxk + δikxj + xiδjk − 3xixjxk

r2

]
(11.48)

ui = Gij,kfkj =
1

16πµ(1 − ν)r3

[
−(3 − 4ν)fikxk + fijxj + xifjj − 3xixjxk

r2
fkj

]
(11.49)

At r = r0, the displacement field ũ is known as

ũr(r0) = Cr−2, ũφ = ũθ = 0 (11.50)

where C is an arbitrary constant. Substituting (11.49) and (11.50) into (11.44) yields the
equations designed to determine the values of fij. Actually, the derived equations are not
completely mutually independent, and some other relations have to be introduced to help with
solving equations. Due to the spherical symmetry of the deformation, only the components of
dipolar forces whose indices occur in pairs of equal numbers are non-zero, i.e. f12 = f13 = f23 =
0. By solving equations, we obtain

f11 = f22 = f33 = 8
(ν − 1)Cπµ

1 − 2ν
= −4πC(λ + 2µ) (11.51)

The field (11.51) represents three mutually orthogonal force dipoles without moment, having
equal intensities, and acting at the centre of the point defect, and such distribution of concen-
trated loads is called a spherical dilatation centre. The values in (11.51) are exactly the same as
the solutions given by the elastic theory with the assumption of point defect as rigid spherical
inclusion.

Infinitesimal prismatic dislocation loop

Let us assume the loop is at the origin of the coordinate system on the x1x2 plane (n1 =
n2 = 0, n3 = 1) and suppose displacement field is given by Kroupa’s formula. Namely, the
displacements of a pure prismatic infinitesimal dislocation loop with an area δA, b1 = b2 = 0,
b3 = b are as follows:

ũ1 =
K

6

x1

r3

[
−(1 − 2ν) +

3x2
3

r2

]

ũ2 =
K

6

x2

r3

[
−(1 − 2ν) +

3x2
3

r2

]
(11.52)

ũ3 =
K

6

x3

r3

[
1 − 2ν +

3x2
3

r2

]
where

r =
√

x2
1 + x2

2 + x2
3 (11.53)

K = − 3b3

4π(1 − ν)
δA (11.54)
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The displacements at (x1, 0, 0), (0, x2, 0), and (0, 0, x3) are

ũ
(1)
1 = −K

6

1

x2
1

(1 − 2ν), ũ
(1)
2 = ũ

(1)
3 = 0,

ũ
(2)
2 = −K

6

1

x2
2

(1 − 2ν), ũ
(2)
1 = ũ

(2)
3 = 0, (11.55)

ũ
(3)
3 =

K

3

1

x2
3

(2 − ν), ũ
(3)
1 = ũ

(3)
2 = 0,

respectively, However, the displacements at these three points given by (11.49) are

u
(1)
1 =

1

16πµ(1 − ν)x2
1

[−4(1 − ν)f11 + f22 + f33] , u
(1)
2 = − (1 − 2ν)f12

8πµ(1 − ν)x2
1

,

u
(1)
3 = − (1 − 2ν)f13

8πµ(1 − ν)x2
1

u
(2)
1 = − (1 − 2ν)f12

8πµ(1 − ν)x2
2

, u
(2)
2 =

1

16πµ(1 − ν)x2
2

[−4(1 − ν)f22 + f11 + f33] ,

u
(2)
3 = − (1 − 2ν)f23

8πµ(1 − ν)x2
2

(11.56)

u
(3)
1 = − (1 − 2ν)f13

8πµ(1 − ν)x2
3

, u
(3)
2 = − (1 − 2ν)f23

8πµ(1 − ν)x2
3

,

u
(3)
3 =

1

16πµ(1 − ν)x2
3

[−4(1 − ν)f33 + f11 + f22]

Substituting (11.55) and (11.56) into (11.42) results

Π =
3∑

m=1

3∑
i=1

[
u

(m)
i − ũ

(m)
i

]2
(11.57)

By solving the equations given by (11.44) we obtain

f12 = f13 = f23 = 0, f11 = f22 = −λb3δA, f33 = −(λ + 2µ)b3 (11.58)

It can shown that (11.58) are exactly the same as those given by Kroupa. It implies that
the displacement field produced by force dipoles (11.58), as well as the strain and stress field
will be the same as the results derived by Kroupa.

11.3 The Kinetic Monte Carlo (KMC) Method

11.3.1 The n-fold way algorithm

In Metropolis MC methods we decide whether to accept a move by considering the energy
difference between the states. In KMC methods we use rates that depend on the energy
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difference between the states. The term “Kinetic Monte Carlo” was initiated by Horia Metiu,
Yan-Ten Lu and Zhenyu Zhang in a 1992 Science paper (Metiu, Lu and Zhang 1992). The
paper first pointed out the demands on atomic level control of modern electronic and photonic
devices and the importance of in situ STM observations of small atomic “clusters” to a theorist
who wants to understand growth and segregation; it then elaborated upon the usefulness of
KMC simulations in reproducing these experimental observations. The basic feature of their
model was to move atoms site-to-site on a square lattice terrace. They postulated rates for all
of the elementary processes involved, such as the site-to-site jumps, the jumps to leave or join
a step or an existing adsorbate cluster, and so forth. The atoms were deposited on the surface
and moved from site to site with a frequency proportional to the rate of the respective move:
if the rate constant of the i-th kinetic process was ri, the largest rate was chosen as a reference
and denoted rr. The probability Pi = ri/rr was then used in a MC program as the probability
that the atom performed a jump i. The work used Voter’s transition state theory (Voter and
Doll 1985) to monitor the simulation time. The essence through the references can be traced
to Bortz, Kalow, and Lebowitz’s n-fold way algorithm (?, Lu, Petroff and Metiu 1990, Kang
and Weinberg 1988).

The n-fold way idea was created to replace the standard MC algorithm in generating new
configurations in simulating Ising spin systems. In or near the equilibrium state, the standard
MC scheme using a Boltzmann kinetic factor, exp(-∆E/kT ), (where ∆E is the system energy
change, k is the Boltzmann constant and T the absolute temperature) becomes very inefficient
since the Boltzmann factor is usually very small in comparison with a random number over the
interval [0, 1] (?). On the other hand, the n-fold way chooses a spin site from the entire ensemble
based upon its probability of flipping. Once a site was selected, the flipping was guaranteed and
could be immediately performed. The n-fold way also provided a new simulation time concept.
At each flip, the time was incremented by a stochastic variable, ∆t, whose expectation value
is proportional to Q−1 (where Q is the number of spins times the average probability that
an attempt will produce a flip for a given configuration). Mathematically, ∆t = −(τ/Q) ln ξ,
where ξ is a random fraction and τ a system dependent time. This choice reflects properly the
distribution of time intervals between flips for a reasonable physical model. The cumulative time
thus summed is approximately proportional to real time. The n-fold way reduced computation
time by an order of magnitude or more for many applications (?). A similar concept was used
in Voter’s 1987 transition state theory (Voter and Doll 1985).

11.3.2 Simulation Procedure

Molecular dynamics is probably the most accurate atomistic simulation technique. However,
due to the fact that it simulates all the lattice atoms and, most importantly, that it uses an
almost constant time step on the order of femtosecond (10−15 s), it cannot simulate the time
scales involved in typical technological processing steps (seconds to hours). The kinetic Monte
Carlo method, on the contrary, is an event-driven technique, i.e., simulates events at random
with probabilities according to the corresponding event rates. In this way it self-adjusts the
time step as the simulation proceeds, depending on the fastest event present at that time.
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If Arrhenius-like relationship is assumed to describe the diffusional processes of clusters, the
jump frequency (or the probability per unit time) for a possible jump of a cluster, i, to take
place is given by:

ri = ω0 exp(− Ei

kBT
) (11.59)

where ω0 is the pre-exponential factor of the defect cluster, kB the Boltzmann constant, Ei

the ‘effective’ activation energy for jumps of the cluster, and T is the absolute temperature.
Although the values of Ei for interstitials and vacancies are well known from experiments, the
values of Ei for small clusters and glissile dislocation loops and of ν0 for all kinds of defects have
not been obtained experimentally. In the present work, we will use results of MD calculations
for these values.

In many applications of the MC method, such as the equilibration of atomic positions in a
defected crystal, the space of possible configurations that the system can assume is continuous.
Therefore, there exists (in theory) an infinite number of new configurations available to the
system at any MC step. However, since we are simulating defects in a volume of finite size
which evolves according to a finite set of physical or mechanical mechanisms, the number of
new configurations available at any MC step is finite and enumerable. This configuration
space is discrete. In other words, at each MC step, we can determine all of the potential
changes that the system can possibly undergo. Therefore, instead of attempting a random
change to the system at each simulation step and then accepting or rejecting that change based
on some criterion, we choose and execute one change from the list of all possible changes at
each simulation step. The choice is made based on the relative rates at which each change can
occur (i.e., the probability of choosing one particular reaction instead of another is proportional
to the rate at which the reaction occurs relative to the rates of the other reactions).

Thus the microstructure evolution of the cascade-induced defect clusters is accomplished by
a KMC procedure in which one reaction is executed at one site during each time step. The first
step in KMC simulations is to tabulate the rate at which an event (i) will take place anywhere
in the system, ri. The probability of selecting an event is simply equal to the rate at which
the event occurs relative to the sum of all possible event rates. Once an event is chosen, the
system is changed appropriately, and the list of events that can occur at the next KMC step is
updated. Therefore, at each KMC step, one event denoted by m is randomly selected from all
possible M events, as follows:

m−1∑
i=0

ri

M∑
i=0

ri

< ξ1 <

m∑
i=0

ri

M∑
i=0

ri

(11.60)

where ri is the rate at which event i occurs (r0 = 0) and ξ1 is a random number uniformly
distributed in the range [0, 1]. The way in which the M events are labelled (i.e., by specifying
which events correspond to i = 1, 2, 3, . . . ,m, . . . ,M) is arbitrary. After an event is chosen and
executed, the total number of possible events, M , and the sequence in which the events are
labeled, will change.

The reciprocal of an atomic jump probability per unit time is a residence time for a defect
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cluster that moves by that specific type of jump. Since the jump probabilities of all the different
types of jumps are independent, the overall probability per unit time for the system to change its
state by any type of jump step is just the sum of all the possible specific jump type probabilities,
and so the residence time that would have elapsed for the system in a specific configuration is
the reciprocal of this overall jump probability

∆t =
1

M∑
i=0

ri

(11.61)

which is independent of the chosen transition. It may also be important to include the ap-
propriate distribution of escape times. For random uncorrelated processes, this is a Poisson
distribution. If ξ2 is a random number from 0 to 1, the elapsed time for a particular transition
is given by

∆t =
− ln ξ2

M∑
i=0

ri

(11.62)

The system is then advanced to the final state of the chosen transition and the process
is repeated. By following the ensuing discrete jump path for the system, accumulating the
residence time of the system along the path, and linking this history to the cascade arrival
interval (or the damage rate), the diffusion process can be realistically simulated. The expression
for ∆t in Eqn. 11.62 is rigorous(?), and a derivation is also provided by Battaile(Battaile and
Srolovitz 1997).

11.3.3 Elastic Interaction between Point Defects

The interaction between the atoms can be obtained from an (approximate) solution of the
Schrödinger equation (Ballone, Andreoni, Car and Parrinello 1988) describing electrons, or from
a potential energy function determined in some empirical way (for example, MD simulations
(Osetsky, Bacon, Serra, Singh and Golubov 2000a)), but they are computationally expensive.
Most often, it is sufficient to treat the interactions between atoms in terms of the analysis of
elastic interactions. However, so far, all KMC computer simulations for microstructure evolution
under irradiation have not considered the influence of the internal and applied stress fields on
defect motion (for example (Heinisch, Singh and Diaz de la Rubia 1994, ?, Soneda and Diaz
de la Rubia 1998, Caturla, Soneda, Alonso, Wirth, Diaz de la Rubia and Perlado 2000)). We
propose here a KMC simulation, where the elastic interactions between SIA/vacancy clusters
themselves, SIA and vacancy clusters, and SIA/vacancy clusters and dislocations are explicitly
accounted for.

Recently, a new computational method has been developed (Ghoniem 1999, ?) for accurate
evaluation of the elastic field of dislocation aggregates in complex 3-D geometry. The method
extends the capabilities of 2-D estimates of elastic field variables in realistic material geome-
try, and enables calculations of displacements, strain, stress, interaction and self-energies, and
finally, the work associated with rotation and translation of defect clusters. In the following
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sections, the numerical method developed by Ghoniem (Ghoniem 1999) and Ghoniem and Sun
(?) to examine the mechanisms of interaction between small defect clusters and slip dislocation
loops is introduced, followed by the calculation needed to develop an specific elastic interaction
energies between defects for use in this thesis.

For the specific case of parametric dislocation loop representation, the elastic field tensors
(strain εij and stress σij) of a dislocation loop are given by line integrals over the dislocation
loop line vector as follows (Ghoniem et al. 2000b)

εij =
1

8π

∮
C

[
−1

2
(εjklbiR,l + εiklbjR,l − εiklblR,j − εjklblR,i),pp

+
1

1 − ν
εkmnbnR,mij

]
dlk (11.63)

where R = ‖R‖ = ‖x − x̂‖.
Since the linear stress-strain relationship is σij = 2Gεij + λεrrδij, the stress tensor is also

obtained as a line integral, of the general form

σij =
Gbn

4π

∮
C

[
1

2
R,mpp(εjmndli′ + εimndlj′) +

m

m − 1
εkmn(R,ijm − δijR,ppm)dlk′

]
(11.64)

where G is the shear modulus, bn the components of Burgers vector, R,ijk are derivatives of
the radius vector norm between a loop point at x̂ and a field point x, dli′ are differential line
elements along the dislocation line vector, and εijk is the permutation tensor (or Eddington
tensor). Ghoniem (Ghoniem 1999) developed explicit forms for the integrals of general para-
metric dislocation loops. An efficient numerical integration scheme has also been developed for
calculations of the stress field, as a fast summation by Ghoniem and Sun (?). Their results
read

σij =
G

4π

Nloop∑
γ=1

Ns∑
β=1

Qmax∑
α=1

bnwα

[
1

2
R,mpp(εjmnx̂i,u + εimnx̂j,u)

+
1

1 − ν
εkmn(R,ijm − δijR,ppm)x̂k,u

]
(11.65)

where Nloop, Ns, and Qmax are the total number of loops, segments, and Gaussian quadrature,
respectively. wα is the quadrature weight, and x̂j,u are parametric derivatives of the Cartesian
components of the vector x̂, which describes the loop geometry. The interaction energy of two
dislocation loops over the volume V of the material is expressed by

EI =
∫

V
σ

(1)
ij ε

(2)
ij dV (11.66)

in which σ
(1)
ij is the stress arising from the first dislocation and ε

(2)
ij the strain originating in the

other. For the present study, if the second loop (defect cluster) is assumed to be infinitesimal,
the interaction energy can be simplified to (?)

EI = δA(2)n
(2)
i σ

(1)
ij b

(2)
j (11.67)
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where n
(2)
i is the unit normal vector to the defect cluster habit plane of area δA(2). By sub-

stituting Eqn. 11.65 into Eqn. 11.67 with Nloop = 1, we can readily compute the interaction
energy of the cluster, designated with the superscript (2), and the slip loop, of Burgers vector
b(1)
n , as

EI =
GδA(2)n

(2)
i b

(2)
j

4π

Ns∑
β=1

Qmax∑
α=1

b(1)
n wα

[
1

2
R,mpp(εjmnx̂i,u + εimnx̂j,u)

+
1

1 − ν
εkmn(R,ijm − δijR,ppm)x̂k,u (11.68)

In the above equation, we assume that the stress tensor of the grown-in (slip) dislocation loop
is constant over the cross-section of a small point-defect cluster. In case we treat one single
vacancy or interstitial atom as a center of dilatation, the interaction energy simplifies to

EI = −4

9
πr3

0ε
(2)
ii σ

(1)
jj (11.69)

where ε
(2)
ii is the dilatation and r0 is the effective radius of a point defect. The above equation

does not reveal dependence of the interaction energy surface on the orientation of the cluster
Burgers vector, unlike Eqn. 11.68.

Kroupa (?) obtained the formulae for the displacement and stress field around an infinites-
imal dislocation loop by extending the derivation used by Eshelby (?). The stress tensor σij

is

σij =

{
− k0G

4π(1 − ν)R3

[
3(1 − 2ν)

R2
bkρknlρl + (4ν − 1)bknk

]
δij

+(1 − 2ν)(binj + nibj) +
3ν

R2
[bkρk(niρj + ρinj) + nkρk(biρj + ρibj)]

+

[
3(1 − 2ν)

R2
bknk − 15

R4
bkρknlρl

]
ρiρj

}
δA (11.70)

where ρi = xi − x̂i is the radius vector between the loop center at point x̂ and a field point at
x. n is the the unit normal vector to the defect cluster habit plane of area δA, and b Burgers
vector. By applying Eqn. 11.67, the elastic interaction energy between two infinitesimal loops
can also be obtained.

Main Model Features

The cascade-induced defect distribution process consists of several distinct steps, introduc-
tion of defects associated with one high-energy displacement cascade, interaction between de-
fects resulting in instant (intracascade) recombination of defects of opposite types and agglomer-
ation of defects of the same type, diffusion incorporated with interactions between dislocations,
impurities and point defects leading to defect annihilation at a sink, trapping of defects by
impurities, decoration slip dislocations with defect clusters. To simulate the defect distribution
process, all of the process should be incorporated. Although interaction may not be important
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at a dilute defect density or very large apart distance and can be approximated accordingly
using ALSOME (?, Heinisch and Singh 1996, Heinisch 1990, Heinisch et al. 1994, Heinisch and
Singh 1997) or BIGMAC (Soneda and Diaz de la Rubia 1998, Caturla et al. 2000) code, in
most practical situations the interactions between dislocations and point defects play a key role
in determining the effects of radiation on mechanical properties. This interaction effects must
therefore be taken into account. The methodology should also address the many diffusional
pathways available. It should also connect with the temperature and damage rate these control
the available time for microstructure evolution processes before the defect densities reach a
dynamic equilibrium state (saturated densities).

In section two the main idea of KMC scheme has been described. We present here a computer
simulation method which explicitly incorporates the effects of the elastic interactions between
SIA and vacancy clusters themselves (cluster-cluster type), and between defect clusters and
dislocations (dislocation-cluster type). SIA clusters are directly produced on the periphery
of neutron collision cascades, and they may contain from a few atoms up to tens of atoms
in the near vicinity of the cascade (Bacon and Diaz de la Rubia 1994). Such clusters are
extremely mobile, and migrate predominantly along highly-packed crystallographic directions,
with migration energies of less than 0.1 eV (Bacon and Diaz de la Rubia 1994, Soneda and Diaz
de la Rubia 1998). Small SIA clusters may also spontaneously change their Burgers vector, and
thus have the flexibility to translate along various crystallographic directions if their motion is
not obstructed by internal strain fields. Since MD simulations have shown that the majority
of SIA clusters have the form of mobile (glissile) perfect dislocation loops, in this work, we
represent SIA clusters as small prismatic, rigid and circular dislocation loops. As for vacancies,
small spherical voids are employed to approximate single vacancies and vacancy clusters. The
effective radius of void has been defined as

rv =
3

√
3NΩ

4π
(11.71)

where Ω is the atomic volume and N the number of defects in the cluster. The temperature
dependence of the jump frequency of defect clusters diffusion has been given as 11.59. In our
KMC simulation, the elastic interaction is incorporated. The influence of other defects and
the external stress on one SIA or vacancy cluster is given by the stress field σij. By applying
the infinitesimal dislocation loop approximation for SIA clusters , the work necessary to form
the loop characterized by normal n, Burgers vector b and area δA in the stress field σij is SIA
cluster interaction energy Eint, and is given by Eqn. 11.67. Similarly, we have vacancy cluster
interaction energy shown as Eqn. 11.69 where it need to be noted that,

εjj =
q

K
=

GδV

πa3
0K

(11.72)

where 3K = 3λ + 2G called the volume modulus.

The total cluster activation energy is then given by:

Ẽm = Em + ∆Eint (11.73)
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where Em is the activation energy in a perfect crystal structure and can be obtained by either
experiments or MD simulations, and ∆Eint the difference in the interaction energy of an defect
cluster placed at two neighboring equivalent position in the crystal. This includes the effects
of forces and moments on the virtual loop or microvoid motion.

Displacement Cascade Simulations

In this section, we study the evolution of cascade-induced defect clusters in BCC Fe at
300 K using KMC simulations. The input data necessary for these simulations, namely defect
migration energies and the initial defect configurations produced by displacement cascades are
all obtained by MD simulations. Based on intensive MD simulations, Osetsky et al. (Osetsky
et al. 2000a) developed a generalized size dependence of cluster jump frequency to describe the
one-dimensional diffusional transport behavior of SIA clusters

ωn = ω0n
−S exp

(
−〈Em〉

kBT

)
(11.74)

where 〈Em〉 is the averaged effective activation energy, n the number of SIAs in the cluster, and
ω0 is a new, size-independent, pre-exponential factor. The value of 〈Em〉 is estimated from the
MD simulations as 0.023±0.003 eV for 1

2
〈111〉 clusters in BCC Fe. By fitting to the simulation

results of various cases, the values ω0 = 6.1 × 1012 s−1, S = 0.66 for Fe describe the MD data
very well and are used in our KMC simulations. There are also a large number of vacancies
produced in displacement cascade. The vacancies are allowed to execute random 3-D diffusion
jumps with a probability proportional to their diffusivity. The temperature dependence of the
defect diffusivity is written as (Caturla et al. 2000)

D = D0 exp(− Em

kBT
) (11.75)

where D is the defect diffusivity, D0 the pre-exponential factor, Em the migration energy of
vacancy. The migration rates are defined as

r =
6D

δ2
(11.76)

where δ is the jump distance and equal to the magnitude of Burgers vector in our simulations.
Eqn. 11.76 has a similar form to Eqn. 11.59, and is used in some other KMC simulations (e.g.,
(Soneda and Diaz de la Rubia 1998, Soneda and de la Rubia 2001, Caturla et al. 2000)). The
values of the migration energy and prefactors obtained from MD simulations for vacancies are
0.87 eV and 1.15×10−2 cm2/s, respectively(Soneda and Diaz de la Rubia 1998). The jump rates
of vacancies are almost 10˜12 orders of magnitude larger than that of SIAs in room temperature.
Therefore, vacancies can be treat as immobile when we consider the microstructure evolution
during the first few nanoseconds in cascade. By now, cascades of primary-knock-on-atom (PKA)
energy, EPKA, up to 100 keV have been simulated in BCC metals over a wide temperature
range(Stoller 2002, Bacon et al. 2000). We present here the KMC simulations using the initial
defect configurations produced by cascade of 100 keV PKAs (Stoller 2002). Fig. 11.3 is a typical
defect configuration resulting from a 100 keV cascade. The size of the KMC computation box
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is 1 µm3. The starting defect microstructure is introduced at a random position of the KMC
simulation box according to the spatial configuration obtained by the MD simulations of the
corresponding cascade. Then, the system runs for a certain time period at a given temperature
(T = 100 K), and a fixed boundary condition is employed (defects that are able to reach the edge
of the KMC simulation box are counted to escape away). MD study of interactions between
glissile interstitial clusters and small dislocation loops in α-Fe and Cu has been carried out by
Osetsky et al.(Osetsky, Serra and Priego 2000b). As a result of the inter-cluster interactions
both glissile and sessile clusters can be obtained and this depends on the metal, reaction type
and size of the clusters. In our simulations, when two big clusters (> 37 SIAs) of differently
oriented Burgers vectors approach to each other, they keep their own orientations and the
complex formed becomes sessile. Otherwise, one cluster changes its Burgers vector to be parallel
to the other, so that a bigger glissile cluster is formed.

Our simulations show that a large portion of the interstitials and vacancies are lost in a very
short time (˜50 ps) by recombination. This is consistent with the results of MD modeling in
which an extensive amount of recombination of SIAs and vacancies occurs during the cooling
stage of HEDCs. Fig. 11.4 shows a close view of the microstructure at t = 94 ps. It can be seen
that some SIAs has coalescence into bigger clusters. The result is supported by MD simulations
in which one of the most significant findings is the occurrence of intracascade clustering. Most
of the recombination and clustering take place within 10 ns. Most of the glissile interstitials
and interstitial clusters escape away from the cascade center within around 60 ns. The value
of freely migrating defects(FMDs) production efficiency η obtained by our KMC simulation is
η ≈ 0.1 (i.e. 10%). The cases of incorporating with internal dislocations are also studied. Since
the density of glissile SIAs is rather low (˜1018 m−3), no visible dislocation decorations have
been observed.

Dislocation Decoration

The effects of displacement damage on the physical and mechanical properties of metals and
alloys have been extensively investigated for many years. Much interest has been shown in
the role of cascade-induced defect clusters on the process of damage accumulation and changes
in mechanical behavior of metal and alloys. Evidence for the direct formation of clusters
of vacancies and self-interstitial atoms within the displacement cascade volume during the
cooling down phase of the cascade have existed in the literature for some time (see review
(Trinkaus et al. 1993)). A large number molecular dynamics simulation studies have also shown
a significant fraction of defects formed in the high-energy displacement cascades (HEDCs) is
in the form of clusters (e.g. (?, Bacon, Calder, Gao, Kapinos and Wooding 1995, Phythian et
al. 1995, Stoller 1996, Wirth et al. 1997)). The properties of clusters of SIAs have extremely
important effects on further evolution of defect microstructure for they are highly stable(Osetsky
et al. 1997, Osetsky, Serra, Singh and Golubov 2000c) and exhibit fast motion by thermally-
activated one-dimensional (1-D) glide(Osetsky et al. 2000c, Osetsky et al. 1999, Wirth et al.
2000). In addition, ferritic steel (α-Fe) are considered to be candidate materials for the blanket
and first wall of fusion reactors due to their law activation under 14MeV neutron irradiation
(Kohyama, Hishinuma, Gelles, Klueh, Dietz and Ehrlich 1996). To characterize and predict
the degradation of these materials during prolonged exposure to an irradiation environment, a
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Figure 11.3: Primary damage state at 17 ps for a 100 KeV cascade: (©) interstitials; (•)
vacancies.

Cell Size = 1 m, T = 100 K
282 SIA Clusters
607 Vacancy Clusters
Time = 94.37207 ps

�

Figure 11.4: A close view of the structure of one single cascade at t = 94 ps. Small circular
loops represent SIA clusters, and solid points represent vacancies.
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understanding of the fundamental processes of the defects properties, production due to neutron
irradiation, and of the role of these defects in the resulting microstructural evolution is required
(Soneda and Diaz de la Rubia 1998). It was recognized, however, that the complexity of the
microstructure in these alloys make mechanistic studies considerably difficult. It was therefore
decided to focus the investigations first on pure iron.

The fact that SIA and vacancy clusters are produced directly in HEDCs has significant effect
on damage accumulation behavior, and thus physical and mechanical properties of materials
under cascade damage conditions. The 1-D motion of small SIA clusters is especially important.
Since the formation of glissile SIA clusters results in the creation of a vacancy supersaturation,
which leads to void swelling. In addition, another consequence may be the creation of specific
microstructural features in neutron-irradiated metals, such as decoration of dislocations by SIA
loops (Stiegler and Bloom 1971, Singh, Horsewell, Toft and Edwards 1995) and formation of
rafts of dislocation loops (?), which contribute significantly to change of mechanical properties.
In addition, the restriction of diffusion of SIA clusters to 1-D leads to a reduction in the
reaction rate with other defects because one dimensionally moving clusters are able to travel in
the atmosphere of randomly distributed lattice defects through larger distances than those 3-D
moving ones, and consequently the possibility that such SIA clusters annihilate at extended
sinks such as pre-existing dislocations and grain boundaries increase. At the same time lattice
defects affect the motion of one dimensionally diffusing clusters in a more substantial way than
they influence the motion of vacancies since one dimensionally moving clusters have less chances
to avoid obstacles by changing their direction of diffusion (Dudarev 2000). As a consequence, a
diffusion bias is established during steady-state irradiation whereby the vacancy concentration
can greatly exceed that of SIAs. In addition to the 1-D diffusion of SIA clusters, the motion
of a single SIA is also of interest. Guinan et al. presented one-dimensional motion of a single
SIA in the 〈111〉 direction in BCC tungsten (W) in MD simulations for the first time. Similar
result for BCC Fe was also shown in MD simulations by Soneda and Diaz de la Rubia, which
is consistent with the fact that no reorientation is observed in experiments during stage ID

annealing in electron-irradiated pure BCC Fe (Soneda and Diaz de la Rubia 1998). All such
information will be used as the basis for a kinetic model of SIA diffusion.

In view of the symmetry of BCC structure and the description above, it is reasonable to
assume that all defects move along the close-packed direction, namely the 〈111〉 direction.
There is a total of eight equivalent 〈111〉 slip directions for defects in BCC Fe. Thus, there are
eight equivalent choices for each defect at each KMC step. Therefore, there is a total of 8N
possible events for the N active (mobile) clusters at each KMC step. However, the restriction
of SIA diffusion to 1-D motion implies that these eight possibilities are not equal, which means
the possibility of reorientation for an SIA cluster is rather small, and the migration energy of
a preferred 〈111〉 direction is much lower than that of all other seven equivalent directions. We
use the frequency of a defect jumping along a 〈111〉 orientation, r which has the form shown
in Eqn. 11.59, as the rate at which an event occurs in our KMC model. Some meta-positions
between the current position and the next possible position can be used to obtain a better
estimation for the activation energies of a candidate in Eqn. 11.73. In our simulations, the
activation energy for a cluster to rotate and jump to a neighboring site is calculated as follows.
First we move the cluster from initial site 1 to a neighboring site 2 along the direction of the
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original orientation. Then it is moved in small step along a line connecting site 2 and final
position 3, and at the same time it is rotated by a small angle such that its orientation is
parallel to the vector pointing from 1 to 2. After each movement and rotation, the interaction
energy at the current position is calculated. The maximum value of these interaction energies
is used to calculate the activation energy in Eqn. 11.73.

Due to the significance of the effects of glissile SIA clusters on damage evolution, our concen-
tration will firstly put on the dynamics of SIAs. The value of the migration energy, pre-factors,
and other input parameters for SIA diffusion used in this work are list in Table 11.1. A com-
putation cell of 400a× 400a× 400a ( a = 2.867 Å is the lattice constant) is taken with periodic
boundary conditions. In order to take the 1-D migration mechanism of SIAs into account,
we introduced a factor f which is the ratio of activation energies for direction change to the
1-D migration energy. Fig. 11.5(a) shows the trajectories of the centres of mass of a SIA
cluster for diffusion at 300 K, where f = 8.0. Clearly, the one-dimensional characteristic can
be observed. The same value of f is used in all our simulations. For the purpose of studying
dislocation-cluster interaction, a dislocation loop lying on the 〈101〉 plane, with Burgers vector
b = 1

2
〈1̄11〉 is introduced into the simulation box. The loop is generated by using the para-

metric method developed by our group (Ghoniem 1999, ?). The dislocation loop consists of
two curved segments and two straight junction segments that are normal to the loop’s Burgers
vector. An initial number of SIA clusters with the same size (1.7 nm diameter) are first ran-
domly distributed in the simulation box, and their initial jump directions are also randomly
specified. The SIA cluster density is varied in the range 5×1022−2×1023 m−3. The orientation
of each cluster’s Burgers vector is kept the same as the jump direction, because clusters are
represented as small prismatic dislocation loops. A schematic view of the KMC calculations of
microstructure evolution is shown in Fig. 11.5(b). When a cluster approaches the dislocation
loop at distances closer than the standoff distance (taken as 1.5 nm), the cluster is stopped, and
all the events related to it are removed from the event table. Another consideration included in
our simulations is the capture radius for defect interaction. In the followed cases the interaction
radius between defects has been defined as

R = Rs + a (11.77)

where Rs is the defect radius. Two small Clusters will combine to form a bigger one when they
get inside the capture radius.

Table 11.1: Migration Energy Em, lattice constant a, initial cluster radius R, Temperature
T , pre-exponential factor ω0, ratio of migration energy of 1-D motion relative to reorientation
energy f , shear modulus µ, and Poisson’s ratio ν for BCC Fe.

Em(eV) a(Å) R(a) T (K) ω0(s
−1) f G(GPa) ν

0.02 2.867 3.0 300.0 2.5 × 1013 8.0 81.8 0.29

Plastic behavior of metals is primarily determined by the mechanisms that control disloca-
tion motion. In unirradiated metals, dislocation-dislocation interactions play a very significant
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Figure 11.5: (a) Center-of-mass trajectories of a SIA cluster migration for 10000 consecutive
KMC steps at 300K with a reorientation activation energy ration f = 0.8. The unit are in lattice
constant. All the straight line segments are oriented along the 〈111〉 directions. (b) Schematic
view of the computational box for the KMC simulations. The small circles represent randomly
distributed SIA clusters. The Burgers vector directions as well as the normal directions of loop
planes are shown as small line segments.

role in determining the characteristics of plastic deformation, where the impedance of disloca-
tion motion is associated with the formation of sessile junctions or dipoles. In BCC metals (for
example, α-Fe), however, the flow stress and the presence of an upper yield point can be drasti-
cally changed by small additions of impurities. Also, in some alloyed FCC metals (e.g. copper
crystals containing zinc), the upper yield point has also been observed. To explain this effect,
Cottrell (Cottrell 1948) showed that the flow stress at the upper yield point is a consequence
of dislocation detrapping from impurity clouds, which are attracted to dislocations because of
their elastic interaction with dislocations. It has thus long been recognized that interactions
between dislocations and impurities, extrinsic and intrinsic lattice defects play a vital role in
determining the mechanical properties of materials. During irradiation, glissile SIA clusters are
produced and migrate very quickly, interact with other features of the microstructure including
dislocations. The motion of dislocation and thereby the initiation of plastic yield in irradiated
metals are then significantly affected by the interactions with these SIA clusters.

The specific goal of the present work is to study the influence of elastic field of dislocations
on the motion of SIA clusters. The cluster-cluster interactions amongst SIAs themselves are
excluded in current simulations in order to stress the effect of internal dislocation fields. The
starting defect microstructure is introduced as described before (see Fig. 11.5(b)). Since there
are no cluster-cluster interactions considered, the clustering will not occur even one cluster
approach to another within the capture radius. As can be seen in Fig. 11.6, the mobility and
spatial distribution of SIA clusters are significantly changed as a result of the dislocation-cluster
interactions. Just after around 1.5 nanoseconds, the majority of the initially glissile clusters stick
around the main dislocation loop (nearby the edge components) and become nearly virtually
immobile. In effect, these clusters re-orient themselves by rotation of their Burgers vectors to
respond to the elastic field of internal dislocations. Thus, their migration is forced towards
internal stress fields, and not random, as implied by MD simulations. This high concentration
of SIA loops result in a extremely inhomogeneous spatial distribution in simulation box. Due
to the effect of dislocation fields, the trapped SIA loops change their Burgers vectors to be
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consistent with the Burgers vector of the main dislocation loop. Ending up near the core of
grown-in dislocations, the SIA clusters form what is known as a cluster atmosphere, similar to
the well-known Cottrell impurity atmosphere around dislocations in unirradiated BCC metals.

Figure 11.6: KMC simulation of 200 SIA clusters diffusion in the stress field of a 3-D dislocation
loop. SIA loops are clearly observed to accumulate along edge components of the loop. (a) 0
ns; (b) 0.1 ns; (3) 0.3 ns; (d) 0.4 ns.

One of the most striking features in the evolution of dislocation microstructures under cas-
cade damage conditions, first observed about thirty years ago is the decoration of grown-in
dislocations by loops(Stiegler and Bloom 1971, Singh et al. 1995) which may even extend to
form dislocation walls (Singh et al. 1995). Most dislocations are observed to be heavily decorated
by small, sessile interstitial clusters (Singh et al. 1997). Fig. 11.7 shows a TEM micrograph of
pure single crystal Molybdenum irradiated with fission neutrons at 320 K (Singh et al. 1997).
Grown-in (slip) dislocations are clearly decorated with small defect clusters. To explain the
experimentally observed yield drop, and to understand the relationship between dislocation
decoration and the yield behavior of irradiated materials, the Cascade Induced Source Harden-
ing (CISH) model has been proposed (Trinkaus et al. 1997, Singh et al. 1997, Ghoniem et al.
2000b). In this concept, a dislocation decorated with loops, like a Cottrell atmosphere of im-
purities (Singh et al. 1997), is assumed to be locked so firmly that it cannot play as dislocation
source until the applied stress reaches a very high level. SIA cluster mobility and trapping in
the stress field of grown-in dislocations therefore become the main reason behind experimen-
tal observations of dislocation decoration, and the corresponding presence of an upper yield
point in irradiated metals and alloys. Our simulations show a clear picture of how SIA clusters
attract to dislocations to decorate and lock them in place, and have a good agreement with
experimental observations qualitatively.

Pinning and Small Rafts
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Figure 11.7: A TEM micrograph of pure single crystal Mo irradiated with fission neutrons at
320 K to a displacement dose level of 0.16 dpa (Singh et al. 1997).
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In this section we put our effort to investigate the cluster-cluster interactions amongst SIA
clusters, and the dislocation is temporarily removed from the simulation box. The simulation
was begun with 200 SIA clusters of the same initial size, which are generated in the computa-
tional cell, randomly in space and orientation. The diffusion of SIA clusters is extremely fast,
and within a few nanoseconds (ns) at room temperature, clusters migrate along close-packed
crystallographic directions over microstructurally-significant distances (see Fig. 11.5(a)). Pre-
vious MD simulations of isolated SIA clusters have also indicated this fast diffusion feature of
their migration along {111} in BCC metals, as a result of their rather low migration energies
(˜0.02 eV)(Osetsky et al. 2000a). Our KMC simulations reveal that their mutual elastic in-
teractions affect their distribution and motion drastically. Because of their mutual interaction
fields, two clusters that are oriented along non-parallel crystallographic orientations will either
coalesce forming larger ones, or just pin one another at a short distance with having their Burg-
ers vectors in parallel direction and move along that direction together. Once two clusters pin
together, they have less chance to change the orientation such that their motion becomes al-
most pure one-dimensional. As this process moves on, some additional clusters may be trapped
into this pin structure by changing their Burgers vectors. This self-organizing course eventu-
ally results in the occurrence of so-called rafts which consist of a number of small dislocation
loops with same diffusion direction. This feature has been experimentally observed for some
time(Trinkaus et al. 1997). As shown in Fig. 11.8, along with the progress of the simulations,
the number of glissile SIA clusters is decreasing , while their average size are increasing. More-
over, due to the influence of the mutual elastic interactions, the frequencies of direction change
are considerably dropped as well. More and more SIAs will move along a fairly regular route.
Similar results are also obtained for the cases of 50 SIA clusters and temperature T = 600 K.

Figure 11.8: KMC simulation of SIA cluster diffusion and agglomeration. SIA loops are self-
pinned, and rafts are clearly observed as the simulation progresses.
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It is now well established that in displacement cascades a substantial fraction of SIAs are
produced in the form of clusters (?) and that some of these clusters are glissile. Such an
interstitial cluster may perform a thermally activated random glide motion until it gets trapped
in the strain field of another defect clusters or a dislocation (Trinkaus et al. 1993). As an
extension of the investigation described in two last sections, we present here a study of cluster
motion integrating the influence of the internal stress field created by grown-in dislocations as
well as the clusters themselves.

Fig. 11.9shows a typical defect evolution time sequence views of 200 SIA clusters at 300 K.
The initial microstructure configuration is taken as same as the case of dislocation decoration
(see Fig. 11.9(a)). Compared with the result of dislocation-cluster interaction case, it is shown
that the inhomogeneity of loops spatial distribution is higher in the present case. Principally,
there are two mechanisms which could result in such a effect: (1) the decreasing of the number of
glissile loops due to cluster-cluster interactions, and (2) the accumulation of clusters enhancing
the influence of the strain fields of the internal dislocation loop. In both cases quoted above,
the cluster-cluster interactions play an essential role. The effects of internal dislocation fields,
aided by their mutual elastic interactions, render most of these clusters virtually immobile and
accumulating in the vicinity of the internal dislocation. The progress of the decoration process
may even lead to dislocation ‘walls’; an experimental evidence of such a wall has been reported
in literature (?). The dislocation decoration has a profound influence on the plastic deformation
of irradiated metals. It may be one of the main issues contributing to the occurrence of an upper
yield point followed by a drop in the yield strength observed in some metals and alloys(e.g., FCC
Cu). The resistance of the sessile SIA clusters to dislocation motion could be the main reason
for the tremendous increases in yield strength. Once dislocations are released from localized
SIA clusters, they will undoubtedly move very fast under the same applied stress that unlocked
them, and unless their motion is further hindered, strain softening may occur. This may give
a reasonable explanation to the followed yield drop phenomenon. Computer simulations using
PDD for the process of dislocation unlocking from coalesced and immobilized SIA clusters have
been presented by Huang and Ghoniem (Huang and Ghoniem 2002).

All these three types of interactions have been studied for cases of 50 SIA clusters and 600
K as well to account for the variations of cluster densities and temperatures. A comparison of
the evolution time is given in Table 11.2. It can be seen that SIA cluster density seems to have
greater influence on reaction time than temperature. Under higher temperature conditions
it may took less time for the occurrence of remarkable dislocation decoration phenomenon
than in lower temperature. The high temperature increases the thermal activities of clusters,
which makes clusters have more chance to approach to reaction range of internal dislocations.
The simulations also show that the rafting structure can be more easily to appear in lower
temperature and higher cluster density cases.

Input Parameters to KMC Simulation

The calculation begins by determining a time interval between cascade arrivals based on
the damage rate. From the view point of energy transfer, Kinchin and Pease(Kinchin and
Pease 1955) proposed the first clear theoretical assessment of defect production in displacement
cascades by deriving a simple relationship between the number, NKP , of SIA-vacancy pairs, i.e.
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Figure 11.9: KMC simulation of 200 SIA clusters diffusion and clustering in the stress field of
a 3-D dislocation loop. Dislocation decoration and SIA loop Rafts are clearly observed in the
circled region in (d). (a) 0 ns; (b) 0.4 ns; (3) 0.7 ns; (d) 1.0 ns.

Table 11.2: Evolution time for Running 800,000 KMC Steps (in ns).
Number of SIA D-C Interactions D-C-C Interactions

Clusters 300 K 600 K 300 K 600 K
50 1.95 1.28 3.29 3.14
200 0.416 0.237 1.04 0.79
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Frenkel defects, created by a cascade and the kinetic energy, EPKA, of the primary knock-on
atom (PKA).

NKP =
EPKA

2Ed

(11.78)

where Ed is the displacement threshold energy, and a round value is suggested in the ASTM
standard as Fe - 40 eV. It was subsequently revised by Norgett et al. (Norgett, Robinson and
Torrens 1975) (the NRT model) to give the standard formula for estimating the displacements
per atom (dpa) in irradiated metals

NNRT = Kξ(E)NKP (E) (11.79)

where the factor K is defined as the displacement efficiency, the function ξ(E) is defined as the
damage efficiency. Both are less than unity, and an acceptable value for K is 0.8. All the MD
simulations show that defect production by displacement cascades in metals is not as efficient
as predicted by the NRT formula. In fact, typically only 20− 40% of NNRT for a given cascade
energy can survival at the end of the cascade process. Therefore, the number of displaced atoms
takes the form:

NF = γCNNRT = γCKξ(E)NKP (E) (11.80)

where γC is defined as the cascade efficiency, and less than unity. We use Lindhard’s enery-
partitioning theory to evaluate the damage efficiency, ξ(E)

ξ(E) =
1

1 + 0.13(3.4ε1/6 + 0.4ε3/4 + ε)
(11.81)

where ε is a reduced PKA energy:

ε =
EPKA

2Z2e2/a
(11.82)

e is the electronic charge (e2 = 14.4 eV· Å), and a is the screening radius, given by

a =

√
2λaB√

Z
2/3
1 + Z

2/3
2

(11.83)

where aB (= 0.5291772083 Å) is the Bohr radius, λ (= 0.88) is a constant of order unity, Z1

and Z2 are the atomic numbers of two collision atoms. The parameters used in the calculation
of NNRT in BCC iron are summarized in the following

K Z,Z1, Z2 aB (Å) e2(eV· Å) λ Ed(eV)
0.8 26 0.5291772083 14.4 0.88 40

Therefore, for EPKA = 40 KeV and 100 KeV we have NNRT = 280 and 635, respectively. In
view of the cascade efficiency, the theoretical predictions of the number NF , of SIA-vacancy
pairs, i.e. Frenkel defects are 112 and 254 for PKA energy 40 KeV and 100 KeV, respectively,
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with γC = 0.4. Bacon et al. ((Bacon et al. 2000)) have shown a new empirical relationship
between NF and EPKA by fitting MD-generated NF data for several metals

NF = A(EPKA)m (11.84)

where A and m are constants which are weakly dependent on the material and temperature.
For EPKA up to 40 KeV for α-Fe the above equation gives a good fit to MD simulation results
with A = 5.57 and m = 0.83. Actually, by applying A, m to Eqn. 11.84 PKA energy of 40
KeV case, we get NF = 119, which is quite close to the value computed by Eqn. ??. Even for
PKA energy up to 100 KeV, the predictions made by Eqn. ?? (= 254) and Eqn. 11.84 (= 255)
are still in a very good consistence.

On the other hand, since dpa has been extensively used as a measure of damage accumulation
in irradiated materials, the number of displaced atoms can then be written as

NP = PNt (11.85)

where P is the displacement dose (dpa), and Nt the total number of atoms in the system.
Therefore, the displacement dose level corresponding to one cascade can be readily calculated
by

P =
NF

Nt

=
γCKξ(E)NKP (E)

Nt

(11.86)

The interstitial clusters considered in our simulations were assumed to be created in cascades
of 40 KeV at 300 K. For a simulation box of (100 nm)3, one cascade will produce NF = 112
Frenkel defects, and the corresponding dose level is 1.306 × 10−6 dpa. With the relationship
between cascade and damage dose, we can design the number and frequency of cascades re-
quired for producing a certain mount of damage at certain displacement dose rate by pumping
corresponding cascades into the simulation box.

There are some very important input parameters of interstitials and vacancies, such as the
number and size distribution of defects created in one cascade, and properties especially mobility
of these clusters, which are used in KMC simulations and have to be quantitatively identified.
MD simulations using interatomic potentials fitted to many of the equilibrium and defect prop-
erties of metals offer us a quite realistic description of all stages of the cascade process. Bacon,
Gao and Osetsky (Bacon et al. 2000) carried out an analysis of the MD simulations results on
the primary damage state due to displacement cascades in fcc, bcc and hcp metals. The cluster
statistics of cascades of 40 KeV in energy in α-Fe was provided and used as input parameters
in our KMC simulations. In order to emphasize the effect of interstitial clusters on the mi-
crostructural evolution, we ignored single interstitials and small interstitial clusters (containing
less than 4 interstitial atoms) and mainly focused on bigger clusters although most SIAs are
created in the form of single defects, di- or tri-SIA clusters (about 77% of the SIAs created
in cascades of 40 KeV at 100 K in α-Fe were single defect or in clusters of size two or three
(?)). A supportive argument is for to do so that, Soneda and Diaz de la Rubia (Soneda and
Diaz de la Rubia 1998) have shown that two third of the defects that escape from the parent
cascade region are in form of small SIA clusters which migrate in one dimension. Therefore,
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monodefects as well as relatively smaller clusters can be ignored for a simulation addressed on
the effect of clusters on the evolution of microstructure because of their minority population
and insignificant three-dimensional motion property. Room temperature irradiation of iron by
neutron was simulated with a flux of 40 KeV cascades containing interstitial clusters (size >
4).

As far as the mobility of interstitial clusters are concerned, computer simulations have demon-
strated that the majority of SIA clusters formed during the cascade process are highly mobile,
a property that is intimately associated with their atomic structure. MD simulations have also
confirmed a striking feature of the motion of interstitial clusters that small SIA clusters and
loops preferentially perform thermally-activated, one-dimensional glide along close-packed di-
rection of the crystal lattice. For example, the one-dimensional random glide motion of a planar
SIA cluster consisting of four SIAs has been observed in a MD study (Foreman et al. 1992, ?).
It has been shown in this study that small loops consisting of four, five and six atoms transform
spontaneously from the faulted into the highly glissile unfaulted configuration. In addition, the
change in the Burgers vector of a cluster consisting of four SIAs has been observed to occur
in these studies. From the lifetime of one configuration a value of 0.4 eV is estimated for the
barrier against this transformation. The height of the barrier of orientation change is expected
to increase significantly with increasing cluster size. In fact, the idea of changes between crys-
tallographically equivalent 1D direction has been supported by experimental evidences, such as
the saturation of void growth in void lattices, which can be rationalized in terms of 1D diffusion
of SIA clusters only if direction changes in the 1D diffusion and/or some transversal diffusion
(for instance, by random self-climb of small dislocation loops) is included (?). The MD studies
show that small, strongly bounded interstitial clusters (two to about five-SIA clusters) exhibit
long-range, three-dimensional (3D) diffusion, which occurs by reorientation of the constituent
< 111 > dumbbells from one < 111 > to another (Wirth et al. 2000, Soneda and de la Ru-
bia 2001). As cluster size increase, thermal-activated reorientation from one Burgers vector to
another becomes increasingly more difficult to achieve, no 3D motion is observed even at very
high temperatures. This is another reason that we exclude interstitial cluster of less than four
SIAs in our simulations in order to address the effect of 1D motion of SIA clusters and loops
on the development of heterogenous and segregated accumulation of defects.

The value of the migration energy and pre-factors for defect diffusivity (11.37) used in this
work were collected from MD simulations. Based on extensive MD simulations, Osetsky et al.
(Osetsky et al. 2000a) developed a generalized size dependence of cluster jump frequency to
describe the one-dimensional diffusional transport behavior of SIA clusters

ωn = ω0n
−S exp

(
−〈Em〉

kBT

)
(11.87)

where 〈Em〉 is the averaged effective activation energy, n the number of SIAs in the cluster,
and ω0 is a new, size-independent, pre-exponential factor. The value of 〈Em〉 was found not
depending on size and close to that of the individual crowdion. It was estimated for clusters
containing up to 91 SIAs in iron that 〈Em〉 = 0.023 ± 0.003 eV for 1

2
〈111〉 clusters in bcc

iron. By fitting to the simulation results of various cases, the values ω0 = 6.1 × 1012 s−1,
S = 0.66 for Fe describe the MD data very well and were used in our KMC simulations. As
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we mentioned before, there is another crucial quantity that has to be determined, the barrier
against the change in Burgers vectors of clusters. However, to date, there are only very limited
information on the activation energy for direction change of interstitial clusters, and systematic
MD simulations for this vital parameter like what has been done for migration energies and
diffusion pre-factors of clusters is yet to come.

Soneda and Diaz de la Rubia (Soneda and Diaz de la Rubia 1998) studied the direction
change frequency of 2-SIA and 3-SIA clusters in α-Fe using MD simulations and obtained
the activation energies for direction change were 0.09 eV and 0.27 eV for the 2-SIA and 3-
SIA clusters respectively. Gao et al. (Gao, Henkelman, Weber, Corrales and Jonsson 2003)
investigated possible transition states of interstitials and small interstitial clusters in SiC and
α-Fe using the dimer method (?) . The transition states of defects in α-Fe have been studied as
a function of cluster size, and the saddle points generally increase in magnitude with increasing
clusters. The migration energies of interstitial clusters along the < 111 > direction range from
0.0022 to 0.039 eV, which is consistent with those obtained using MD simulations (Osetsky et
al. 2000a). The activation energies of directional change are 0.163, 0.133 and 0.342 eV for 1-,
2-, and 3-SIA clusters, respectively, which are smaller than the migration energy of a single
vacancy. The value for a cluster of size 4 and 5 is about 1 eV.

In our work, we assumed that the relationship between the activation energy of directional
change for a interstitial cluster and the size of the cluster is linear, and is equal to 0.05 eV per
interstitial atom. In fact, MD simulations have shown that the motion of small SIA clusters
and loops is the result of the motion of individual crowdions (Bacon et al. 2000, Osetsky et al.
2000a) and the reorientation may occur in a one-by-one fashion (Osetsky et al. 2000b), so that
it is perhaps acceptable to assume a size-dependence of the probability of reorienting all the
crowdions to the same new direction. The value of 0.05 eV/atom is probably an underestimation
for the energy barrier for direction change of a small cluster, say size less than four, but for bigger
clusters it dose reflect the characteristic of preferentially one-dimensional motion of interstitial
clusters. Fig. (11.10) show the trajectories of the centres of mass of a 6-SIA cluster for diffusion
at 300 K with respect to different energy barriers for directional change.

In addition to interstitials, there are also a large number of vacancies produced around the
core of displacement cascades. Both experimental observations (?, ?) and MD simulations (see
a review by Bacon et al.(Bacon et al. 2000)) have as well confirmed the intracascade clustering
of vacancies in bcc iron. Small clusters of vacancies are metastable in the form of planar or
3-D, void-like configurations, and during high temperature annealing transform into cloud-like
complexes. Although such loose clusters are mobile in the bcc structure, the diffusivity of
vacancies (migration energy is about 0.8 eV for the single vacancy) is much lower than that
of interstitial clusters. Therefore, instead of introducing randomly located vacancies of various
sizes as an initial configuration into the simulation box and making them mobile and capable of
agglomerating, we use immobile, compact (in other word, spherical micro-voids) configurations
of vacancy clusters. In fact, MD simulations revealed that the defect structure of the cascade
is characterized by a vacancy-rich core surrounded by a shell of SIAs. The formation of small
SIA clusters results in the creation of a vacancy supersaturation, which leads to void swelling.
Our model is actually taking this vacancy-rich core region as a spherical recombination center.
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Figure 11.10: Centre-of-mass trajectories of a 6-SIA cluster migration for 10000 consecutive
steps.

The size of a recombination center or micro-void is given by an equivalent diameter, i.e. the
diameter of a sphere with a volume equal to the number of vacancies, which varies in terms of
a Gaussian distribution with mean 100 and standard deviation 8 according to the number of
Frenkel pair created in one cascade summarized in Eqn. (11.84).

11.4 Comparison of KMC model with Experiments

Doses up to 5.21 × 10−3 dpa were simulated at a damage rate of 5 × 10−8 dpa/s, and the
damage accumulation was observed as a function of dose. Fig. 11.11 shows the interstitial
cluster density as a function of dose up to 5.21 × 10−3 dpa with considering recombination, as
well as of dose up to 1.48 × 10−3 dpa without recombination centers. In addition, SIA clusters
containing more than 100 interstitial atoms ( diameter > 3 nm) are counted as visible clusters,
and the corresponding cluster density is calculated and compared with the experimental results
for bcc Fe irradiated at � 70 oC in the HFIR rector at Oak Ridge National Laboratory to
displacement dose levels in the range of 10−4 to 0.72 dpa (Eldrup et al. 2002). At initial stage
(dpa ¡ 10−4 dpa), the cluster density increases almost linearly with damage dose; the increasing
of cluster density is then slow down when the dose level is higher than 10−4 dpa and lower
than about 3 × 10−3 dpa; and the cluster density approaches to a saturated value and does
not change much beyond the dose level of 3.5× 10−3. When the simulation started, the cluster
densities of both interstitials and vacancies are rather low, and the chance that one interstitial
cluster could get close enough to another interstitial or vacancy cluster so that they can feel each
other in terms of elastic interaction is rather small as well. Because of the 1D motion of SIA
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clusters, the recombination cross section with vacancy clusters produced in the cascade core as
well as the agglomeration cross section with other interstitial clusters are small. Theoretically,
there are only two mechanisms by which a SIA cluster could change its diffusion direction:
either thermal activation or the interaction with other defects or microstructures. The effect of
thermal activation can be rule out here because our simulation is carried out at constant room
temperature. At low damage dose level, the big distance between clusters makes interaction
between them weak and can hardly affect the migration of SIA clusters, which results in the
density of clusters increasing linearly with dose.

When the damage builds up to a certain level, say 10−4 dpa in our simulations, the simula-
tion box becomes crowd, the newly introduced interstitial clusters as well the mobile existing
clusters would have more possibilities encountering one another and interacting with each other.
The events of recombination and agglomeration would occur more frequently than the early
stage. Consequently, these reactions slow down the increasing of the number of SIA clusters in
the simulation box. Once the damage accumulated to some extent, 3.5× 10−3 dpa in our simu-
lation, the number of disappeared interstitial clusters due to annihilation and clustering and the
number of clusters produced by new cascade reach to a dynamic equilibrium, and the density of
clusters in the simulation box thereby reaches to saturation. The vacancy cluster, micro-voids
in our simulation, had a significant influence on the density of interstitial clusters. As we can
see in Fig. 11.11, at dose level lower than 5 × 10−4 dpa the difference between the cases of
including micro-voids and no micro-voids is not distinct. But the difference was broadened as
the dose increasing, at a dose of 1.5× 10−3 dpa, the cluster density of the micro-voids free case
is about 50% higher than the case with micro-voids. It indicates that the existence of vacancy
clusters considerably reduces the density of mobile interstitial clusters and recombination plays
an important role in the microstructural evolution.

Although the number density of SIA clusters reached a steady state after 3.5 × 10−3 dpa,
the sizes of clusters are still evolving with dose increasing. More clusters with bigger size
were developed at high dose level, for example, clusters consisting of more than 180 SIAs
were observed in our simulations. In order to compare the results from our simulations with
the experimentally measured cluster densities, it is necessary to assume a minimum size that
can be resolved in the experiments. A value between 1.5 and 2 nm in diameter is quoted
in the literature as the minimum size resolved by TEM (Singh and Zinkle 1993). For the
infinitesimal dislocation loop approximation adopted here, the relationship between radius of
the loop (R) and the number of defects (N) is N = 2

1
2 πR2/a2

0 for a bcc material, where a0 is
the lattice parameter. For a radius of 1.4 nm that corresponds to approximately 100 defects in
bcc iron. Considering visible interstitial clusters as those with more than 100 interstitial atoms,
we extracted the total ’visible’ cluster density from the simulations, as we show in Fig. 11.11
as well. We can see that the fraction of ’visible’ interstitial clusters obtained in the simulations
presented here is bigger than the experimental measurement in high dose level, but still in good
agreement. The number of SIA clusters as a function of cluster size at dose of 5.2 × 10−3 dpa
is demonstrated by the histogram in Fig. 11.12. More than half of the total interstitial clusters
consist of more than 30 defects though small clusters consisting of less than 10 SIAs still have
the highest value for one single section. It can expected that distribution of Fig. 11.12 will
shift towards the bigger cluster size as damage accumulating.



11.4. COMPARISON OF KMC MODEL WITH EXPERIMENTS 427

We would like to spend a bit more discussion on the size of interstitial clusters because it
brings up another very important issue for KMC simulations, to determine the size at which SIA
clusters may be considered mobile, i.e., which clusters are glissile dislocation loops and which are
not. MD simulations have shown that even though the activation energy for migration of clusters
is constant with size, the cluster diffusivity decreases as the cluster size increases (see a review
by Osetsky et al. (?)). Due to the same reason the clusters measured in experiments as often
referred as immobile or sessile because of their low mobility. For bcc iron, the large stacking
fault energy makes the occurrence of faulted loops very unlikely, and therefore all interstitial
clusters in the KMC simulation are considered to be mobile loops. The only mechanism that
a mobile interstitial cluster could turn into an immobile cluster is either getting trapped by a
dislocation or getting locked with another cluster on the condition that both clusters are big (>
37 SIAs) and have different Burgers vectors. Due to the low temperature, the re-arrangement
of a cluster so that it can become glissile cannot happen in our simulations. However, a cluster
of large size is virtually immobile in KMC simulations due to the small pre-factor. Therefore,
it would be more meaningful to compare the density of large clusters with the experimental
observation.

Figure 11.11: SIA cluster densities as a fuction of accumulated dose for bcc iron irradiated
at 300 K under cascade irradiation at 5 × 10−8 dpa/s. Simulation results are compared to
experimental data from TEM observation of iron irradiated in HFIR ((Eldrup et al. 2002)).

Characteristics of Decoration and Raft Formation

As we mentioned before, the main character of the presented KMC simulations different
from other authors’ work is that the elastic interaction between defects and microstructures
has been included and thereby some distinct features of damage accumulation under cascade
irradiation, such as dislocation decoration and raft formation, can actually be studied.

The accumulation and absorption of radiation induced defects in the vicinity of dislocations
is controlled by the interaction between the two components. To dislocation decoration occur,
except for a direct encounter of a mobile SIA cluster with a dislocation, the cluster will generally
be trapped in a region of strong attractive elastic interaction between it and the dislocation.
As expected, at very low dose level (¡ 10−4 dpa) the probability that a dislocation finds a
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Figure 11.12: Size distribution of SIA clusters at a dose level of 5.21 × 10−3 dpa. The red slim
bar is the number of clusters of a certain size, and the yellow thick bar are the total number of
clusters within a certain range of sizes.

cluster in the attractive region and can then affect the motion of the cluster is rare, so that
the decoration phenomenon does not occur in the early stage of irradiation. The decoration
process builds up quickly with dose increasing, and at 3× 10−4 dpa the dislocation has already
got a bunch of interstitial clusters trapped in its neighbouring area. The micro-structural
configuration of interstitial clusters at 1.3×10−3 dpa is shown in Fig. 11.14 where the decoration
by interstitial clusters along dislocation line has become very significant. The accumulation of
glissile interstitial clusters near the dislocation is further intensified at dose of 5.2 × 10−3 dpa
as shown in Fig. 11.15. Generally, when an extremely mobile one-dimensionally migrating
interstitial cluster passes through the neighbourhood of a pre-existing dislocation it will feel
the influence of the strain field of the dislocation. As long as the defect/dislocation interaction
is attractive and the distance is small enough, the interaction of the defect with the stress field
of the dislocation could be so strong that the cluster cannot escape from within the attractive
zone by thermally-activated random walk. Once a interstitial cluster is trapped into the strain
field of a dislocation, it will rotate its Burgers vector to accommodate to the strain field of the
dislocation and tend to migrate along the direction of lowest energy barrier.

Using dislocation dynamics simulation, Ghoniem et al. (Ghoniem et al. 2000b) investigate
the elastic interaction between nano-size prismatic loops and grown-in dislocation loops in bcc-
Fe and fcc-Cu. Their calculation shows that the iso-energy surface for bcc iron has a maximum
width around the edge component of the dislocation. Our simulations show a good agreement
with their result. It can be clearly seen in Fig. 11.15 that the pure edge components of the slip
dislocation gets more SIA clusters trapped in its vicinity than the mixed character segments.
Due to the influence of the strain field of the dislocation, the majority of the decorating clusters
has change their Burgers vector to parallel to the Burgers vector of the dislocation. The trapped
clusters can still serve as sinks for the glissile clusters and increasing their size in terms of
agglomeration before they take Burgers change and finally get absorbed by dislocations. With
the accumulating of clusters along the dislocation line a repulsive force field is then gradually
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building up against further cluster trapping. Fig. 11.13(a) shows contours of the interaction
energy between an interstitial defect cluster of Burgers vector a/2 < 1̄ 1 1 > and an edge
dislocation on the < 1̄ 2̄ 1 > -plane in bcc iron; and Fig. 11.13(b) shows contours of the
interaction energy between an interstitial defect clusters of Burgers vector a/2 < 1̄ 1 1 > and
a pre-existing same type cluster and an edge dislocation on the < 1̄ 2̄ 1 > -plane. As can be
seen, the shielding effect of the decorating defect cluster is clearly illustrated.

When the attractive stress field of the leading dislocation is fully compensated by the exist-
ing clusters, the SIA content in the primary trapping region accumulation achieve saturation
and the decoration process stops. Although the decoration of the leading dislocation is no long
proceeding, the primary region of cluster trapping virtually shifts the stress field of the dislo-
cation and cluster trapping occurs only ahead of the existing dislocation/loop structure where
the interaction remains attractive (Trinkaus et al. 1997). Cluster trapping process whereby
continuous away from the leading dislocation and results in a dislocation wall formation. As
seen in Fig. 11.9(d), our simulations have already shown the extension of cluster trapping and
the formation of dislocation wall.

(a) (b)

Figure 11.13: (a) Local iso-energy contours for the interaction energy of an interstitial cluster
of Burgers vector a/2 < 1̄ 1 1 > with an edge dislocation on the < 1̄ 2̄ 1 > -plane in bcc
iron; (b) local iso-energy contours of the interaction energy of an interstitial defect clusters of
Burgers vector a/2 < 1̄ 1 1 > with a pre-existing same type cluster and an edge dislocation on
the < 1̄ 2̄ 1 > -plane.

In addition to dislocation decoration, the formation of rafts is another major striking fea-
ture of microstructural evolution of cascade induced irradiation damage. Fig. 11.16 shows a
configuration of rafts of interstitial clusters formed at dose level of 1.8×10−3 dpa. The Burgers
vectors of the clusters making up of a raft are parallel to each other, which is in agreement
with the experimental observation. When an interstitial cluster approaches to another one,
they are inevitably subject to the influence of the strain field of each other. If the interaction
between them is attractive and strong enough to overcome the energy barrier for directional
change, the clusters will comply with the interaction between them in terms of adjusting the
relative positions and orientations. This scenario is similar to the pinning of clusters which
has been demonstrated in the previous section. The nature of the configuration of pinning
clusters is still glissile, which has been observed in our simulations. The development of this
pinning procedure eventually leads to formation of an extended stable complex that consists of
a bunch of SIA clusters lying on parallel planes. As the number of clusters within a complex
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increases, the mobility of the complex as a whole decreases. Using MD simulations Osetsky et
al. investigated the mobility of complexes of glissile SIA clusters and demonstrated that the
complex of a compact set of five clusters of size 19, 19, 37, 61 and 91 SIAs separated by a mean
distance equal to the average cluster diameter was immobile (?). The decreasing of mobility
of individual clusters can be attribute to the elastic interaction between the member clusters
within one complex, which prevents a cluster from breaking the strain field of the others and
jumping away. The complex of clusters can grow further, attracting more glissile cluster with
the same Burgers vector, thereby creating a raft of SIA clusters.

Figure 11.14: A snap-shot of the micro-structure of interstitial clusters at 1.3×10−3 dpa, where
the decoration by interstitial clusters along dislocation line can be clearly seen.

General Conditions for Decoration and raft Formation

There are two key issues that play important roles in the process of damage accumulation
and resultant dislocation decoration and raft formation: (1) the one-dimensional motion of
glissile SIA clusters created in displacement cascades, and (2) the interaction between defects
and microstructure. The restriction of diffusion of SIA clusters to 1-D leads to a reduction
in the reaction rate with other defects because one dimensionally moving clusters are able to
travel in the atmosphere of randomly distributed lattice defects through larger distances than
those 3-D moving ones, and consequently the possibility that such SIA clusters annihilate at
extended sinks such as pre-existing dislocations and grain boundaries increase. At the same
time lattice defects affect the motion of one dimensionally diffusing interstitial clusters in a more
substantial way than they influence the motion of vacancies since one dimensionally moving
clusters have less chances to avoid obstacles by changing their direction of diffusion. Heinisch,
Singh and Golubov (?, ?, ?) investigated the effects of one-dimensional, three-dimensional and
mixed one-dimensional/three-dimensional migration (one-dimensional diffusion with direction
changes) on defect reaction kinetics by using Kinetic Monte Carlo simulations. Significant
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Figure 11.15: A snap-shot of the micro-structure of interstitial clusters at 5.2×10−3 dpa, where
the accumulation of glissile interstitial clusters near the dislocation is further intensified.

Figure 11.16: A close view of the configuration of a raft of interstitial clusters formed at dose
level of 1.8 × 10−3 dpa.
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effects of Burgers vector changes on the reaction kinetics of the diffusing interstitial clusters were
demonstrated. The functional relationships between the sink strength, the size of sinks and the
average distance between direction changes during mixed one-dimensional/three-dimensional
migration were explored. Trinkaus et al. (Trinkaus et al. 1997) have shown that a grown-
in dislocation would have a large drainage area for accumulating one-dimensionally migrating
glissile loops in its neighborhood. Our simulation also demonstrates that even at a fairly low
dose of 1.3× 10−3 dpa a quit clear decoration phenomenon has already occurred in the vicinity
of the pre-existing dislocation loop. A detailed analysis of the conditions for the accumulation
of glissile SIA clusters near dislocations as well as the dose and temperature dependencies of
this phenomenon can be found has been carried out by Trinkaus et al. (?) and will not be
repeated here.

The energy barrier for directional change is a crucial quantity in controlling when, how and in
what extend the dislocation decoration and raft formation occur. It determines the maximum
ranges for the elastic interaction that could be strong enough to surpass the barrier and thereby
lead to Burgers vector change, as well as the trapping region in the vicinity of dislocations and
clusters. In other words, the interaction between defects and microstructure contributes to
the dislocation decoration and formation of rafts in terms of changing the diffusivity and the
characteristics of mixed 1D/3D migration. Brimhall and Mastel (Brimhall and Mastel 1970)
proposed that loops move through the lattice by a combination of prismatic glide and self-
climb and form the rafts. Our present simulations, however, suggest that raft formation could
be achieved just by prismatic glide of glissile interstitial clusters under the condition of one-
dimensional migration combined with strain-field-induced Burgers vector changes. A necessary
condition for an undelayed and pronounced formation of rafts of glissile clusters is that the
group of clusters having the same Burgers vector is big enough to trapping a single glissile
cluster in the strain field formed by the group and prevent any trapped cluster from detrapping
or Burgers vector change before it is immobilized by other clusters in the same group. Our
simulations indicate that small patches containing two or three clusters is still mobile; more
specifically, these small patches still perform one-dimensional migration. With the size of a
patch increasing the mobility of the patch decreases, and a raft consisting of more than five
clusters is literally immobile. Due to thermal activation or interaction with other defects, a
interstitial cluster trapped in the outer region of a raft may break loose the constrain of the
strain field of the raft and detrap from the raft.



Chapter 12

Dislocation Representation of Cracks

Instead of solving Equation (??) which needs an FEM method or other complicated techniques
(?), we here propose another discrete method based on the Parametric Dislocation Dynamics.

According to Bueckner’s Principle (?), the stress state around a general 3-D crack in an
elastic body subjected to general external loading is identical to the summation of the following
two parts:

1. The stress generated if the same external loading acting on the same solid but assuming
the crack plane is welded

2. The stress from the same crack in the body subjected only to the internal pressure, or
the the counterforce generated in previous step, acting on the same plane.

ua ua

fa

=

fa

+

fc
fc

Figure 12.1: Illustration of the solution to general crack problem according to Bueckner’s
Principle.

Thus, the problem can be divided into two steps for the solution of a general crack problem
in an elastic solid. First, under the applied load fa and displacement constraint ua as shown in

433
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Figure (12.1), and assume the original crack is welded, obtained the stress distribution σ1, and
then the force vector along the crack plane fc. The second step is to apply −fc on the crack
plane and solve for the stress distribution σ2. The final stress distribution is thus obtained by
summing up σ1 and σ2 together. We here try to use the discrete dislocation representation
method in the second step.

Following Bibly and Eshelby’s ideas, the general 3D crack surface is assumed to be filled with
layers of material strips. The crack is then welded , and the load is applied, thus producing
a group of dislocation loops along the crack surface. The stress state in this solid, σt, is the
combination of the applied load and stress from these dislocations. Note that the acting force
along the original crack plane can be adjusted to zero by way of adjusting the position or
thickness of these dislocation loops. When the welded surface is cut, the overall stress state in
the solid will not be changed, since the boundary condition is not changed. According to the
uniqueness theorem, the stress distribution of the crack system is the same as σt produced by
the previous steps. In this way, the problem is now to solve the distribution function for the
dislocation loops.

By minimization of the total elastic energy of the whole system, a variational form of the
governing equations of motion of dislocation loops can be derived, and the spatial distribution is
easily obtained. Thus, one can obtain the final configuration of the crack when each dislocation
loop reaches its equilibrium state, with the whole system reaching a minimum free energy. Due
to the complexity of the stress field and the shape of the crack, an accurate method is needed
to obtain reliable quantitative data on the process of the energy minimization. For that reason,
the parametric dislocation dynamics (PDD) method is employed here for the simulation.

Note that either solving for the length of the Burgers vector or the loop position, one can
achieve force balanced. To simplify the problem, we here set the value of the Burgers vector b
of each dislocation loop as:

b = αfc (12.1)

Where, α is a constant related to the selection of the length of the Burgers vector. fc is the
force acting on the crack plane, as defined in Figure (12.1). It is interesting to point out that
fc is not uniform on the crack plane especially under general 3-D loading. Hence the Burgers
vector along the representation dislocations are different. We call here the dislocation on the
crack surface as Somigliana dislocation, while the dislocation inside the material as Volterra
dislocation, since the Burgers vector is usually the same along the dislocation line inside the
material.

We here develop a dynamic addition-deletion strategy for the numerical simulation to obtain
the final distribution of dislocation loops. For a given crack, an initial distribution of three
equally separated dislocation loops are placed on the crack plane. The shape is chosen according
to the crack outer boundary shape with the outermost one chosen as the crack outer boundary,
and outermost one is fixed during the whole simulation (Here we assume that there is no crack
propagation.). Under the combined effect of their mutual interactions, stress from the applied
load and their self-force, these Somigliana dislocations will either move and stretch towards
the outermost boundary if the effect of the applied load is dominant, or shrink if the self-force
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is dominant, until they reach an equilibrium state. In the simulation process, new loops are
continuously added to the simulation, and loops that collapse are taken out of the simulation.

In the adjusting process, once the innermost loop expands when the repulsive force from
other loops is less than the applied load, its characteristic length r will be larger than a critical
value r0, and a fresh new loop is generated in the center. r0 can be given by the equilibrium
position of the loop under the applied load and self-force, or a very small set value. The new
loop has the same property as the old one, except that its Burgers vector is chosen locally by
Equation (12.1). The total number of Somigliana dislocations is thus increased by one. If the
repulsive force on the innermost loop is too large, making its characteristic length r smaller
than r0, its self-force makes the loop contract and finally collapse to zero. This loop is taken out
of the simulation. Thus, the total number of Somigliana dislocations on the crack plane is then
decreased by one. With this dynamic addition-deletion process, a final equilibrium distribution
of dislocation loops is obtained.

12.1 Numerical Simulations of General 3-D Cracks

We analyze here the stress field of different shape cracks under either mode-I or mode-II loading,
and check the numerical precision of the developed method.

12.1.1 Penny-shaped Crack

The stress distribution in an infinite solid containing a penny-shaped crack under arbitrary
loading has been extensively studied in the past. Sack (?) and Sneddon (?) first solved the
problem of a penny-shaped crack opened by pressure applied over its surface in an infinite
elastic solid. Collins (?) later investigated the stress distribution of a penny-shaped crack in a
thick plate. Kassir and Sih (?) studied elliptical cracks under arbitrary loading, and compared
the results of the stress intensity factor under shear loading with different loading directions.
A comparison between the dislocation distribution method and the analytical results will be
given here to ascertain the numerical accuracy of the present method.

Pure Shear Loading

Consider a penny-shaped crack with diameter of 2 r0, as shown in Figure (12.2)a, under constant
pure shear loading σxz = τ . We construct the local coordinate system on the crack plane as
shown in the figure. An initial distribution of dislocations is put inside the crack surface, with 3
equally spaced circular dislocation loops, including the outermost static one which prevents all
others moving outside. The applied load generates a uniform shear stress field σxz. According
to Equation (12.1), the Burgers vector of the Somigliana dislocations can be chosen uniformly
as:
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b = bi

Here, b is constant number since τ is constant.

( b )( a )

Figure 12.2: Distribution of crack dislocation loops of penny-shaped crack under mode-II load-
ing with τ/µ = 0.004. (a) illustration of local coordinate system. (b) Final distribution of crack
dislocations.

Figure (12.2)b illustrates the final equilibrium distribution of dislocation loops under the
applied shear load τ/µ = 0.004. In the simulation, the constant b is chosen as b/r0 = 4× 10−4,
the shear modulus µ = 50 GPa, Poisson’s ratio ν = 0.31, and crack radius r0 = 1000 a. As
shown in the figure, 9 dislocation loops are fitted in the crack plane by using the addition-
deletion strategy. The energy of a screw segments is lower than that of a edge one per unit
length, as self-force of screw component tends to be higher or stiffer than that of a edge one.
Thus the edge component tends to stretch more than the screw one, as shown in the figure,
and a slightly oval configuration is generated for each loop. Due to the effect of the outmost
circular loop, the ratio of the long to short axis of the oval loop decreases from the inner to
the outer, as the effect of the outer dislocation loop becomes stronger. It is shown in the figure
that the minimum distance of the two outermost loops is within 10 b. In order to capture their
mutual interaction with high precision, more Gaussian quadrature points are used in the line
integral for stress calculation.

Figure (12.3)a shows the distribution of σxz as a ratio of the applied shear load τ , compared
with the analytical solution obtained by Kassir and Sih (?). The relative error along the y-
direction is shown in Figure (12.3)b. Within a small range of distances from the tip (≈ 2 %
of r0), the stress drops quickly, and tends to a saturated value which is equal to the applied
stress. When the distance is far from the crack tip, the stress is not proportional to r−1/2, as in
two dimensional cracks. When the distance is less than 0.5% of r0, the relative error is larger
than 10%. The main error comes from the the Fast Sum Method which is used in the stress
calculation. As mentioned in (?), the relative error of the stress tends to be higher when the
field point approaches the dislocation loop. More segments or Gaussian quadrature points are
needed for higher precision. In our simulation, when the distance is extremely small (i.e. within
a distance of 0.5 % of the radius from the crack tip), the error is inevitably high, since only 16
points are used for the integration for saving CPU time. When the distance increased to 1% of
the radius r0, the relative error is decreased to 5% which is acceptable in numerical simulation.
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Figure 12.3: Comparisons of the stress component σxz along y-direction from the final disloca-
tion distribution between current numerical results and analytical results. All the other loading
conditions are the same as that in Figure (12.2) (a) The distribution of σxz. (b) The relative
error of σxz.

Pure Tensile Loading

In the previous section, when shear loading is applied to the penny-shaped crack, the only
motion of crack dislocations is glide along the glide plane. But when the same crack is subjected
to tensile loading, b is chosen uniformly according to Equation (12.1) as follows:

b = bk
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Figure 12.4: Comparisons of relative error of σzz for penny-shaped crack under external load
σzz/µ = 0.004. (a) along radial direction, (b) along the vertical direction from the center

The direction of the Burgers vector is chosen normal to the glide plane, thus it is the climb
part of the force that drives the motion of the dislocation loops. With the same addition-deletion
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strategy, Figure (12.4) shows the relative error of σzz along both the z and x directions, when
compared with analytical results (?). The external loading is chosen as σzz/µ = 0.004. With
the increase of the length of the Burgers vector, the mutual repulsive force is increased, and
a smaller number of dislocation loops are required in the final distribution. As a result, there
is a higher relative error in stress computations. When the length is 0.08% of radius r0, a
relative lower number of dislocation loops (4) is enough for the representation of the crack, but
the relative error is high, 91% relative error along the radial direction at 0.005 r0. When b is
decreased to 0.02% of the radius, 18 dislocations are needed. As a result, the error is lowered to
7.65%, and the error along the vertical direction at the crack center is only around 0.1 %. When
the length of the Burgers vector is decreased, more dislocations enter into the computation,
and when it approaches zero, a continuous distribution of dislocations can be obtained. The
error can be lowered to a negligible value, but the price for smaller b is sharp increase in the
CPU time. As discussed in (?), CPU time for the interaction is proportional to N 2, where N
is the total number of segments in dislocations.
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Figure 12.5: Comparisons of crack opening displacement(COD) with the same condition as in
Figure (12.4) except the density of crack dislocation n=18. (a) The COD along diameter. (b)
Recover of the crack opening shape in three dimension.

Since each dislocation stands for a displacement jump, which equals to the length of its
associated Burgers vector, the byproduct of this simulation is that we can reconstruct the crack
opening shape according to the distribution of dislocation loops. The outermost loop stands
for zero displacement, since its function is to confine the motion of the dislocation. When we
count inwardly, the displacement increases one level for each crack dislocation, with a value of
b. Figure (12.5)b shows the final reconstructed crack shape. A comparison of crack opening
obtained by present method with analytical results along the diameter direction is shown in
Figure (12.5)a. When b = 2.0 × 10−4r0, the number of dislocations is 18, and the maximum
relative error is 3.3 % at the center. Since in the simulation scheme, the distribution is discrete,
due to the self-force of each loop, no loop can exist in the center except when the length of
the Burgers vector is chosen as zero, which means that we have a continuous distribution. But
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with decreasing b, the maximum relative error for crack opening displacement(COD) can be
decreased to an acceptable level. The crack shape is more like an ellipsoid.

12.1.2 Effect of a Non-uniform Stress Field

1
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� (p)

r (a)

r
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p��

( b )( a )

Figure 12.6: A penny-shaped crack is subjected to a normal stress inside the crack surface with
a decreasing gradient. (a) the applied stress. (b) correponding crack opening shape

When a non-uniform applied stress directly acts on the surface of the same penny-shaped
crack, the shape no longer preserves an ellipsoid configuration. Both Figure (12.6) and Figure
(12.7) show different crack shapes obtained by the present method. Decreasing normal stress
from the center is applied along the radial direction as shown in Figure (12.6)a, when the stress
is chosen as σ = pr0/r, where p is a constant value, r is the distance from the center, and r0

is the crack radius. To avoid a singularity in the center, a cut-off distance of 0.2 r0 is chosen
here. An increasing normal stress chosen as σ = pr/r0, is applied in Figure (12.7). In these
two cases, the Burgers vector of each crack dislocation is different, and changes according to
its position. Since a higher stress is applied in the center, the central part of the crack penning
shape is more obtrude as shown in Figure (12.6), and more flat with a lower stress as shown in
Figure (12.7).

12.1.3 2-D Straight Crack

Two dimensional cracks have been extensively used in Ductile-to-Brittle transition simulations.
Hence it is important to obtain crack dislocation distributions under different loading conditions.
Notice that once the ratio of the crack length to its width is very large, stress field of the central
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Figure 12.7: A penny-shaped crack is subjected to a normal stress inside the crack surface with
an increasing gradient. (a) the applied stress. (b) crack opening shape

part can be viewed as that of a 2-D crack. We will therefore use the same method to re-construct
the stress field of 2D cracks.

Simple Loading

Considerer a straight crack with a length 2r0 in the x-direction, but with a finite width 20r0 in
y-direction. The normal of the crack plane is chosen along z-direction as illustrated in Figure
(12.8)a.

Unlike the penny-shaped crack, the boundary of the crack surface is a rectangle, and the two
ends in the y-direction are open. Dislocations are assumed to be dipolar loops, with the two
long arms as F-R source type dislocations with opposite line directions, and their ends moving
along the x-direction. The Burgers vector of the two short arms are assumed to be zero, since
there are no displacement jumps at the two end boundaries.

The distribution of dislocation loops on the crack surface is shown in Figure (12.8)b for
r0 = 200 a and a uniform applied tension σzz/µ = 0.004. The shear modulus µ is chosen as 50
GPa, and Poisson’s ratio ν = 0.31. The Burgers vector of the Somigliana dislocations is chosen
uniformly in the format of b = bk. The middle part ( −2r0 ≤ y ≤ 2r0) of the dislocation
is perfect straight, and stress field in this region can be viewed as that of a 2-D crack. As a
result of the distribution, the crack opening shape can also be recovered as shown in Figure
(12.8)c. The relative error of σzz in the center along the x-direction from the crack tip is shown
in Figure (12.9). With the increase in the number of dislocation pairs, the relative error drops
significantly. With only 7 dislocation loop pairs, the relative error is less than 2 % when the
distance is larger than 0.025r0.
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Figure 12.8: Distribution of crack dislocations of a straight crack under mode-I loading with an
applied tension of σzz/µ = 0.004 along the z-direction. (a) the projection view of the crack. (b)
Distribution of crack dislocations, the length of the Burgers vector is chosen as b/r0 = 7.5×10−4

. (c) The crack shape in three dimension
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Figure 12.10: Straight crack under mixed model I & II loading. (a) Crack dislocation distribu-
tion. (b) Comparison of the relative error of σzx with different inclination angle.

When the same crack is subjected to mixed mode I & II loading, the results are shown in
Figure (12.8)a. The applied tension is chosen as σ/µ = 0.004, and shear stress τ/µ = 0.002,
thus the stress tensor on crack surface is:

σ =

⎛⎜⎝ 0 0 0.002
0 0 0

0.002 0 0.004

⎞⎟⎠µ

thus the Burgers vector of each Somigliana dislocation loop is then selected of the form:

b =

⎛⎜⎝ 2.5
0

5.0

⎞⎟⎠× 10−4r0

The Burgers vector has both in-plane and out-of-plane components. Thus the motion of the
dislocation is a mixture of climb and glide.
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The final distribution of dislocation loops is shown in Figure (12.10)a, where there are 11
crack dislocation pairs to represent the crack. Figure (12.10)b shows a comparison of the relative
error for σzx with different inclination angles α to the crack plane. As shown in the figure, when
the distance is larger than 0.05 r0, the relative error decrease to less than 5%.

12.2 Three Dimensional Dislocation Interaction with Cracks

A free crack surface results in additional forces (image forces) on dislocations nucleated close
to the crack tips. On the other hand, such image forces decrease the crack tip stress intensity
factor. Many analytical models have been proposed to study the shielding of a pure edge or
screw dislocation of a two dimensional crack (?, ?). Analytical estimation of shielding effect of
single dislocation (i.e. Equation (??)) has been well utilized in previous 2-D simulations (e.g.
(?)). Devincre and Roberts (?) provided an estimation of the local fracture toughness that is
based purely on crack opening or closing stress components of the dislocation stress field at the
crack tip. In their estimation, if the crack extends into the z -direction, and the crack is on the
y=0 plane, the σyy component of the stress tensor causes crack opening. Then, the local stress
intensity factor is written as

ktip(z) = Kapp +
N∑

i=1

√
µb | σi

yy(zz) |sign(σi
yy(zz)) (12.2)

where N is the total number of dislocation segments and σi
yy(zz) is the yy-component of the

stress field of the i -th dislocation segment at position z along crack tip. This formula gives
a crude estimation for the shielding of general 3-D dislocations. The effects of crack surface
changes due to the applied load and the existence of the dislocation itself are not taken into
consideration. Other methods based on Boussinesq problem of point loading in a half space
(?), or the weight function method (?, ?, ?), have been attempted, but both are painstaking
and not practical in real computations.

A new method based on the 3D discrete dislocation representation method is proposed here.
Recall in Chapter ?? that, when we solve a 3D crack problem, the external load is the only
applied stress, but when there are dislocation loops inside the material, their collective field can
be added to the applied load. The Burgers vector of the dislocation loops on the crack surface
is thus modified as:

b = α(fa + fd) = ba + bd (12.3)

Here, fa and fd are the counterforces of force vectors generated by the applied load and disloca-
tions inside the material respectively, as depicted in Figure (12.1). ba = αfa is the contribution
to the Burgers vector by the applied load, which is usually constant on the crack surface.
bd = αfd is the part contributed by the Volterra dislocations, which is usually not uniform on
the crack surface, and it decreases with the increase of the distance to the Volterra disloca-
tion. Since the stress field of the dislocation decreases quickly, the effective contribution to the
Burgers vector of the crack dislocation is very small.
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With the same procedure of obtaining the final distribution as that in Chapter ??, one can
obtain the overall stress field under both the external load and the Volterra dislocations. The
stress field from such a distribution can be divided into two parts, one is the original stress from
the crack under external loading, and the other is the extra part due to the crack free surface,
and this part is the so-called image stress.

The local stress intensity factor K(x ) at each point x along the crack tip can be easily
obtained from this stress distribution by:

K(x) = lim
r→0

σ(r)
√

2πr (12.4)

Thus the shielding effect of the dislocation Kd can be obtained by

Kd = Ka − Kt (12.5)

Here Kt is the total stress intensity factor obtained by the Somigliana dislocation distribution,
and Ka is the applied stress intensity factor. When Kd is larger than zero, the overall stress
intensity factor is decreased, hence the dislocation has shielding effect on the crack, on the
contrary, when Kd < 0, the dislocation can have anti-shielding effect on the crack.

As a comparison, we here use the 3-D model to simulate the shielding effect on a 2D straight
edge dislocation ahead of a finite crack, and compare that with the analytical results obtained
by Wang and Lee (?). Suppose that a finite crack with a length 2r0 = 1000 a, a width of 20r0,
its tip along [010]-direction, and (001)-plane is the crack plane. Now a straight edge dislocation
with b = 1/2[101](1̄01) is introduced close to the crack. It sits on the slip plane (1̄01) with a
distance d to the crack tip. Before the introduction of the edge dislocation, the crack plane is
already filled with equilibrium state Somigliana dislocations at the applied stress σ/µ = 0.004
as shown in Figure (12.11)a. With the existence of the edge dislocation, the equilibrium state
is broken, and distributed dislocations will re-adjust their configuration till a new equilibrium
state is achieved. From this new equilibrium distribution of Somigliana dislocations, the image
stress as well as its shielding effect can be obtained.

It is shown in Figure (12.11) that with the increase of the distance to the tip, the shielding
effect decreases. The numerical results show that the shielding effects of a dislocation is stronger
by a factor of 2, compared to analytical estimation. This difference can be attributed to the
effect of the extra crack surface deformation due to combination effect of the shear and tension
force from the dislocation itself. While in the analytical results of Wang and Lee (?), the two
effects of the Volterra dislocation is treated separately, leading to two independent groups of
Somigliana dislocations, the shielding effects is the summation of the effect from these two
groups. During the simulation, the applied tension σ/µ is chosen as 0.004, and µ=50 GPa,
ν = 0.31, r0 = 200 a.

Under the same conditions as in Figure (12.11), when the straight dislocation is replaced by
a circular dislocation loop with b = 1/2[101], the shielding effect is shown in Figure (12.12).
The distance of the center of the loop to the crack tip is chosen as d/r0 = 0.2, and r0 = 500 a.
The variation of the stress intensity factor of the loop along the crack tip is shown in Figure
(12.12)b. The contour plot of the {33} component of the stress tensor (σ33) on the crack surface
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is shown in Figure (12.12)a, when the loop radius R0 is chosen as 0.5d. σ33 is always negative,
having a tendency to close the crack, thus it has a shielding effect to the crack. When the
radius is increased, the shear loop is more close to the tip, thus it has a higher shielding effect.
And since the stress field of the loop can only affect a small area, the shielding effect is within
a small zone. The effective shielding area is within −5d ∼ 5d as shown in the figure when the
loop radius R0 ≤ d.
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Figure 12.12: Shielding effect of a shear dislocation loop ahead of crack tip. (a) contour of the
σ33 generated by the loop when its radius R0 is 0.5d. (b) comparison of the stress intensity
factor for different initial source sizes.

12.3 Motion of Dislocations ahead of Crack Tips

Dislocation motion ahead of crack tips is quite complicated, and is a key issue to the under-
standing of the change in the effective stress intensity factor. Assume that a straight dislocation
is emitted from a finite crack tip in Tungsten single crystal, and starts to move away from the
tip. Figure (12.13) shows its configuration and the corresponding shielding effect on the crack.
The size of the crack is chosen as 2r0 = 1000 a, and (100) is its plane. The uniaxial applied
stress is σ11 = 3.0 GPa (or Ka = σ11

√
πr0 = 2.11 MPa

√
m). The Burgers vector of the disloca-

tion is chosen along (111̄)-direction with length 0.274 nm and its glide plane is (101) with an
angle of 45◦ to the crack plane. The length of the loop is initially chosen as 400 a, with its two
ends at (-200 a, 15 b), (200 a, 15 b) respectively. The two ends are confined to slide along the
crack tip direction. We choose the stress exponent m as 2 and the temperature 450 K, all the
other constants are chosen according to Table ??. The force-velocity relation Equation (??) is
rewritten as:

v = M (τ/τ0)
2 (12.6)

Here, M is the effective mobility and M = 2.47 × 10−3 sec/a, v is the nodal velocity.
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Figure 12.13: Motion of dislocation a half loop ahead of a crack tip in Tungsten single crystal.
The initial size of the loop is chosen as 400 a. (a) configuration of the dislocation at different
times. (b) the corresponding shielding effects of the dislocation along the crack.
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Figure 12.14: Contour of the {11} component of the stress tensor from crack tip due to the
applied stress and image stress. (a) t=0, (b) t=0.29 ms, (c) t=0.58 ms, (d) t=1.58 ms, (e)
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Figure 12.15: Motion of dislocation half loop ahead of crack tip. The initial size of the loop is
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The free surface of the crack tends to pull the dislocation back to the crack. In order to
avoid being pulled back and absorbed into the crack, the initial distance of the dislocation to
the crack tip is chosen as 15 b. Under the driving force of the crack, the dislocation starts to
move away from the tip. At its early stages, when t<2.58 ms, due to the image stress, the total
stress applied on the dislocation in the central part is much lower than that at the two ends.
Thus, its speed is much lower, and a concave configuration is generated. With the dislocation
continually moving away from the tip, the effect of the image stress decreases, and the concave
configuration gradually disappear as shown in Figure (12.13)a at t=2.58 ms. Due to the fast
decay of the crack stress, the speed of the nodes in the central part is still lower than that at
the two sides. Thus a flat top is generated, and the flat top becomes longer during the motion.
The shielding effect, expressed as the dislocation stress intensity factor Kd, is shown in Figure
(12.13)b. Kd initially has a maximum value, reaching around 50 % of Ka at the center, but after
0.58 ms, the shielding of the center is only 27 % of Ka. Due to the dislocation loop stretch along
the crack tip, it can cover larger region of the crack tip field, thus more areas of the crack tip
stress intensity factor is lowered. Figure (12.14) shows a contour plot for σ11 produced by the
loaded crack in the presence of the expanding dislocation loop. The influence of the dislocation
is clear in the zone close to the crack tip. Contour plots are shown for t=0, 0.29 ms, 0.58 ms,
1.58 ms, 2.58 ms, 3.58 ms respectively. It can be seen that as the dislocation moves away from
the crack, its influence on the crack field itself becomes small.

Figure (12.15) shows the motion of a dislocation loop and its corresponding shielding effect,
when the initial size of the source is only 40 a. The initial influence range of the dislocation
is very narrow, as can be seen from Figure (12.15)b, when t<0.01 ms. Because the two ends
are confined to slide along the crack tip direction, the concave configuration is very small as
compared to Figure (12.13), A convex shape is easily recovered around t=0.02 ms. At the time
of recovery, the difference between the maximum distance at the central part and the minimum
distance at the two sides is only around 5 a. Thus when compared with the corresponding
value 83 a in Figure (12.13), variation of the nodal speed in the dislocation is not very large,
and there is no flat top in its configuration, as shown in Figure (12.15)a.

12.4 Conclusion

Representation of cracks with 2D distributions of dislocation pileups has been extensively stud-
ied analytically and numerically by previous work. In the continuous method, cracks are as-
sumed to be a distribution of loops with an infinitesimal length of Burgers vector. Solving
singular (in 2D) or hyper-singular (in 3D) integral equations, one can obtain the distribution
function of dislocations. In this work, we assume that the crack surface is filled with discrete
dislocation loops with a finite Burgers vector. Minimization the system Gibbs free energy, the
PDD is utilized to obtain the final equilibrium distribution and the configuration of dislocation
loops under an applied load. The outer dislocation of the distribution is assumed to represent
the crack boundary, and is fixed, while the rest dislocation loops are determined by a dynamic
addition-deletion process. The crack opening displacement is easily obtained from the distri-
bution, since each dislocation loop stands for one layer of displacement jump, and hence the
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crack opening shape can also be easily reconstructed. It is shown that for the penny-shaped
crack under mode-I loading, the maximum relative error of the crack opening displacement
can be lowered to 3.3 % when 18 dislocation loops are used. High accuracy can be obtained
in mode I & II loading in penney-shaped and slit cracks with the decreasing of the length of
Burgers vector of the Somigliana dislocation loops. The relative error of the stress field tends
to be higher when the field point is near to the crack tip, and more nodal points and Gaus-
sian Quadrature points are needed for the same accuracy. The Burgers vector is chosen to be
proportional to the applied load, such that the changes of the applied load will not affect the
dislocation distribution significantly.
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Chapter 13

The Dislocation Core

Many demanding applications e.g. microelectronics, optoelectronics, aerospace, rocket engines
and fuel cells, requires synthesis of structures, such as intermetallic compounds, layered semicon-
ductors etc. made of improved electronic, corrosion resistance, high-temperature intermetallic
alloys. The nucleation and mobility of dislocations play a central role in understanding the
mechanical and physical properties of these materials. While the continuum elasticity theory
predicts well the long range elastic field of a dislocation, it suddenly breaks down within a
few atomic spacings surrounding the dislocation center, known as dislocation core. As a con-
sequence, there has been a resurgence of interest to understand the core structure due to its
primary importance in controlling many phenomena of crystalline plasticity. In spite of the
significant progress that has been made with atomistic models of the dislocation core, the an-
alytical insights into the role of the core remain largely inadequate. In this section, we review
and expand the analysis of the disloctaion core in the scope of the Peierls-Nabarro (PN) model
to develop a better understanding of this phenomenon.

13.1 The Peierls-Nabarro (PN) Model

13.1.1 The Edge dislocation

Let us consider a cubic crystal with an interplanar spacing d. It is convenient to regard the
dislocation of burgers vector b as constructed by slicing the material along the slip plane x0x′

that forms two semi-infinite planes and inserting an extra plane of atoms along the cut 0y in
the lower plane (see fig.). The initial disregistry in displacement in the x direction across the
plane y = 0 of the bottom half plane with respect to the top half is given by

φ0
x = b/2 x > 0 (13.1)

φ0
x = −b/2 x < 0 (13.2)

The two planes are then joined together along x0x′, the upper one being extended and lower
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one compressed, such that there is a perfect alignment of corresponding atoms at infinity. The
system is now in equilibrium under the action of forces applied at the boundaries PP

′
and QQ

′
.

The upper half is said to be in equilibrium by the action of shear stresses acting away from
the origin along the the boundary PP’. Similarly, the shear stresses acting along the boundary
QQ

′
, being equal and opposite to the shear stresses in PP

′
, maintain the equilibrium of the

lower half. It is clear that the relative displacement of an atom at the point x in PP
′
to the

corresponding atom in QQ
′
is given by

φx(x) = 2ux(x) + b/2 x > 0 (13.3)

φx(x) = 2ux(x) − b/2 x < 0 (13.4)

where the displacement, u(x), of an atom at the point x in PP
′
will be equal and opposite to the

displacement of the corresponding atom in QQ
′
in the slip direction, i.e., u(x) is antisymmetric

about the plane y = 0 with the boundary conditions,

ux(∞) = −ux(−∞) = −b/4 (13.5)

It is now convenient to consider that at each point a distance x
′
from the dislocation line, the

displacement ,ux(x), of the upper boundary with respect to the lower boundary results from
the continuous distribution of infinitesimal dislocations with burgers vectors density b

′
(x

′
)dx′ =

−2(dux/dx)dx
′
, so that

b =
∫ ∞

−∞
b
′
(x

′
)dx

′
= −2

∫ ∞

−∞
(dux/dx)dx

′
(13.6)

On the basis of classical elasticity theory (see edge dislocation in infinite isotropic media),
this distribution of dislocation produces a shear stress, σxy, at (x,0), given by

σxy(x, 0) =
µ

2π(1 − ν)

∫ ∞

−∞
b
′
(x

′
)dx

′

x − x′ = − µ

π(1 − ν)

∫ ∞

−∞
(dux/dx)dx

′

x − x′ (13.7)

which is balanced by the corresponding component of the periodic restoring force stress
Fb(ux), i.e. σxy(x, 0) = Fb(ux), acting between atoms on either side of the interface mentioned
earlier. The original PN model assumes this restoring force stress as a sinusoidal function of
bond disregistry φ(x) with period b and alternatively positive and negative in each half period.
Furthermore, it has a limiting form Fb = µφx

d
for small relative displacements. A simple function

of this type takes the form

Fb(ux) =
µb

2πd
sin

2πφx

b
(13.8)

= − µb

2πd
sin

4πux

b
(13.9)
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Equating (13.5) and (13.7), we obtain the integro-differential equation known as the PN
equation,

b(1 − ν)

2d
sin

4πux

b
=
∫ ∞

∞
(dux/dx)dx

′

x − x′ (13.10)

As may be verified by substitution, a solution of (13.8) which satisfies boundary conditions
(13.3), and which represents a single dislocation, is given by

ux(x) = − b

2π
tan−1 x

ξ
, ξ =

d

2(1 − ν)
(13.11)

wherein 2ξ is found convenient to define the width of a dislocation, since the u(x) is numerically
less that b/8, i.e half of its limiting value. This gives us a rough estimation of the extent of
the core region that cannot be prescribed by linear elasticity. From (13.9) and (13.5), the
distribution of shear stress which maintains the equilibrium is

σxy(x, 0) = − µb

2π(1 − ν)

x

x2 + ξ2
(13.12)

and the corresponding Burgers vector distribution from (13.4) is

b′(x′) =
b

π

ξ

x′2 + ξ2
(13.13)

The stress field due to such distribution of Burgers vector can be calculated as

σxx =
µb

2π(1 − ν)
{ 3y + 2ξ

x2 + (y + ξ)2
− 2y(y + ξ)2

[x2 + (y + ξ)2]2
} (13.14)

σyy =
µb

2π(1 − ν)
{ y

x2 + (y + ξ)2
− 2x2y

[x2 + (y + ξ)2]2
} (13.15)

σxy = − µb

2π(1 − ν)
{ x

x2 + (y + ξ)2
− 2xy(y + ξ)

[x2 + (y + ξ)2]2
} (13.16)

σzz = ν(σxx + σyy) =
µbν

π(1 − ν)

y + ξ

x2 + (y + ξ)2
(13.17)

Comparing the stress field with that for a straight edge dislocation, it can be seen that
the parameter ξ in the PN model removes the singularity at the origin (x, y), (0,0). Hence
the PN model substitutes continuum theory to deal with the dislocation core. However, it is
questionable whether Hooke’s law applies since the strains are way high at the core region.
Thus certain corrections need to be introduced.

13.1.2 The Screw dislocation

The analysis for screw dislocation follows exactly in a similar manner as that for an edge
dislocation. Let us assume that the created disregistry in displacement in the z direction is
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given by

φ0
z = b/2 x > 0 (13.18)

φ0
z = −b/2 x < 0 (13.19)

The two planes are then stitched together along yz plane so that the relative displacement
between the atoms can be written in terms of the displacement uz(x) of the crystal as

φz(x) = 2uz(x) + b/2 x > 0 (13.20)

φz(x) = 2uz(x) − b/2 x < 0 (13.21)

subjected to the boundary condition

uz(∞) = −uz(−∞) = −b/4 (13.22)

The displacement are assumed to be produced by a continuous distribution of dislocation
b
′
(x

′
)dx′ = −2(duz/dx)dx

′
, so that

b =
∫ ∞

−∞
b
′
(x

′
)dx

′
= −2

∫ ∞

−∞
(duz/dx)dx

′
(13.23)

This distribution of dislocation produces a shear stress, σyz, at (x,0), given by

σyz(x, 0) =
µ

2π

∫ ∞

−∞
b
′
(x

′
)dx

′

x − x′ = −µ

π

∫ ∞

∞
(duz/dx)dx

′

x − x′ (13.24)

The restoring force stress takes the same form as that of an edge dislocation (see eqn. 13.7),
as a consequence, the integro-differential can be expressed as

b

2d
sin

4πux

b
=
∫ ∞

∞
(duz/dx)dx

′

x − x′ (13.25)

The solution of (13.8) is given by

uz(x) = − b

2π
tan−1 x

η
, η =

d

2
(13.26)

The distribution of shear stress caused by the misfit is

σyz(x, 0) =
µb

2π

x

x2 + η2
(13.27)

and the distribution of Burgers vector

b′(x′) =
b

π

η

x′2 + η2
(13.28)
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The stress field induced anywhere can be shown to be

σyz =
µb

2π

x

x2 + (y ± η)2
(13.29)

σxz = −µb

2π

y ± η

x2 + (y ± η)2
(13.30)

It is interesting to note that η = (1 − ν)ξ. Thus the width of the screw dislocation, 2η, is
less than the width of the edge dislocation, 2ξ.

13.2 Modifications of the PN Model

The original PN model predicts very narrow core width which is not probable in actual crystals.
One obvious reason for this narrowness is due to the assumed restoring force stress law (13.6)
which, in general, does not exist for real crystals. Several attempts have been made over the
decades to rectify the force stress law and enhance the PN model to achieve comparable results
with experiments. They are summarized below:

1. Foreman et al. (1950) suggested a modification by introducing a parameter, namely ’a’,
in the displacement function, ux(x), that controls the width of the dislocation as follows:

ux(x) = − b

2π
tan−1 β

a
, β =

2(1 − ν)x

d
(13.31)

where ’a’ is a parameter greater than unity. When a = 1, this becomes the solution 13.9.
Hence the width of the dislocation is given by w = ad

1−ν
and is a linear function of a. The

corresponding stress distribution and PN restoring force is found to be

σxy(x, 0) = −µb

πd

β

a2 + β2
(13.32)

and

Fb(ux) =
µb

2πad
sin

2πφx

b
= − µb

2πad
sin

4πux

b
(13.33)

respectively. The force stress law, however, has an incorrect initial slope, except when a = 1.
A modified ux(x) is introduced to ensure correct initial slope of the form µφx/d for small φx/d:

ux(x) = − b

2π
{tan−1 β

a
+ (a − 1)

β

a2 + β2
} (13.34)

The resulting stress distribution is then

σxy(x, 0) = −µb

πd
{ β

a2 + β2
+ 2a(a − 1)

β

(a2 + β2)2
} (13.35)
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As dislocation widens, that is as a increases, the maximus stress decreases and its position
move outwards. The sharp rise of stress that occurs when a = 1 simply disappears and gives
smoother type of curve. The restoring force stress can be written conveniently in the parametric
form

2πd

µb
Fb =

1

2a2
2(2a − 1) sin θ − (a − 1) sin 2θ (13.36)

2πφx

b
= θ − a − 1

a
sin θ (13.37)

where θ is given by ξ = a cot θ/2. It can be found that the slope of the Fb curves remain
constant for all values of a, but the amplitudes decrease as a increases, i.e. as the core width
increases.

2. Another method of solving the PN integro-differential equation was proposed by Lejcek
(1976) and was used later by Freeman et al. (1996).

1

π

∫ ∞

−∞
b
′
(x

′
)dx

′

x − x′ =
2(1 − ν)

µ
Fb(u) = −g(x) (13.38)

The restoring force law can be derived from the stacking fault energies γ(u) using the relation

Fb(u) =
dγ

du
. (13.39)

The solution (13.30) can also be obtained using Hilbert transformation. Let the function φ(z)
be chosen in the form

φ(z) =
N∑

k=1

pk∑
n=1

Ank

(z − zk)n
(13.40)

where Ank = ank + ibnk are complex parameters and z = x + iy. The function φ(z) must
carry the following properties: (i) in the upper half plane φ(z) has N poles of the order pk in
the points zk = xk + iξk, (k = 1, ...N), (ii) φ(z) → 0 for |z| → ∞; (iii) the function φ(x) defined
on the real axis by the relation φ(x) = limy→0 φ(z), has the following useful for investigation of
Hilbert pairs:

1

π

∫ ∞

−∞
φ(x

′
)dx

′

x − x′ = iφ(x) (13.41)

Equation (13.33) can be proved using the relation

N∑
k=1

resz=zk

( pk∑
n=1

Ank

(x − z)(z − zk)n

)
= φ(x) (13.42)

If b
′
and g denote the Hilbert pairs of the function φ(x), i.e. φ(x) = b

′
(x) + ig(x), then the

real part of equation (13.33) gives equation (13.30) and the imaginary part has the form

1

π

∫ ∞

−∞
g(x

′
)dx

′

x − x′ = b
′
(x) (13.43)
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Thus b
′
(x) and g(x) = −2(1−ν)

µ
Fb(u) can be written explicitly in terms of x as

b
′
(x) =

N∑
k=1

pk∑
n=1

b
′
nk(x) (13.44)

2(1 − ν)

µ
Fb(u(x)) = −

N∑
k=1

pk∑
n=1

gnk(x) (13.45)

where

b
′
nk =

1

2

[
Ank

(x − zk)n
+

Ank

(x − zk)n

]
(13.46)

gnk = − i

2

[
Ank

(x − zk)n
− Ank

(x − zk)n

]
(13.47)

From the relation between Fb(u) and b
′
(x) given by the PN equation it can be concluded that

the number N of poles of function φ(z) can be interpreted as the number of partial dislocations
into which a total dislocation with burgers vector b dissociates. The positions of partials are
determined by the parameters xk and their widths by ξk. The parameters Ank must satisfy the
condition

u(−∞) = 0; u(−∞) = 0 (13.48)

Fb = 0 for u = 0, u = b (13.49)

and both zk and Ank have to be determined in such a way that the function on the right-hand
side of (13.36b) fits the prescribed force law Fb(u). The number pk which determines the order
of the poles of φ(z) gives an approximation for fitting the prescribed Fb(u). Explicit form of
b
′
nk(x), gnk(x) and unk(x) can be found for various pk in Lejcek(1976) and will not be repeated

here.

3. Later Medvedeva and Freeman (1996) used this to configure the core structure of NiAl
and FeAl. They used two types of dislocations with burgers vector <111> and <100>. It
is sufficient to use parameters N = 1 and pk = 3 in the case of <100> dislocations, and
N = 2 and pk = 2 for <111> dislocations. Using 3.36(a)-3.37(b) one can obtain expressions
for displacements u(x) and restoring forces Fb(u(x)) in convenient parametric forms:

(a) for <111> dislocations

2π(θ)

b
=

1

2

[
θ1 + θ2 − α − 1

α
(sin θ1 + sin θ2)

]
(13.50)

2πd

µb
Fb(u) =

1

2α

[
sin θ1 + sin θ2 + 2

α − 1

α
×
(
sin2 θ1

2
sin θ1 + sin2 θ2

2
sin θ2

)]
(13.51)



460 CHAPTER 13. THE DISLOCATION CORE

(b) for <100> dislocations

2πu(θ)

b
= θ − α − 1

α
sin θ − β sin θ (13.52)

2πd

µFb(u)
=

1

α

[
sin θ + 2

α − 1

α
sin2 θ

2
sin θ + 2 sin3 θ

2
β cos

3θ

2

]
(13.53)

where,

θ1(θ) = 2 cot−1 x − δ

ξ
; θ2(θ) = 2 cot−1 x + δ

ξ
; θ = 2 cot−1 x

ξ
(13.54)

It was assumed that superpartial dislocations are at ±δ and have the same core width
ξ = αd/2(1 − ν). It can be seen that for δ = 0 and θ1 = θ2 we obtain expressions similar to
Foreman et al.(1950) solution, in addition, for α = 1 expression 13.39,40 give original solution
of the PN model. The parameter α, β and δ are determined from the fit to plots of stacking
fault energy (γ).

13.3 The Peierls Stress

The magnitude of the Peierls stress, σp, may be determined if one assumes that the field of
the displacements u(x − l) does not depend on the position of the center of the dislocation l.
In the absence of a dislocation the spacing of atomic planes in the direction of x is defined by
a

′
. When the dislocation is introduced at the position l , the planes, in the upper half of the

crystal at a position na
′
in a direction perpendicular to the dislocation line, will be displaced

w.r.t the lower half by u(na
′ − l), along b. The misfit energy can be considered as the sum

of misfit energies between pairs of atomic planes, and can be written as (Joos and Duesbery,
1997)

W (u) =
∞∑

n−∞
γ(u(na

′ − l))a
′

(13.55)

Then the Peierls stress σp, the maximum stress required to overcome the periodic barrier in
W (u),

σp = max[σ] = max

[
1

b

dW

du

]
(13.56)

Assuming the restoring force to be of the form

F (u(x)) = τmax sin
2πu(x)

b
, (13.57)

the misfit energy can be calculated after integrating (13.43) as

W (u) =
∞∑

n−∞

τmaxa
′
b

2π

[
cos

(
2 tan−1

(
na

′ − l

ξ

))
+ 1

]
(13.58)
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After some manipulation, it finally takes the form

W (y) =
Kb2

4π

sinh 2πΓ

cosh 2πΓ − cos 2πy
. (13.59)

In (13.44) and (13.45) ξτmax = Kb/4π, Γ = ξ/a
′
, y = u/a

′
, K = µ/(1 − ν) and K = µ. To get

the Peierls stress we first have to compute the stress associated with the misfit energy variation.

σ(y) =
1

b

dW

du
= −Kb

2a′
sinh 2πΓ sin 2πy

(cosh 2πΓ − cos 2πy)2
. (13.60)

Maximizing (13.46) yields the Peierls stress

σp = σ(ym), 2 cos 2πym = − cosh 2πΓ +
√

(9 + sinh2 2πΓ) (13.61)

Observe that for narrow dislocations (Γ ≤ 1) and for wide dislocations (Γ ≥ 1). Hence the
Peierls stress for these two extreme cases can be obtained as: (a) for narrow dislocations

σp =
3
√

(3)

8
τmax

a
′

πξ
(13.62)

(a) for wide dislocations

σp =
Kb

a′ e−2πξ/a
′

(13.63)

In the original PN model discussed earlier, τmax was chosen so that, for small displacements,
the elastic limit is recovered. This approximation, however, no longer valid for real crystals
since dislocation cores rely more on the value of the small displacement. Hence, more realistic
approximation for τmax is to take the maximum slope of the generalized stacking fault energy
surface, in the appropriate direction for the dislocation under study.
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Chapter 14

Surface Defects and Atom Clusters

14.1 Surface Defects and Surface Atoms

Deposited adatoms on the substrate can be treated as an atomic defect. Similar to the case
of bulk defects, the stress field of surface defects can be calculated from the response of the
material to a force density on the surface. If the force density is given as Ti, the elastic relaxation
energy Es

el can be written as:

Es
el = −

∫
d�ρ · Ti (�ρ) ui (�ρ) (14.1)

where ρi = (x, y) is the position vector on the surface and ui is the displacement field of the
underlying substrate. Note that this Es

el is the surface relaxation energy. The complete elastic
energy should be Eel = EV

el + ES
el.

In terms of Green’s Function Gij(ρ − ρ′, z), ui, this can be written as:

ui (�ρ, z) =
∫

d�ρ · Tj (�ρ) Gij (�ρ − �ρ′, z) (14.2)

Thus, the elastic strain energy becomes:

Es
el = −

∫∫
d�ρd�ρ′ · Ti (�ρ) Tj (�ρ′) Gij (�ρ − �ρ′, 0) (14.3)

The interaction energy of two defects Eint may be determined by the following equation:

Es
int = −1

2

∫∫
d�ρd�ρ′ [T (1)

i (�ρ) T
(2)
j (�ρ′) Gij (�ρ − �ρ′, 0) + T

(2)
i (�ρ) T

(1)
j (�ρ′) Gji (�ρ

′ − �ρ, 0)
]

(14.4)

For Green’s function, as shown before, we have:
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Gij

(
�R, 0
)

=
1 + ν

πE

[
(1 − ν)

δij

R
+ ν

RiRj

R3

]
(14.5)

For anisotropic crystal surfaces, the explicit expressions of surface Green tensor functions in
the Fourier space are known only for hexagonal crystals (Dobrzynski and Maradudin 1976) and
cubic crystals (Portz and Maradudin 1977).

By expressing the force density T in the following different cases, we can obtain the general
form of the interaction energy.

14.2 Bulk Point Defects

Details of solutions for point defects in the crystal bulk can be found in (Kossevich 1999).
Physically, an interstitial atom in a crystal material can be treated as a point defect in the
bulk. If the equivalent forces exerted on the system have three pairs of forces with equal
value between each pairs applied to that point, we can always describe the system by a spatial
distribution of forces:

Ti (�r) = −KΩ0
∂

∂xi

δ (�r) (14.6)

where K is the total compression modulus. In a cubic crystal or an isotropic medium, Ω0 equals
to the increase in the crystal volume caused by one interstitial atom, which is the product of
dilatation and volume.

If the deformation by the point defect is equivalent to three pairs of forces with different
values of each pairs, we call it as a dipole-type point defects and the force densities has to be
written by:

Ti (�r) = −KΩik
∂

∂xk

δ (�r) (14.7)

In an isotropic case, the dilatation volume tensor Ωik has the symmetric form: Ωik = Ωδik.

Another way to get a better understanding about the equation (14.7) is to follow Mura’s way,
that is the total strain induced by a defect is composed of elastic strain (εel) and eigenstrain
(ε†). Ignoring the boundary terms, we can make the simple derivation as the following:

Eel =
1

2

∫
V

d�rεijσij =
1

2

∫
V

d�r
(
εel

ij + ε†ij
)
Cijklε

el
kl

=
1

2

∫
V

d�rεel
ijCijklε

el
kl +

1

2

∫
V

d�r (∇luk) Cijklε
†
ij
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=
1

2

∫
V

d�rεel
ijCijklε

el
kl +
∫
V

d�r · uk∇l

(
−1

2
Cijklε

†
ij

)
(14.8)

If the point defect is considered, in general case we have ε†ij (�r) = ε0
ijδ (�r) and the force

density becomes the equation (14.7).

Single Surface Adtom

A single adatom on the surface is represented as a dipole-type. Consider one single atom as a
point defect, the force density of point defects is then given by:

Ti (�ρ) = Aij
∂

∂xj

δ (�ρ) (14.9)

where Aij is the symmetric dipole force tensor. In the elastically isotropic case, we have Aij =
Aδij.

Substituting equation (14.9) and (14.5) into equation (14.4), we obtain the elastic interaction
energy between two single adatoms in a simple form:

Es
int =

1 − ν2

πE

A2

ρ3
(14.10)

We can see here that identical defects repel one another. Shilkrot and Srolovitz calculated
the numerical value of the dipole force A = 0.62 eV by atomistic simulations (Shilkrot and
Srolovitz 1997). Thus an order of magnitude estimate for the strength of the interaction can
be evaluated as 0.1 meV for two adatoms within 5 atomic units apart, which is much smaller
than the value reported in (Lau and Kohn 1977).

14.3 Surface Atom Clusters

A direct way to obtain the interaction energy of two monolayer clusters is to consider adatoms
as point defects. Without considering the capillary effect, we can rewrite the equation (14.9)
as:

Ti (�ρ) = Aij∇jc (�ρ) (14.11)

where c is the density of adatoms at a position �ρ.

Doing the same operation as for a single atom, we can find in the isotropic case:
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Es
int =

∫∫
d�ρd�ρ′ (1 − ν2)

πE

A2

R3
c (�ρ) c (�ρ′) (14.12)

However, owing to the new surface formed by a monolayer of atoms, the capillary phenomena
will bring an important effect and the different surface domains will interact with each other
by discontinuous intrinsic surface stresses. This, in turn, can be used express the force density.
As defined in references (Marchenko and Parshin 1980) and (Andreev and Kosevich 1981), the
surface force density Ti can be represented by a divergence of the intrinsic surface stress tensor
τik:

Ti (ρ) =
∂τik

∂xk

(14.13)

The change in the surface stress tensor (τik) can be estimated by the formula:

δτik = ε
(a)
ik na (14.14)

where εa is the energy of atoms in the ath clusters, na is the number of atoms per unit surface
area. Here, the key assumption is that the surface monolayer clusters are treated as a collection
of point defects. Substituting Equations (14.13) and (14.14) into Equation (14.4), and assuming
that the boundary term vanishes, we can obtain:

Eint = −1
2

∫∫
d�ρd�ρ′na (�ρ) nb (�ρ′) ε

(a)
il ε

(b)
k′m′∇l∇m′

[
Gik

(
�R
)

+ Gki

(
−�R
)]

(14.15)

In the isotropic case, we can set ε
(a,b)
ik = ε(a,b)

xx . By applying Green’s Tensor equation (14.5),
the interaction energy assumes the following simple form:

Eint =
∫∫

d�ρd�ρ′ (1 − σ2)

πE

ε(a)
xx ε(b)

xx

R3
na (�ρ) nb (�ρ′) (14.16)

To make an estimation of the order of magnitude of Eint, we know that ε ∼ 0.035 eV/Å
(Alerhand, Vanderbilt, Meade and Joannopoulos 1988). For two planar islands, each of which
have 10 atoms, the interaction energy is about ∼ 0.1 eV when they are 5 atomic distance apart.

14.3.1 Interaction between a line defect and a point defect

As we mentioned in the preceding section, the elastic source of monolayer islands is induced
by the discontinuity of the intrinsic surface stress along the boundary, which means that the
surface cluster can be viewed as a line defect (dislocation). In fact, if we write down the correct
force density of line-type defects, we can do the exactly same thing as we did for point defects.
For example, considering the interaction energy between a single adatom and a surface step,
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since the derivative of the δ function along the direction of the step is replaced by a constant,
we have:

Es
int =

2 (1 − ν2)

πE

DxA

ρ2
(14.17)

where D0 is the force dipole strength of a surface step. Compared with the relation of 1/ρ3 in
Equation (14.10), we can find that the interaction energy of the line defect to be proportional
to 1/ρ2.

14.3.2 Interaction between periodic line defects

A special solution for the equation (14.3) can be obtained in the case of periodic surface domains.
In the isotropic case, it is found that the energy of the periodic structure has a logarithmic
dependence on the period l (Alerhand et al. 1988, Marchenko 1981), that is:

Eel ∼ 1

l
ln

(
l

a

)
(14.18)

Since l is always found to be larger than the lattice parameter a by at least an order of
magnitude, the continuum elastic approach is justified. It should be noted that in this case,
the interaction between domains is a monopole-monopole interaction.

Different types of interaction energy between periodic line defects are completely reviewed
by Shshukin et al. (Shchukin and Bimberg 1999). For example, for periodically faceted surfaces
or periodic arrays of macroscopic step bunches, this is: E ∼ 1/l − 1/l ln(l/a).

Islands with shapes and lattice mismatches

In reality, as deposition continues, surface islands will involve from planar domains into tilted
shapes. If the material system is a heterostructure, the lattice mismatche can also play an
important role in the energy. Thus, and as summarized by Shchukin et al. , the elastic energy
of an island including both bulk and surface contributions is given by 4 terms (Shchukin and
Bimberg 1999):

• The first one is the strain-mismatch elastic energy in a planar film

• The second one is the volume elastic energy by the tilted facets of islands

• The third one is due to the surface stress discontinuity at the edges.

• The last one comes from the interaction between tilted facets and surface stress disconti-
nuity.
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Expressing these four terms using Green’s tensor functions, we can write the complete for-
mula for elastic interaction:

Eel = λε2
0V

−1

2
(c11 + 2c12) ε0

∮
dA
∫

dA′mi (�r) Giα (�r, �r′) σ̃αβmβ (�r′)

−1

2

∫
dl
∫

dl′Ti (�r) Gij (�r, �r′) Tj (�r′)

−
∫

dl
∫

dA′Ti (�r) Giα (�r, �r′) σ̃αβnβ (�r′) (14.19)

where �m is the local normal to the facet of islands, V is the volume of the equivalent planar,
uniform film, Gij(�r, �r

′) is the static Green’s tensor defined for a semi-infinite crystal with a
stress-free surface of a given profile, σ̃αβ = −(c11 + 2c12)(c11 − c12)c

−1
11 ε0δαβ is the stress tensor

in a planar heteroepitaxial film,
∮

dA is defined over both the side facets of the island and the
interface between the island and the wetting layer,

∫
dA′ contains nonvanishing contributions

from side facets of the island only and
∫

dl and
∫

dl′ are carried out over the edges of the island.

Instead of the complicated details of calculation, Shchukin et al. gave us a hint of estimating
the relation between the energy and two islands’ distance by evaluating the second term only.
They obtained the following formula:

E
(2nd)
int =

(c11 + 2c12)
2 (c11 − c12)

2 c2
11

4πc2
11

ε2
0V

2
B1 + 15B2

(
1 − 8m2

xm
2
y

)
R3

(14.20)

where B1 and B2 are two interpolated coefficients of angular dependence of the exact Green’s
tensor by the lowest-order angular polynomial having cubic symmetry. For an isotropic medium,
B2 = 0.



Chapter 15

Computer Programs & Architecture

15.1 Basic DD Program

module variables

implicit none

double precision::norm,pi,nu,m1,m2,m3,x_elp,y_elp,f1,f2,f3,core,

+seg_size,s0,r_cluster,G_shear,a_thick,T_temp

integer :: max_quad, n_points1,n_points2,inside,n_loops,

+n_segments,n_nodes

integer :: k_ref,k_1,k_2,i_loop, i_node

integer, dimension(3)::i_max

character (len=20):: segment_type,mesh

character (len=200):: title

double precision,dimension(3):: mil,burg,b_loc,b_test,center,

+delta,t_vec,QL,QG,R,r_small,r_prime,dr_prime,dr,e_1,e_2,e_3,grid,

+normal,displace,force,zero,mil2,burger2

double precision, dimension(3,3) :: EG,EP,ES,LG1,LPG,LGP,sig_loc,

+sig_glo,delta_loc, sig

double precision, dimension(20) :: mod_R,R3,R5,R111,R112,R113,

+R221,R222,R223,R331,R332,R333,R123,t,w,theta

double precision, dimension(3,20) :: X,DX

469
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double precision,allocatable,dimension(:,:):: PL,PG,tangent,

+r_local,angle,burger

END module variables

!==================================================================

program microplasticity

use variables

double precision, dimension(3)::trans

integer:: k_abs,j_segment,ix,iy,iz,time1,time2,start1,start2,

+finish1,finish2

integer, dimension(8):: values

character (len=8):: today; character (len=10)::time

character (len=5)::zone

call date_and_time(today,time,zone,values)

print *, "date", today

print *, "time=", time

start1 = values(7)

start2 = values(8)

namelist /input/mil,burg,b_test,center,x_elp,y_elp,f1,f2,f3,delta,

+ grid,mil2,burger2,r_cluster,G_shear,a_thick,T_temp

namelist /limits/max_quad,n_loops,n_segments,n_nodes,segment_type,

+ n_points1,n_points2,inside,title,mesh,i_max

OPEN (UNIT=1, FILE="data")

OPEN (UNIT=3, FILE="loop_coord.txt")

OPEN (UNIT=4, FILE="diagnostics.txt")

OPEN (UNIT=7, FILE="local_stress.txt")

OPEN (UNIT=8, FILE="global_stress.txt")

OPEN (UNIT=9, FILE="field_coord.txt")

OPEN (UNIT=10,FILE="surface_mesh.txt",action="read")

OPEN (UNIT=11,FILE="surface_tractions.txt")

OPEN (UNIT=12,FILE="int_energy2.txt")

! Read Data, and prepare basic parameters

call defaults

read (1,input); read (1,limits)

print *,title; write(7,*)title; write(8,*)title
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! write(12,*)title

! Allocate dimensions

allocate(PL(3,n_segments+1),PG(3,n_segments+1),burger(3,n_loops),

+ tangent(3,n_segments+1),angle(n_loops,n_segments+1),

+ r_local(n_loops,n_segments+1))

! Calculate initial conditions

call initial

! Global and Plane Basis Vectors

call base_vectors

!Find local Burgers vector

call transform (EG,zero,burg,EP,zero,b_loc,LGP)

!Generate full dislocation loops

do i_loop=1,n_loops

x_elp=f1*x_elp;y_elp=f2*y_elp

do j_segment=0,n_segments

call loop_generator (j_segment)

end do

seg_size= dsqrt ((PG(1,1)-PG(1,2))**2+(PG(2,1)-PG(2,2))**2

+ +(PG(3,1)-PG(3,2))**2)

end do

if (segment_type=="spline")then; call tangent_vec; end if

select case (mesh)

! Uniform Cartesian Mesh (i_max(1)*imax(2)*imax(3))

case ("global")

do ix=0,i_max(1)

do iy=0,i_max(2)

do iz=0,i_max(3)

QG(1) = ix*grid(1)
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QG(2) = iy*grid(2)

QG(3) = iz*grid(3)

call transform(EG,zero,QG,EP,center,QL,LGP)

call stress_calcs

call int_energy2

call inner_product(sig_glo,b_test,t_vec)

write (11,fmt=101)QG,t_vec

end do

end do

end do

case ("local")

!Generate (n_points1*2n_points2*n_nodes*n_loops) local points

! & calculate stress

do i_loop=1,n_loops

do i_node=0,n_nodes-1

QL(2)=0

do k_2=-n_points2,n_points2,1

QL(1)=0;QL(3)=0;

k_abs = abs(k_2)

if (k_abs==0)then; k_abs=1;end if

QL(2) = core*(k_2/k_abs)*k_abs**f3

do k_1=0,n_points1

call transform(EP,center,QL,EG,zero,QG,LPG)

call stress_calcs

end do

end do

end do

end do

case ("surface")

!Calculate tractions on a surface mesh

read (10,fmt=*)QG,normal

call transform(EG,zero,QG,EP,center,QL,LGP)

call stress_calcs

write (*,101) sig_glo

call inner_product(sig_glo,normal,t_vec)

write (*,102) QL,QG,t_vec

write (11,fmt=101)QG,t_vec
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case ("nodes")

!Calculate force at all loop nodes

do i_loop=1,n_loops

do i_node=0,n_nodes-1

do m=1,3

QL(m)=PL(m,i_node)

displace (m) = burger(m,i_loop)

end do

call stress_calcs

call inner_product(sig_glo,displace,force)

end do

end do

end select

call date_and_time(today,time,zone,values)

print *, "time=", time

finish1 = values(7)

finish2 = values(8)

time1 = finish1 - start1

time2 = finish2 - start2

print *, "cpu_time= seconds"

write(unit=*,fmt=103)time1

print *, "cpu_time= milli-seconds"

write(unit=*,fmt=103)time2

101 format(6(2x,es12.5))

102 format(9(2x,es12.5))

103 format(I6)

end program microplasticity

!==================================================================

subroutine initial

use variables

integer:: i,n

call quadrature(max_quad,t,w)
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pi = 2.*dasin(1.d0)

nu =0.34d0

m1 =2*nu/(1-nu)

m2 =m1/nu

m3 =(1+nu)/(1-nu)

s0 = 1./(4.*pi*(1-nu))

norm = dsqrt(mil(1)**2+mil(2)**2+mil(3)**2)

delta_loc =0

sig_loc =0

sig_glo =0

zero =0

do i=1,3

e_2(i)=-mil(i)/norm

end do

end subroutine initial

!==============================================================

subroutine defaults

use variables

mil(1) =1; mil(2) =1; mil(3) =0

burg(1) =1; burg(2) =1; burg(3) =1

dr(1) =2; dr(2) =0; dr(3) =2

max_quad=16; n_nodes=10; n_loops =1

x_elp =200; y_elp =200

n_segments =10; core =1.5

center =1000; delta =0

i_max =10; grid =100

segment_type ="loop"

end subroutine defaults

!==============================================================

subroutine quadrature(n,pos,wt)

intent(in):: n; intent(out)::pos, wt

integer::n; double precision, dimension(20)::pos,wt

select case (n)
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case (2)

pos(1)= -0.577350269189626; wt(1)= 1.000000000000000

pos(2)= 0.577350269189626; wt(2)= 1.000000000000000

case (3)

pos(1)=-0.774596669241483; wt(1)= 0.555555555555556

pos(2)= 0.000000000000000; wt(2)= 0.888888888888889

pos(3)= 0.774596669241483; wt(3)= 0.555555555555556

case(4)

pos(1)=-0.861136311594053; wt(1)= 0.347854845137454

pos(2)=-0.339981043584856; wt(1)= 0.652145154862546

pos(3)= 0.339981043584856; wt(3)= 0.652145154862546

pos(4)= 0.861136311594053; wt(4)= 0.347854845137454

case(5)

pos(1)=-0.906179845938664; wt(1)= 0.236926885056189

pos(2)=-0.538469310105683; wt(2)= 0.478628670499366

pos(3)= 0.000000000000000; wt(3)= 0.568888888888889

pos(4)= 0.538469310105683; wt(4)= 0.478628670499366

pos(5)= 0.906179845938664; wt(5)= 0.236926885056189

case(6)

pos(1)=-0.932469514203152; wt(1)= 0.171324492379170

pos(2)=-0.661209386466265; wt(2)= 0.360761573048139

pos(3)=-0.238619186083197; wt(3)= 0.467913934572691

pos(4)= 0.238619186083197; wt(4)= 0.467913934572691

pos(5)= 0.661209386466265; wt(5)= 0.360761573048139

pos(6)= 0.932469514203152; wt(6)= 0.171324492379170

case(7)

pos(1)=-0.949107912342759; wt(1)= 0.129484966168870

pos(2)=-0.741531185599394; wt(2)= 0.279705391489277

pos(3)=-0.405845151377397; wt(3)= 0.381830050505119

pos(4)= 0.000000000000000; wt(4)= 0.417959183673469

pos(5)= 0.405845151377397; wt(5)= 0.381830050505119

pos(6)= 0.741531185599394; wt(6)= 0.279705391489277

pos(7)= 0.949107912342759; wt(7)= 0.129484966168870
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case(8)

pos(1)=-0.960289856497536; wt(1)= 0.101228536290376

pos(2)=-0.796666477413627; wt(2)= 0.222381034453374

pos(3)=-0.525532409916329; wt(3)= 0.313706645877887

pos(4)=-0.183434642495650; wt(4)= 0.362683783378362

pos(5)= 0.183434642495650; wt(5)= 0.362683783378362

pos(6)= 0.525532409916329; wt(6)= 0.313706645877887

pos(7)= 0.796666477413627; wt(7)= 0.222381034453374

pos(8)= 0.960289856497536; wt(8)= 0.101228536290376

case (9)

pos(1)=-0.968160239507626; wt(1)= 0.081274388361574

pos(2)=-0.836031107326636; wt(2)= 0.180648160694857

pos(3)=-0.613371432700590; wt(3)= 0.260610696402935

pos(4)=-0.324253423403809; wt(4)= 0.312347077040003

pos(5)= 0.000000000000000; wt(5)= 0.330239355001260

pos(6)= 0.324253423403809; wt(6)= 0.312347077040003

pos(7)= 0.613371432700590; wt(7)= 0.260610696402935

pos(8)= 0.836031107326636; wt(8)= 0.180648160694857

pos(9)= 0.968160239507626; wt(9)= 0.081274388361574

case (10)

pos(1)=-0.973906528517172; wt(1)= 0.066671344308668

pos(2)=-0.865063366688985; wt(2)= 0.149451349150581

pos(3)=-0.679409568299024; wt(3)= 0.219086362515982

pos(4)=-0.433395394129247; wt(4)= 0.269266719309996

pos(5)=-0.148874338981631; wt(5)= 0.295524224714753

pos(6)= 0.148874338981631; wt(6)= 0.295524224714753

pos(7)= 0.433395394129247; wt(7)= 0.269266719309996

pos(8)= 0.679409568299024; wt(8)= 0.219086362515982

pos(9)= 0.865063366688985; wt(9)= 0.149451349150581

pos(10)=0.973906528517172; wt(10)= 0.066671344308668

case (11)

pos(1)=-0.978228658146057; wt(1)= 0.055668567116174

pos(2)=-0.887062599768095; wt(2)= 0.125580369464905

pos(3)=-0.730152005574049; wt(3)= 0.186290210927734

pos(4)=-0.519096129206812; wt(4)= 0.233193764591990
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pos(5)=-0.269543155952345; wt(5)= 0.262804544510247

pos(6)= 0.000000000000000; wt(6)= 0.272925086777901

pos(7)= 0.269543155952345; wt(7)= 0.262804544510247

pos(8)= 0.519096129206812; wt(8)= 0.233193764591990

pos(9)= 0.730152005574049; wt(9)= 0.186290210927734

pos(10)=0.887062599768095; wt(10)= 0.125580369464905

pos(11)=0.978228658146057; wt(11)= 0.055668567116174

case (12)

pos(1)=-0.981560634246719; wt(1)= 0.047175336386512

pos(2)=-0.904117256370475; wt(2)= 0.106939325995318

pos(3)=-0.769902674194305; wt(3)= 0.160078328543346

pos(4)=-0.587317954286617; wt(4)= 0.203167426723066

pos(5)=-0.367831498998180; wt(5)= 0.233492536538355

pos(6)=-0.125233408511469; wt(6)= 0.249147045813403

pos(7)= 0.125233408511469; wt(7)= 0.249147045813403

pos(8)= 0.367831498998180; wt(8)= 0.233492536538355

pos(9)= 0.587317954286617; wt(9)= 0.203167426723066

pos(10)=0.769902674194305; wt(10)= 0.160078328543346

pos(11)=0.904117256370475; wt(11)= 0.106939325995318

pos(12)=0.981560634246719; wt(12)= 0.047175336386512

case (13)

pos(1)=-0.984183054718588; wt(1)= 0.040484004765316

pos(2)=-0.917598392222975; wt(2)= 0.092121498837728

pos(3)=-0.801578090733310; wt(3)= 0.138873510219787

pos(4)=-0.642349339440340; wt(4)= 0.178145980761946

pos(5)=-0.448492751036447; wt(5)= 0.207816047536889

pos(6)=-0.230458315955135; wt(6)= 0.226283180262897

pos(7)= 0.000000000000000; wt(7)= 0.232551553230874

pos(8)= 0.230458315955135; wt(8)= 0.226283180262897

pos(9)= 0.448492751036447; wt(9)= 0.207816047536889

pos(10)=0.642349339440340; wt(10)= 0.178145980761946

pos(11)=0.801578090733310; wt(11)= 0.138873510219787

pos(12)=0.917598392222975; wt(12)= 0.092121498837728

pos(13)=0.984183054718588; wt(13)= 0.040484004765316

case (14)

pos(1)=-0.986283808696812; wt(1)= 0.035119460331752

pos(2)=-0.928434883663574; wt(2)= 0.080158087159760

pos(3)=-0.827201315069765; wt(3)= 0.121518570687903
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pos(4)=-0.687292904811685; wt(4)= 0.157203167158194

pos(5)=-0.515248636358154; wt(5)= 0.185538397477938

pos(6)=-0.319112368927890; wt(6)= 0.205198463721296

pos(7)=-0.108054948707344; wt(7)= 0.215263853463158

pos(8)= 0.108054948707344; wt(8)= 0.215263853463158

pos(9)= 0.319112368927890; wt(9)= 0.205198463721296

pos(10)=0.515248636358154; wt(10)= 0.185538397477938

pos(11)=0.687292904811685; wt(11)= 0.157203167158194

pos(12)=0.827201315069765; wt(12)= 0.121518570687903

pos(13)=0.928434883663574; wt(13)= 0.080158087159760

pos(14)=0.986283808696812; wt(14)= 0.035119460331752

case (15)

pos(1)=-0.987992518020485; wt(1)= 0.030753241996117

pos(2)=-0.937273392400706; wt(2)= 0.070366047488108

pos(3)=-0.848206583410427; wt(3)= 0.107159220467172

pos(4)=-0.724417731360170; wt(4)= 0.139570677926154

pos(5)=-0.570972172608539; wt(5)= 0.166269205816994

pos(6)=-0.394151347077563; wt(6)= 0.186161000015562

pos(7)=-0.201194093997435; wt(7)= 0.198431485327112

pos(8)= 0.000000000000000; wt(8)= 0.202578241925561

pos(9)= 0.201194093997435; wt(9)= 0.198431485327112

pos(10)=0.394151347077563; wt(10)= 0.186161000015562

pos(11)=0.570972172608539; wt(11)= 0.166269205816994

pos(12)=0.724417731360170; wt(12)= 0.139570677926154

pos(13)=0.848206583410427; wt(13)= 0.107159220467172

pos(14)=0.937273392400706; wt(14)= 0.070366047488108

pos(15)=0.987992518020485; wt(15)= 0.030753241996117

case (16)

pos(1)=-0.989400934991650; wt(1)= 0.027152459411754

pos(2)=-0.944575023073233; wt(2)= 0.062253523938648

pos(3)=-0.865631202387832; wt(3)= 0.095158511682493

pos(4)=-0.755404408355003; wt(4)= 0.124628971255534

pos(5)=-0.617876244402644; wt(5)= 0.149595988816577

pos(6)=-0.458016777657227; wt(6)= 0.169156519395003

pos(7)=-0.281603550779259; wt(7)= 0.182603415044924

pos(8)=-0.095012509837637; wt(8)= 0.189450610455068

pos(9)= 0.095012509837637; wt(9)= 0.189450610455068

pos(10)=0.281603550779259; wt(10)= 0.182603415044924

pos(11)=0.458016777657227; wt(11)= 0.169156519395003

pos(12)=0.617876244402644; wt(12)= 0.149595988816577
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pos(13)=0.755404408355003; wt(13)= 0.124628971255534

pos(14)=0.865631202387832; wt(14)= 0.095158511682493

pos(15)=0.944575023073233; wt(15)= 0.062253523938648

pos(16)=0.989400934991650; wt(16)= 0.027152459411754

end select

end subroutine quadrature

!===============================================================

subroutine stress_calcs

use variables

integer::i,j_seg

if(segment_type=="loop")then

n_segments=1

end if

if (mesh=="local") then

call point_generator

end if

do i=1,n_loops

do j_seg =0,n_segments-1

if (segment_type=="analytic") then

call Hirth(j_seg)

else

call green(j_seg)

end if

sig_loc= sig_loc+delta_loc

if (mesh=="local") then

sig_glo=matmul(matmul(LPG,sig_loc),transpose(LPG))

else

sig_glo=matmul(matmul(transpose(LGP),sig_loc),LGP)

end if

end do

end do
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call writer

sig_loc=0

end subroutine stress_calcs

!=============================================================

subroutine green(k_seg)

use variables

integer::i

delta_loc=0

do i=1,max_quad

call parametric (i,k_seg)

R111(i)=(-3*X(1,i)/R3(i))+(3*X(1,i)**3 /R5(i))

R112(i)=(- X(2,i)/R3(i))+(3*X(1,i)**2*X(2,i) /R5(i))

R113(i)=(- X(3,i)/R3(i))+(3*X(1,i)**2 *X(3,i) /R5(i))

R221(i)=(- X(1,i)/R3(i))+(3*X(1,i) *X(2,i)**2 /R5(i))

R222(i)=(-3*X(2,i)/R3(i))+(3 *X(2,i)**3 /R5(i))

R223(i)=(- X(3,i)/R3(i))+(3 *X(2,i)**2*X(3,i) /R5(i))

R331(i)=(- X(1,i)/R3(i))+(3*X(1,i) *X(3,i)**2/R5(i))

R332(i)=(- X(2,i)/R3(i))+(3 *X(2,i) *X(3,i)**2/R5(i))

R333(i)=(-3*X(3,i)/R3(i))+(3 *X(3,i)**3/R5(i))

R123(i)=( 3*X(1,i) *X(2,i) *X(3,i) /R5(i))

call stress(i)

delta_loc=delta_loc+sig*w(i)

end do

end subroutine green

!==================================================================

subroutine stress(i)

use variables

double precision, dimension(3,3,3)::g

integer::k,m,n,i
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g = 0; sig = 0

g(1,1,1)=+b_loc(2)*(-2*R113(i)+m1*(R223(i)+R333(i)))+

*b_loc(3)*(2*R112(i)-m1*(R222(i)+R332(i)))

g(1,1,2)=-b_loc(1)*m2*(R223(i)+R333(i))+b_loc(3)*m2*

+(R221(i)+R331(i))

g(1,1,3)=+b_loc(1)*m2*(R222(i)+R332(i))-b_loc(2)*m2*

+(R221(i)+R331(i))

g(1,2,1)=+b_loc(1)*(R113(i)+R223(i)+R333(i))-b_loc(2)*m2*R123(i)+

*b_loc(3)*(+m3*R221(i)-R111(i)-R331(i))

g(1,2,2)=+b_loc(1)*m2*R123(i)-b_loc(2)*(R113(i)+R223(i)+R333(i))+

*b_loc(3)*(-m3*R112(i)+R222(i)+R332(i))

g(1,2,3)=m2*(-b_loc(1)*R221(i)+b_loc(2)*R112(i))

g(1,3,1)=-b_loc(1)*(R112(i)+R222(i)+R332(i))+b_loc(2)*

+(R111(i)+R221(i)- m3*R331(i))+b_loc(3)*m2*R123(i)

g(1,3,2)=m2*(+b_loc(1)*R331(i)-b_loc(3)*R113(i))

g(1,3,3)=-b_loc(1)*m2*R123(i)-b_loc(2)*

+(-m3*R113(i)+R223(i)+R333(i))+b_loc(3)*(R112(i)+R222(i)+R332(i))

g(2,2,1)=+b_loc(2)*m2*(R113(i)+R333(i))-b_loc(3)*m2*

+(R112(i)+R332(i))

g(2,2,2)=+b_loc(1)*(-m1*(R113(i)+R333(i))+2*R223(i))+

*b_loc(3)*(+m1*(R111(i)+R331(i))-2*R221(i))

g(2,2,3)=+b_loc(1)*m2*(R112(i)+R332(i))-b_loc(2)*m2*

+(R111(i)+R331(i))

g(2,3,1)=-b_loc(2)*m2*R332(i)+b_loc(3)*m2*R223(i)

g(2,3,2)=+b_loc(1)*(-R112(i)-R222(i)+m3*R332(i))+

*b_loc(2)*(R111(i)+R221(i)+R331(i))-b_loc(3)*m2*R123(i)

g(2,3,3)=+b_loc(1)*(R113(i)+R333(i)-m3*R223(i))+

*b_loc(2)*m2*R123(i)-b_loc(3)*(R111(i)+R221(i)+R331(i))

g(3,3,1)=+b_loc(2)*m2*(R113(i)+R223(i))-b_loc(3)*m2*

+(R112(i)+R222(i))

g(3,3,2)=-b_loc(1)*m2*(R113(i)+R223(i))+b_loc(3)*m2*

+(R111(i)+R221(i))

g(3,3,3)=+b_loc(1)*(m1*(R112(i)+R222(i))-2*R332(i))+

*b_loc(2)*(-m1*(R111(i)+R221(i))+2*R331(i))

do m=1,3

do n=m,3
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do k=1,3

sig(m,n)=sig(m,n)+g(m,n,k)*DX(k,i)/(8*pi)

end do

end do

end do

do n=1,3

do m=n,3

sig(m,n) = sig (n,m)

end do

end do

end subroutine stress

!==================================================================

subroutine Hirth (j_seg)

use variables

integer::j_seg,m

double precision:: z2

double precision, dimension(3)::T1,es_1,es_2,es_3,v_s1,v_s2,QS

double precision, dimension(3,3)::sig_z1,sig_z2,LPS

do m=1,3

v_s1(m) = PG(m,j_seg)

v_s2(m) = PG(m,j_seg+1)

es_3(m)=(v_s1(m)-v_s2(m))/seg_size

T1(m)=(v_s2(m)+v_s1(m))/2.

end do

es_2 = e_2

call cross_product(es_2,es_3,es_1)

do i=1,3

ES(1,i)=es_1(i);ES(2,i)=es_2(i);ES(3,i)=es_3(i)

end do

call transform (EP,center,QL,ES,T1,QS,LPS)

call analytic_sig(QS,-seg_size/2,sig_z2)

call analytic_sig(QS,seg_size/2,sig_z1)

delta_loc = sig_z2 - sig_z1

delta_loc = matmul(matmul(transpose(LPS),delta_loc),LPS)

end subroutine Hirth
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!=============================================================

subroutine analytic_sig(QS,z2,s_z2)

use variables

double precision::RR2,RR,RR3,lambda,R_lam,c2,bx,by,bz,

+ xs,xy,xz

double precision, intent(in):: z2

double precision, dimension(3), intent (in):: QS

double precision, dimension(3):: b_s

double precision, dimension(3,3)::LGS

double precision, dimension(3,3), intent(out):: s_z2

call transform (EG,zero,burg,ES,zero,b_s,LGS)

xs = QS(1); ys=QS(2); zs=QS(3)

RR2 = xs**2+ys**2+(zs-z2)**2

RR = dsqrt (RR2)

RR3 = RR*RR2

lambda = z2 - zs

R_lam = RR+lambda

c2 = RR*R_lam

bx = b_s(1); by=b_s(2); bz=b_s(3)

s_z2(1,1) =s0*(bx*ys*(1+xs*xs/RR2+xs*xs/c2)/c2+

+ by*xs*(1-xs*xs/RR2-xs*xs/c2)/c2)

s_z2(2,2) =s0*(-bx*ys*(1-ys*ys/RR2-ys*ys/c2)/c2-

+ by*xs*(1+ys*ys/RR2+ys*ys/c2)/c2)

s_z2(3,3) =s0*(bx*(2.*nu*ys/c2+ys*lambda/RR3)+

+ by*(-2.*nu*xs/c2-xs*lambda/RR3))

s_z2(1,2) =s0*(-bx*xs*(1-ys*ys/RR2-ys*ys/c2)/c2+

+ by*ys*(1-xs*xs/RR2-xs*xs/c2)/c2)

s_z2(1,3) =s0*(-bx*xs*ys/RR3+by*(-nu/RR+xs*xs/RR3)+

+ bz*ys*(1.-nu)/c2)

s_z2(2,3) =s0*(bx*(nu/RR-ys*ys/RR3)+by*xs*ys/RR3-

+ bz*xs*(1.-nu)/c2)

s_z2(2,1) = s_z2(1,2)

s_z2(3,1) = s_z2(1,3)

s_z2(3,2) = s_z2(2,3)

end subroutine analytic_sig

!=============================================================
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subroutine parametric (i,k)

use variables

integer::i,k,j,m

double precision::u

double precision, dimension(3)::a0,a1

r_small=QL

select case (segment_type)

!Select parametric representation

case ("loop")

!Elliptic polar curve

theta(i)=pi*t(i)+pi

r_prime(1) = x_elp*dcos(theta(i))

r_prime(2) = 0.

r_prime(3) =-y_elp*dsin(theta(i))

dr_prime(1) = -pi*x_elp*dsin(theta(i))

dr_prime(2) = 0.

dr_prime(3) = -pi*y_elp*dcos(theta(i))

case ("linear")

! linear parametric curve

do j=1,3

a0(j) = 0.5*(PL(j,k) + PL(j,k+1)); a1(j)=0.5*(PL(j,k+1)-PL(j,k))

r_prime(j) = a0(j)+a1(j)*t(i)

dr_prime(j)= a1(j); end do

case ("spline")

!Composite Cubic Spline Curve

u = (t(i)+1)/2

do j=1,3

r_prime(j)=(2*u**3-3*u*u+1)*PL(j,k)+(-2*u**3+3*u*u)*PL(j,k+1)

+ +(u**3-2*u*u+u)*tangent(j,k)+(u**3-u*u)*tangent(j,k+1)

dr_prime(j)=((6*u**2-6*u)*PL(j,k)+(-6*u**2+6*u)*PL(j,k+1)

+ +(3*u**2-4*u+1)*tangent(j,k)+(3*u**2-2*u)*tangent(j,k+1))/2

end do
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end select

do m=1,3

DX(m,i)=dr_prime(m)

R(m) = r_small(m) - r_prime(m)

X(m,i)=R(m)

end do

mod_R(i)=dsqrt(R(1)**2+R(2)**2+R(3)**2)

R3(i)=mod_R(i)**3 ; R5(i)=mod_R(i)**5

end subroutine parametric

!===============================================================

subroutine tangent_vec

use variables

double precision::c,e

double precision, dimension(2)::a,f

n = n_segments

do j=1,3

PL(j,0)=PL(j,n)

PL(j,n+1)=PL(j,1)

end do

!Solve the tangent vectors at each data point

c=4

a(1)=(-c+sqrt(c*c-4))/2; a(2)=(-c-sqrt(c*c-4))/2

DO j=1,3

DO m=1,2

e=1;f(m)=0

do i=0,n-1

f(m)=f(m)+3*e*(PL(j,n+1-i)-PL(j,n-1-i))

e=e*a(m)

end do

f(m)=f(m)/(1-e)

END DO

!Calculate tangent vectors

tangent(j,1)=(a(1)*f(1)-a(2)*f(2))/(a(1)-a(2))

tangent(j,n)=(f(1)-f(2))/(a(1)-a(2))
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END DO

DO j=1,3

tangent(j,0)=tangent(j,n)

tangent(j,n+1)=tangent(j,1)

END DO

do j=1,3

DO ii=2,n-1

tangent(j,ii)=3*(PL(j,ii)-PL(j,ii-2))-4*tangent(j,ii-1)

+ -tangent(j,ii-2)

END DO

end do

end subroutine tangent_vec

!=============================================================

subroutine point_generator

use variables

integer::i,j

i = i_loop

j = i_node

if (k_1==inside) then

QL(1)=(r_local(i,j)-core)*dcos(angle(i,j))

QL(3)=(r_local(i,j)-core)*dsin(angle(i,j));dr=0

elseif (k_1>inside) then;

dr(1) =2.*(k_1-inside)**f3*core*dcos(angle(i,j))

dr(3) =2.*(k_1-inside)**f3*core*dsin(angle(i,j))

elseif (k_1==0) then; dr=0

else

dr(1) = r_local(i,j)*dcos(angle(i,j))/(k_1+4)

dr(3) = r_local(i,j)*dsin(angle(i,j))/(k_1+4)

end if

QL(1) = QL(1)+dr(1); QL(3)=QL(3)+dr(3)

write(4,fmt=101)i_loop,i_node,k_1,inside,r_local(i,j)

101 format(5x,4(1x,I5),1(1x,es12.5))

end subroutine point_generator

!===============================================================
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subroutine loop_generator (j)

use variables

integer::i,j,m

i = i_loop

angle(i,j) = 2*pi*j/n_segments

QL(1) =i*delta(1)+x_elp*dcos(angle(i,j))

QL(2) =i*delta(2)

QL(3) =i*delta(3)-y_elp*dsin(angle(i,j))

call transform (EP,center,QL,EG,zero,QG,LPG)

do m=1,3; PL(m,j)=QL(m); PG(m,j)=QG(m);end do

r_local(i,j)=dsqrt(QL(1)**2+QL(3)**2)

write(3,fmt=102)i,j,QL,QG,r_local(i,j)

102 format (2(1x,I5),7(1x,es12.5))

end subroutine loop_generator

!===============================================================

subroutine base_vectors

use variables

integer:: i,j

do i=1,3

do j=1,3

if(i==j)then

EG(i,j)=1

end if

end do

end do

e_1(1)=1.0/1.414213562

e_1(2)=-1.0/1.414213562

e_1(3)=0.0

call cross_product(e_1,e_2,e_3)

do i=1,3
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EP(1,i)=e_1(i);EP(2,i)=e_2(i);EP(3,i)=e_3(i)

end do

END subroutine base_vectors

!==================================================================

subroutine transform (E2,T2,v2,E1,T1,v1,L21)

! subroutine for coordinate transformations

! v1= translation + rotation (L21*v2) .. all measured in sys_1

use variables

intent (in) :: E2,T2,v2,E1,T1; intent(out) :: v1,L21

double precision, dimension(3) :: v1,v2,T1,T2,T21

double precision, dimension(3,3) :: E1,E2,L12,L21

L21 = matmul(E1,transpose(E2))

LG1 = matmul(E1,transpose(EG))

T21 = T2 - T1

v1 = matmul(LG1,T21)+matmul(L21,v2)

END subroutine transform

!==================================================================

subroutine inner_product(a,b,c)

implicit none

intent(in)::a,b; intent(out)::c

double precision, dimension(3)::b,c

double precision, dimension(3,3)::a

integer:: m,i

do i=1,3

c(i)=0.0

do m=1,3

c(i) =c(i)+a(i,m)*b(m)

end do

end do

end subroutine inner_product

!=============================================================

subroutine cross_product(v1,v2,v3)

intent (in) :: v1,v2; intent(out) :: v3
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double precision,dimension(3) :: v1,v2,v3

v3(1)=v1(2)*v2(3)-v1(3)*v2(2)

v3(2)=v1(3)*v2(1)-v1(1)*v2(3)

v3(3)=v1(1)*v2(2)-v1(2)*v2(1)

end subroutine cross_product

!==================================================================

subroutine writer

use variables

double precision:: polar_r

polar_r = dsqrt(QL(1)**2+QL(3)**2)

write(7,fmt=101)QL,sig_loc(1,1),sig_loc(1,2),

+ sig_loc(1,3),sig_loc(2,2),sig_loc(2,3),sig_loc(3,3)

write(8, fmt=101)QG,sig_glo(1,1),sig_glo(1,2),

+ sig_glo(1,3),sig_glo(2,2),sig_glo(2,3),sig_glo(3,3)

write (9, fmt=102)QG,i_loop,i_node,k_1,k_2

101 format (9(1x,es12.5))

102 format (3(1x,es12.5),4(1x,I5))

end subroutine writer

!==============================================================

subroutine int_energy2

use variables

integer:: i,j,k,l

double precision:: norm2,int_energy,mid1,mid2,mid3,mid4,

+ tr_sig,e_sia,e_vac,Moment_all,workdone

double precision, dimension(3):: normal2,Moment_C

double precision, dimension(3,3,3):: permu

norm2=dsqrt(mil2(1)**2+mil2(2)**2+mil2(3)**2)

normal2(1)=mil2(1)/norm2

normal2(2)=mil2(2)/norm2

normal2(3)=mil2(3)/norm2

int_energy=0.0
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mid1=0.0

do j=1,3

do k=1,3

int_energy=normal2(j)*burger2(k)*sig_glo(j,k)+

+ int_energy

end do

mid1=mid1+normal2(j)*burger2(j)

end do

mid2=1.6d-19*mid1*T_temp*8.617065e-5

int_energy=int_energy*0.25*G_shear*a_thick**3/mid2

mid3=3.0*1.6d-19*T_temp*8.617065e-5

tr_sig=sig_glo(1,1)+sig_glo(2,2)+sig_glo(3,3)

e_sia=-0.1*a_thick**3*tr_sig*G_shear/mid3

e_vac=-0.5*e_sia

mid4=1.6d-19*mid1

do i=1,3; do j=1,3; do k=1,3

permu(i,j,k)=0.0

end do; end do; end do

permu(1,2,3)=1.0

permu(2,3,1)=1.0

permu(3,1,2)=1.0

permu(1,3,2)=-1.0

permu(3,2,1)=-1.0

permu(2,1,3)=-1.0

do i=1,3

Moment_C(i)=0.0

do j=1,3

do k=1,3

do l=1,3

Moment_C(i)=Moment_C(i)-permu(i,j,k)*normal2(j)*

+ burger2(l)*sig_glo(l,k)

end do

end do

end do

Moment_C(i)=Moment_C(i)*0.25*G_shear*a_thick**3/mid4

end do
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Moment_all=Moment_C(1)**2+Moment_C(2)**2+Moment_C(3)**2

workdone=dsqrt(Moment_all)*0.5*pi/0.1d0

write(12,fmt=1002)QG,int_energy,e_sia,e_vac,workdone

1002 format (7(1x,es12.5))

end subroutine int_energy2

!=================================================================

15.2 2D Simulations - Noronha

15.3 Isotropic DD - Jianming

15.4 Anisotropic DD - Han

15.5 DD in Nanolayers - Han

15.6 Large-Scale DD - Zhiqiang
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START

SUBROUTINE ANISTROPIC_SELFFORCE

INPUT DISLOCATION INF

CALL VARIABLES_COMMON

SELFFORCE TYPE

ISOANISO=1~3

1 3

2

ISOTROPY ANISOTROPIC APPRO.

CALL ISOTROPICSELFFORCE CALL ENERGY_Es

CALL SELF_TENSION

J(R)-)]In(8/)"([ ���EEE �� ���� )In(8/)"( EEE ��

End End

ANISOTROPIC-- EXACT INTEGRAL

CALL ENERGY_Es
SUBROUTINE DISLOCATION_FILED2

CALL DISLOCATION_FILED2

lG
Segm en t

qip d

1

0

, ��� � 	


jiijij nbE )]()([5.0 mPmP ����� ���� CALL SEG_INTEGRAL2

CALL GREENFUNCTIONDS

End qipG ,

Figure 15.1: Self force calculation of a dislocation loop in anisotropic or isotropic materials.
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START

i x
i

j

SUBROUTINE ANISOTROPIC_FIELD

! Strain/Stress at a point x of dislocation loop i,

due to also other dislocation loops iNj �� ,,..,1

CALL DISLOCATION_FILED

THE FIELD INDUCED BY A DISLOCATION LOOP j

SUBROUTINE DISLOCATION_FILED

CALL VARIABLES_common ! Input dislocation j inf

lGL
S e g m e n t

qip

ji d),(

1

0

, ��� � ��x

GREEN’S FUNCTION DERIVETIVES

CALL GREENFUNCTIOND3DS

END

),()(
,1

ji
N

ijj

i Lxx �
��

� ��

Figure 15.2: The stress field induced by dislocation loops and their interactions.
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START
LUNO

i x LNF

SUBROUTINE ANISOTROPIC_imageforce
LUNO

! Image force at a point x of dislocation loop i

(on layer LNF), due to interface LUNO

CALL imageforce_line

The Image force due a dislocation loop Li near an Interface LUNO

LUNO

SUBROUTINE imageforce_line Li

CALL VARIABLES_common ! Input dislocation loop i inf

lS

iL

aryComplementLUNOimage d)'x,x()Interface,( ��x�

CALL DISLOCATION_SEGMENT

The image force due to an infinitesimal dislocation segment

'x

��
�

d)'x(
~

)'x,x(

2

0

3�� ,,xSS ComplCompl
! Reduced Inverse transformation

!
ComplS

~
has a general solution in 2D Fourier transformed domain as

WDVB
ippi ������ 		 33)'x,,(

~
21

xxCompl eeS


�� ��

with matrix V and W being determined by interface boundary condition

END

)Interface,()(
1

LUNO
LNF

LNFLUNO

imageimage
xx �

	�

� ��

Figure 15.3: Image force calculation in multilayers, using line integration method.
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START

INT

x
i

Straight dislocation line

SUBROUTINE ANISOTROPIC_imageforce_2D i LNF

INT

! Image force at a point x
i
of dislocation loop i

(on layer LNF), due to interface INT.

THE IMAGE FORCE DUE TO INTERFACE INT

Interface INT
h

Layer LNF x
i

Infinite Straight Dislocation line Appr.

i

! To calculate the image force at a point x
i
on a dislocation loop i , due to interface INT,

An infinite straight dislocation line passing x
i
and parallel to the interface INT is used,

To replace the dislocation loop i.

END

),()(
1

INTi
INT

LNFINT

imageiimage Interfaceff xx �
��

�

h

EE
Interfacef

INTLNF
INTiimage �

�),(x

Figure 15.4: Image force calculation in multilayers, using straight line approximation method.
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Start
INT

i x
i

LNF

PROGRAM dislocationloop_multilayer
INT

Input

Material and dislocation information

CALL MATERIAL_CONSTANT_MUL

CALL DISLOCATIONS_GEOMETRY

Surface intergation along dislocation loop

CALL DISLOCATION_FINITE

)'(d),'()( ', xxxx SG lqpk

S

�� �� S 'x x

CALL GREENFUNCTION2DD_NEW

Green’s function and derivatives in a multilayers

Intn

SUBROUTINE GREENFUNCTION2DD_NEW 'x x Lnx

Intn

CALL GREENFUNCTION1D_NEW

Green’s function and derivatives near a single interface

SUBROUTINE GREENFUNCTION1D_NEW 'x x

CALL GREENFUNCTIOND ! Green’s functions in infinite space

End

)InterfaceAll,',()Interface,',()',(
1

xxxxxx
nInteractioIntn

Lnx

LnxIntn

Single GGG �� �
��

)Interface,',()',()Interface,',( xxxxxx
aryComplementSingle GGG �� �

Figure 15.5: Green’s functions and dislocation image force calculation in multilayers, using
Green’s functions and surface integral method.
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